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nline auction markets play increasingly important roles for resource allocations in distributed systems.

This paper builds upon a market-based framework presented by Guo et al. (Guo, Z., G. ]J. Koehler,
A. B. Whinston. 2007. A market-based optimization algorithm for distributed systems. Management Sci. 53(8)
1345-1458), where a distributed system optimization problem is solved by self-interested agents iteratively trad-
ing bundled resources in a double auction market run by a dealer. We extend this approach to a dynamic,
asynchronous Internet market environment and investigate how various market design factors including dealer
inventory policies, market communication patterns, and agent learning strategies affect the computational mar-
ket efficiency, market liquidity, and implementation. We prove finite convergence to an optimal solution under
these various schemes, where individual rational and budget-balanced trading leads to an efficient auction out-
come. Empirical investigations further show that the algorithmic implementation is robust to a number of dealer
and agent manipulations and scalable to larger sizes and more complicated bundle trading markets. Interest-
ingly, we find that, though both asynchronous communication and asymmetric market information negatively
affect the speed of market convergence and lead to more agent welfare loss, agents” ability to predict market
prices has a positive effect on both. Contrary to conventional wisdom that a dealer’s intertemporal liquidity pro-
visions improve market performance, we find that the dealer’s active market intervention may not be desirable
in a simple market trading environment where an inherent market liquidity effect dominates, especially when
the dealer owns a significant amount of resources. Different from the traditional market insight, our trading
data suggest that high trading volume does not correlate to low price volatility and quicker price discovery.

Key words: electronic markets and auctions; electronic commerce; resource allocation; computational

experiment; simulation

1. Introduction

The increasing use of the Internet as a standard
computing platform has created many types of dis-
tributed systems within and across organizational
boundaries. One example is a global hierarchical orga-
nization consisting of geographically distributed divi-
sions. The central headquarters governs the total
shared resources available to the whole organization
(resources such as total computing capacity, storage
space, inventory, and manpower). Division managers
who have precise knowledge of local conditions run
different plants possibly located in various countries.
The central planner must decide on an allocation of
the shared resources that will minimize the over-
all operating costs. However, division managers may

not have incentives to truthfully share their private
information about local plant operations (Ba et al.
2001a). As a result, an optimal centralized solution is
simply impractical to attain under such conditions.
Recent trends in supply chains and e-marketplaces
require distributed decision making in collaborative
planning environments such as e-procurement and
supply chain coordination (Albrecht 2009). Typical
characteristics of such distributed systems include
global goals that depend on some common activities
of decentralized parties and unique problems with
private objective functions that are managed locally.
The need for disclosing potentially confidential infor-
mation by decentralized parties, the conflict of cen-
tral objectives with the incentives in decentralized



entities, and the complex interaction among partic-
ipating parties pose critical limitations in practical
implementations for such intra- and interorganiza-
tional planning and coordination.

It has been widely recognized that such resource
allocation challenges can be effectively handled by
market mechanisms. Neoclassical economics theories
such as the Walrasian general equilibrium model pro-
vide a theoretical foundation to study the exchange
and allocation of resources in an economy. The first
and second fundamental theorems of welfare eco-
nomics state the conditions under which a Walrasian
equilibrium (price equilibrium with transfers) leads
to a Pareto optimal allocation (no alternative allo-
cation that makes at least one individual better off
without making any other individual worse off, or
vice versa). These theorems offer a strong conceptual
affirmation of the use of competitive markets in dis-
tributed resource allocation.

However, applying these theoretical results to prac-
tical market implementations has several important
limitations (Mas-Colell et al. 1995, pp. 556-557). The
most critical one is that a planning authority must
have sufficiently good information. For example, the
authority must know the statistical joint distribution
of preferences, endowments, and other relevant char-
acteristics of the agents. Perfectly observing each indi-
vidual’s private characteristics is simply impractical.
Secondly, the Pareto optimality properties of the neo-
classical theories only imply the existence of competi-
tive market equilibrium prices. Lack of understanding
of the underlying dynamics that drive the equilibrium
market prices is another obstacle for practical imple-
mentation of such markets. In this paper, we propose
a market-based resource allocation mechanism that
does not rely on complete information revelation from
agents. We further develop a computational market
model to study several key market design factors that
affect the dynamic price formation process.

Market designs that take into account the rele-
vant physical and economical aspects of the allo-
cation problem belong to the general category of
“smart market” design (see McCabe et al. 1991 for
an overview). A smart market is a periodic auction
that incorporates domain-specific constraints in the
market clearing mechanism and is cleared by opera-
tions research techniques such as linear programming.
Combinatorial auctions are smart markets in which
goods are indivisible. Well-known examples include
the Federal Communications Commission’s auction of
radio spectrum licenses (Cramton 1997), sales of air-
port time slots (Rassenti et al. 1982), and allocation
of delivery routes (Sheffi 2004). In such situations,
bundle trading allows bidders to submit consolidated
orders to sell/buy packages of assets when comple-
mentarities exist between different items. Combina-
torial auctions are generally one-sided auctions in

which the auctioneer acts as a seller and participants
buy complementary assets from the auctioneer. Other
smart markets for divisible goods such as electric-
ity (Hogan et al. 1996), natural gas (McCabe et al.
1990), and water resources (Raffensperger et al. 2009)
are becoming very important in environmental areas.
Usually these markets are organized as two-sided
auctions so that buyers and sellers can trade simul-
taneously in the exchange. However, typically only a
single commodity is traded in such double auction
markets.

In real world markets, energy exchanges such as
electricity trading represent some of the most actively
traded markets in the world. In the electricity market,
complementarities arise between deliveries of electric-
ity energy in consecutive periods because of start-
up and shutdown costs of power plants. To account
for such complementarities, the European Energy
Exchange organizes a system of interlinked, interde-
pendent markets on which electricity can be traded
with various time horizons. For example, in the day
ahead auction, both hourly contracts and block con-
tracts (a combination of consecutive hourly orders) for
the respective next day can be traded.! The auctions
can be described as multiunit, double-sided combina-
torial auctions. Computational complexity and trade
inefficiency are well-documented problems in such
markets and are inherent in the combinatorial auction
design. Despite its practical significance, integrating
bundle trading within a double auction is a relatively
unexplored research area, largely because of techni-
cal difficulties to elicit bidder preferences and handle
trades.

Building on initial ideas by Fan et al. (2003)
that extended an earlier effort by Ba et al. (2001b),
Guo et al. (2007) propose a market-based optimiza-
tion algorithm (forthwith, the bundle trading market
framework or BTM for short) for optimizing dis-
tributed systems using independent, self-interested
agents trading bundled resources in a double auc-
tion market run by a dealer. In their BTM framework,
the dealer replaces the central authority and agents
represent division managers or distributed entities.
They model the distributed system as a decompos-
able linear program. The solution process iterates
between a market matching problem managed by
the dealer and bundle determination problems solved
by agents. Guo et al. (2007) show theoretically that
an overall optimal solution for the system can be
obtained under an iterative, dynamic market trad-
ing algorithm in a finite number of trades. They fur-
ther implement their algorithm in a synchronous,

!We thank an anonymous referee for bringing to our attention
the block orders trading in the European power exchange. http://
www.eex.com/en/.



call market environment and sketch an asynchronous
implementation. They show that their algorithm is
robust against a number of agent strategic behaviors
that merely slow down market convergence without
affecting system optimality. Overall, the BTM frame-
work presents a market paradigm that addresses price
dynamics, incentive issues, and economic transac-
tions of real-world, distributed decision-making situa-
tions more realistically than traditional decomposition
approaches such as that of Dantzig and Wolfe (1960).

Although the BTM approach opens the door for
studying market-based distributed optimization by
allowing flexible bundle trading in double auction
environments, the impacts resulting from the inclusion
of many issues that arise in real market operations
remain open research questions. On the fundamental
level, communication delays because of the inherent
latency of Internet technologies, heterogeneous partic-
ipation decisions of agents,> and uncoordinated deci-
sion making among decentralized entities requires
the algorithm to effectively handle asynchronous
interaction between a dealer and distributed agents.
How asynchronous communication and asymmetric
information affect market performance is an impor-
tant issue. Additionally, asynchronous communica-
tion inevitably leads to market liquidity concerns.
Real-world stock exchanges (e.g.,, New York Stock
Exchange (NYSE)) rely on market intermediaries to
supply liquidity. Yet, it is unclear whether holding
intertemporal inventory can facilitate real-time trades
in computational markets trading complementary
resources, or whether there is a preferable inven-
tory policy to speed up market convergence. Fur-
thermore, artificial trading agents are becoming more
and more intelligent in terms of predicting market
movement and reacting to market dynamics. Know-
ing how agent learning and predictions affect market
design and algorithm convergence is of great practi-
cal importance. More importantly, a market mecha-
nism must be robust against various types of agent
strategic behaviors to avoid possible market failure.
Finally, a market mechanism must be scalable to allow
for flexible expansion to accommodate complex bun-
dle trading among large numbers of agents. There-
fore, designing an efficient market mechanism that
can be implemented on an Internet platform is not
a trivial issue. Market communication and informa-
tion exchange patterns as well as strategic interac-
tion among market participants including distributed
agents and dealers may all have impacts on market
performance.

In this paper, we expand the original BTM frame-
work to address these realistic market design issues in

2We thank the Associate Editor for providing this alternative
explanation.

an asynchronous implementation environment using
an adapted iterative market algorithm. We aim to
investigate how various market design factors includ-
ing dealer inventory policies, market communication
patterns, agent learning models, and bidding strate-
gies affect computational market efficiency, market
liquidity, and implementation. Specifically, this study
complements the previous BTM framework in several
ways, chiefly by enabling several characteristics used
by actual agents in real-world decision making. First,
we focus on the effect of market price forecasting on
agent strategic bundle selection rather than just strate-
gic underbidding as was studied in BTM. Second, in
contrast to a passive dealer inventory policy stud-
ied by BTM, we explore active market intervention
through the use of more sophisticated dealer inven-
tory policies. Third, we explicitly take into account
the effect of asynchronous communication and asym-
metric information on market performance. We show
that an extended framework that incorporates these
aspects will successfully preserve all optimality and
finite convergence properties. Through a controlled
experiment involving 480 randomly generated market
settings and 160 combinations of market treatments,
we further evaluate the effects of various market
design options on market performance.

There are several interesting findings. First, though
both asynchronous communication and asymmetric
information negatively affect the speed of market
convergence and agent surplus, agents’ forecast learn-
ing has a positive effect. Second, in order to pre-
serve auction efficiency, a hybrid model of call and
continuous market design is necessary to prevent
premature market closure if agents possess a fore-
cast learning ability. Third, contrary to traditional
financial market insights, we find that a dealer’s
intertemporal liquidity provision may not be desir-
able, especially in markets that trade a small num-
ber of complementary assets and when the dealer
owns significant amounts of resources. In addition,
our trading data suggests that high trading volume
does not correlate to low price volatility and quicker
price discovery. Traditional financial market insights
may not be directly applied and transferred to the
BTM trading environment.

In §2, we briefly review related literature. In §3,
we present the basic BTM framework. We describe
the market environment, agent decision-making mod-
els, and the market clearing mechanism. In §4, we
extend the market model to explore dealer active mar-
ket intervention strategies and agent learning in an
asynchronous implementation environment. We also
theoretically justify these extensions of the adapted
algorithm. Section 5 presents a computational study
in a controlled experiment using large-scale simula-
tion. Section 6 summarizes the main results. Section 7



provides additional experiments to allow for more
agent strategies and randomization of factors. Sec-
tion 8 concludes this study and outlines directions
for future research. Some supporting materials and all
proofs are provided in the online supplement.?

2. Literature Review

In operations research, distributed systems are mod-
eled as decomposable linear programs (Bertsekas and
Tsitsiklis 1997). For large-scale distributed systems,
the Dantzig-Wolfe decomposition method (Dantzig
and Wolfe 1960) is often viewed as a way to decom-
pose a solution process by dividing the components
into those independently solved by managers or by
central planners. This is a price-directed decomposi-
tion where the central planner first sets the prices of
shared resources, then division managers report to the
central planner on how they would use the shared
resources according to the prices. The central planner
reassesses the prices based on the proposed resource
usage plans and the process is repeated until an opti-
mal solution to the overall problem is found. The
fact that the managers need to report their detailed
resource usage plan poses a significant information
revelation challenge in any real-world implementa-
tion of this approach.

Guo et al. (2007) proposed the BTM framework to
overcome this limitation. The BTM mechanism adopts
a price-directed decomposition that only requires
agents to bid bundled resources in a double auc-
tion environment and uses a market dealer to replace
the central authority for the market coordination role.
Because the closest market mechanism to BIM is a
combinatorial exchange (albeit with discrete rather
than continuous trade amounts) and the most widely
studied markets are combinatorial auctions, we now
briefly review literature on combinatorial exchanges,
pricing mechanisms used in combinatorial auctions,
and practical mechanism design challenges.

There has been extensive literature in auction the-
ory and practical auction designs. A very popular
and increasingly important auction type is the com-
binatorial exchange, which is a combinatorial double
auction that brings together multiple buyers and sell-
ers to trade multiple heterogeneous goods. It com-
bines a double auction (McAfee 1992), where multiple
buyers and sellers trade multiple units of an identi-
cal good, and a combinatorial auction (Cramton et al.
2006), where a single seller sells multiple heteroge-
neous items. Combinatorial auctions allow bids on
combinations of items (bundles) because of the inher-
ent complementarities between the items (Pekec and
Rothkopf 2003).

% An electronic companion to this paper is available as part of the
online version at http://dx.doi.org/10.1287 /isre.1110.0366.

Pricing a combinatorial double auction is very chal-
lenging, largely because of the inherent intractabil-
ity of combinatorial auction pricing. Kothari et al.
(2004) considered a very general type of multiunit,
multi-item combinatorial exchange. Clearing such an
exchange is intractable, so their paper focused on
the special case where acceptance of partial bids
is allowed. Xia et al. (2005) showed that a general
combinatorial double auction can be reduced to a
single-sided combinatorial auction problem (which
is essentially a multidimensional knapsack problem).
They further compared several solution approaches
and found that the linear programming relaxation
bounds dominate other methods. Their findings show
the promise of linear programming models in solving
complex combinatorial exchange problems.

A tractable, special case of the combinatorial
exchange is the classical assignment problem that can
be modeled as a two-sided market in which a set of
individuals need to be matched with an equal num-
ber of positions. Shapley and Shubik (1972) showed
that a competitive equilibrium exists and is efficient
in the standard assignment problem. Bertsekas (1979,
1988) was the first to make an explicit connection
between a primal-dual algorithm and auction mech-
anisms. The computational algorithms employ the
well-known property of linear programming, where
the dual problem provides market clearing prices for
the resources used in the primal problem. The pri-
mal and dual solutions of the linear program coin-
cide with the Walrasian equilibrium of allocations and
prices.

In general, the existence of a pricing equilibrium
is not always guaranteed in combinatorial markets
with nonconvexities. Kelso and Crawford (1982) stud-
ied the package assignment model and derived suf-
ficient conditions for the existence of the Walrasian
equilibrium. Under linear programming characteriza-
tion, Bikhchandani and Mamer (1997) established the
necessary and sufficient conditions under which lin-
ear prices exist (i.e., prices of packages are the sum
of the prices of the objects contained in it). In these
works, the equivalence of linear programming solu-
tions and pricing equilibrium remains.

The price paid by the winner in an auction
can be interpreted as either a Walrasian price or
a Vickrey-Clarke-Groves (VCG) payment. Walrasian
prices and VCG payments only coincide in special-
ized cases such as the one-to-one assignment model
(Leonard 1983) or the multi-item generalization of
the assignment model (Demange et al. 1986). In
combinatorial auctions, Walrasian prices and VCG
payments typically differ. Bikhchandani and Ostroy
(2002) considered nonlinear pricing functions (i.e.,
prices are nonadditive over objects) in a package
assignment model consisting of multiple objects. They



derived necessary and sufficient conditions under
which the Vickrey payoff can be implemented as
a truth-telling price equilibrium. The Vickrey-based
payment scheme has received wide attention in the
literature because it is efficient and strategyproof.

Though economists are interested in economic
properties such as strategyproof behavior and direct
implementation mechanisms, the main theoreti-
cal tool—the VCG mechanism—is computationally
expensive and impractical (Rothkopf 2007). In the
one-shot, sealed-bid combinatorial auction environ-
ment, every agent must provide complete information
about his preferences to the mechanism. Preference
elicitation from agents is proven to be too costly and
demanding (Sandholm and Boutilier 2006). It is also
well-known that the winner determination problem
in combinatorial auctions is NP-hard (Rothkopf et al.
1998). The auctioneer must solve a sequence of NP-
hard optimization problems to compute the outcome.
This is simply intractable. As such, both the computa-
tional complexity of the winner determination prob-
lem and the communication complexity of preference
elicitation have emerged as key bottlenecks in any
real-world deployment of combinatorial auctions.

The use of iterative mechanisms in auction design
to minimize information revelation and agent com-
putation is one important application in the algorith-
mic mechanism design literature (Nisan and Ronen
2001, Parkes and Ungar 2000). To handle the pref-
erence elicitation challenge in iterative combinatorial
auctions, an important method employs primal-dual
algorithms (Parkes 2006). Prices are interpreted as fea-
sible dual solutions and the provisional allocation is
interpreted as a feasible primal solution. Prices are
adjusted iteratively until an optimal dual solution is
found. Although the winner-determination problem
is still NP-hard, the size of the problem in each round
of iteration is considerably smaller than the overall
problem. Recent progresses in dynamic combinato-
rial auction design include the ascending bid auc-
tion (Ausubel 2004) and iBundle (Parkes 1999), among
others. Applying the linear programming primal-
dual algorithm to iterative auctions design, De Vries
et al. (2007) showed that submodularity is sufficient
and substitutability is essentially necessary for VCG
implementation of the ascending auction for hetero-
geneous objects.

A number of information systems researchers are
leading an effort to create innovative bundle market
mechanisms that allow for more flexible expressions
of bidder preferences. For example, a double auc-
tion mechanism has been proposed to trade bun-
dled knowledge goods in distributed organizations
(Ba et al. 2001b) and bundled network resources in
decentralized supply chains (Fan et al. 2003). BTM
expanded on ideas by Fan et al. (2003) to allow for
flexible bundle composition. Their bundles consist of

heterogeneous items and permit simultaneous sub-
missions of buy and sell orders for those distinct items
in one package.

In this paper, we aim to advance our understand-
ing of the BTM market design in several dimen-
sions characterized by asynchronous communication,
agent learning, and the dealer’s active market inter-
mediation. Because no pricing equilibrium can be
guaranteed for indivisible goods, we assume divis-
ible commodities as did BTM. Many real-world
resource allocation problems have the divisibility
nature, for example, the markets for admission con-
trol in telecommunications (Thomas et al. 2002), elec-
tricity (Hogan et al. 1996), natural gas (McCabe
et al. 1990), and water resources (Raffensperger et al.
2009). Because we are interested in practical imple-
mentable market design, we focus on the class of lin-
ear pricing schemes. Because of easy implementation,
linear prices are widely adopted in practical appli-
cations such as the FCC wireless spectrum auctions
(Cramton et al. 2006, Chapter 3) and the European
Energy Exchange (Meeus et al. 2009).

In addition to the guaranteed existence of linear
pricing equilibrium, another important benefit of the
divisibility assumption is that the BTM mechanism
does not suffer the negative “impossibility” result in
the mechanism design literature. The Myerson and
Satterthwaite (1983) impossibility theorem asserts that
it is impossible for an exchange to be efficient, have
individual rationality, and be budget balanced. An
immediate consequence of this result is that a mech-
anism designer can only hope to achieve at most two
of the above properties even in a simple exchange
environment in which buyers and sellers trade single
units of the same good. This has lead to a class of
mechanism design that focuses on asymptotical effi-
ciency while maintaining individual rationality and
budget-balanced conditions (see Chu 2009 double
auction environments; Lubin et al. 2008 combinatorial
exchanges).

The Myerson-Satterthwaite impossibility result
does not affect the BTM trading mechanism because
their trading environment is restricted to an indi-
visible unit of a commodity and the trading agents
are ex ante identified as either buyer or seller with
the seller owning the object. McAfee (1991) showed
that in an environment with continuous quantities, it
is possible to arrange efficient trades without break-
ing the individual rationality and budget-balanced
conditions. He also observed that it is possible to
arrange efficient trades in an environment of “hid-
den endowments,” where any agent may be either a
buyer or seller depending on the realization of the
privately observed information (price and quantity of
the good already in the agent’s possession). Because
the BTM model allows divisible quantity and their



trading agents are not ex ante identified buyers and
sellers, the BTM mechanism can achieve individual
rationality, budget balance, and allocative efficiency
simultaneously.

Because of the inherent complexity in design-
ing flexible yet robust online auction mechanisms,
incentive compatibility is usually unattainable and
is therefore not imposed at design time. Researchers
have sought alternative approaches to better under-
stand complex market mechanisms. Scheffel et al.
(2010) conducted a laboratory experiment using
human subjects to compare trading strategies and
auction outcomes in a number of iterative combi-
natorial auction formats proposed in the literature.
Bichler et al. (2009) employed a computational anal-
ysis to study linear price iterative combinatorial auc-
tion formats. Gallien and Wein (2005) undertook
numerical experiments simulating bidders’ interac-
tions under certain behavior assumptions in a multi-
item procurement auction. Adomavicius and Gupta
(2005) provided real-time decision support tools to
aid bidders’ evaluations in the iterative combinato-
rial auction process. They also used simulation to
test their market implementation in a computational
experiment setting. In line with these approaches
to study complex market mechanisms, we employ
numerical experiments to simulate dynamic market
interactions and use computational methods to eval-
uate market performance.

3. The BTM Framework

In this section, we present the basic BTM framework
that we use as a benchmark for our extended model.
We then discuss the market environment, the iterative
market procedure, and market properties. Please refer
to the appendix for a complete summary of notation.

3.1. Problem Overview

Consider a distributed system consisting of k inde-
pendent agents. The overall system (called the central
problem) and individual agent problem (called the
agent problem) can be expressed as the following lin-
ear programs. BTM assumes that the central problem
has a bounded solution and is nondegenerate. BTM
allows continuous trade amounts. This distinguishes
it from the discrete markets where only integer num-
ber of units can be traded.

Central problem
k
Z(c)=min ) dx;
x;=0 =1
s.t. ijj <mn;

; i=1,...k 1)

k
> Cx; <c.
j=1

Agent problem (j=1,...,k)

2
s.t. N]-xj <n; )

ijj <g¢.

Here, d]- € RY% is a vector of agent j’s cost, X; € RY
are b;-dimensional decision variables controlled by
agent j, N; € R% b and C e R™Y are activity matri-
ces (where a; and b; are appropriately specified),
n; € RY is the capacity vector of agent j’s indepen-
dent resources that are managed locally, and c; € R”
is agent j's vector of shared resources that can be
exchanged with other agents. Denote agent j’s mini-
mal operating cost at the current resource level ¢; € R™
as z;(c;).

Let c € R" be a vector of the system’s total avail-
able joint capacity. Denote the minimal operating cost
for the central problem as Z(c). The central planner’s
objective is to minimize the overall system operat-
ing cost subject to each individual agent’s operational
constraints (the first set of constraints) and the total
shared resources capacity constraints (the second set
of constraints). However, the central planner does not
have access to all the relevant information (d i M, Cj,
N]-, C]-, forj=1,..., k) for decision making so an opti-
mal solution to the central problem cannot be directly
calculated. The BITM objective is to use a market-
based resource allocation mechanism to coordinate
decentralized decision making from agents so that an
optimal solution to the central problem can be indi-
rectly obtained through an iterative bidding process.

3.2. The Market Environment

The market economy consists of a dealer and k
independent agents. Each agent who only has local
perspective and knowledge can trade the shred
resources ¢; in a double auction market run by the
dealer. The dealer sets the market prices to match
trades. In the following, we describe agent decision

making and the dealer’s market clearing policy.

3.2.1. Agent Bidding. In order to derive an
agent’s best-response bidding strategy, we first give
several basic definitions.

DEerINITION 1 (BUNDLE). A bundle w € R" is a vec-
tor of shared resources, where positive components in
the bundle represent sell amounts and negative com-
ponents represent buy amounts.

Agents can lower their operating costs by buying
extra resources, or they can make a profit by selling
some of their resources that might be more effectively
used by other agents. Let p € R™ be the current price



vector for the shared resources. A rational agent’s bun-
dle determination problem can be expressed as

min d'x; +p'w
x/ZO,w 177 p

st. N]-x/- <nj, 3)

ijj =c+w.

Two types of bundles might result. A limited bun-
dle w; € R™ corresponds to an extreme point solution
(x;, w;) € RY%*™, and an unlimited bundle u; € R™ cor-
responds to an extreme ray solution (¥}, u}) € RY*™,
Note that a “no-trade” bundle zero is always feasible
and has zero cost impact on the agent’s problem. The
bundle valuation is defined as follows.

DEerINITION 2 (BUNDLE VALUATION). (a) The valua-
tion of a limited bundle is defined as the total value
that bundle w; contributes to the objective change of
the agent’s problem, i.e., v;(w;) =z;(c;) — dix;;

(b) The valuation of an unlimited bundle is defined
as the unit incremental value that u; contributes
to the objective change of the agent’s problem, i.e.,

v;(u;) = —di%;.

DeriNITION 3 (UTILITY). Given the current market
price vector p € R™, agent j’s utility for trading a
bundle w € R™ has the quasilinear form Uj(w) =
vj(w) —p'w.

This quasilinear utility function is a very com-
mon assumption in auction theory and mechanism
design, which makes it straightforward to transfer
utility across agents via side payments.

The following lemma shows that the agent’s bun-
dle determination problem (3) corresponds to a best-
response strategy in which an agent submits the most
preferred bundle that maximizes his utility (all proofs
of lemmas are in the online supplement).

LEMMA 1 (BEST-RESPONSE STRATEGY). In each round
of the iterative auction, an agent follows a best-response
strategy that is characterized by his bundle determination
problem (3).

An agent can submit a limited bundle represented
as a triple [w;, [;(w;), 1], where [;(w;) is the limit price
and 1 means the market deals only with unit limit
quantities. Any nonnegative multiple of the limited
bundle, Aw;, A € [0,1], may be traded. An agent
can also submit an unlimited bundle in the form
[u;,1;(u;), oo], where oo means that any nonnegative
amount may be traded. Regardless of the bundle
type, if [;(w) > 0, then the bundle order is inter-
preted as a buy. If [;(w) <0, then it is interpreted
as a sell. [;(w) =0 is referred to as either a buy or
sell. When the limit price is equal to the bundle’s val-
uation, ie., [j(w) = v;(w), the pricing is interpreted

as truthful pricing. Agents might bid according to
their true valuation of the bundle, or they might
bid strategically (bid higher or lower than their true
valuation).

3.2.2. The Dealer’s Market Clearing Mechanism.
The dealer accepts sealed bids from agents. She main-
tains an individual outstanding order book for each
agent. The order book on agent j contains two order
sets, Ij and Hj, for limited and unlimited bundles,
respectively. Orders for a specific agent are accumu-
lated in the agent’s order book if no trade is exe-
cuted for the agent. Any trade from the agent will
clear his order book so all outstanding orders are
removed.

The dealer trades on her own account. She has
some initial resource endowment c, > 0 and cor-
responding cash endowment ¢y(c,). Note that the
accounting identity ijzl ¢; + ¢y < ¢ holds. The dealer
solves the following market matching problem to maxi-
mize the market trade surplus:

k
max Y. <le(w;)y; + ) Q(u?)t}’)

i h
¥j20.420 g \jep, heH,

k
st. > (Zw}y}—i— 3 u?t]]?) <c, 4)

j=1 \iel; heH;

Yyi<1 j=1,...,k

i€l;

The first set of constraints represents the market
clearing conditions subject to the dealer’s available
inventory c,. The second set of constraints shows
the different treatment for the two types of bun-
dles. Though trades of unlimited bundles in set H;
are unrestricted, trades of the limited bundles are
required to be convex combinations of bundles in
set [;. This constraint does not have the usual equal-
ity sign because there is an implicit “no-trade” bun-
dle for each agent composed of zeros and priced at
zero (recall, a zero bundle is always feasible to the
agents’ bundle determination problem). The market-
matching problem always has a solution (e.g., all vari-
ables set to zero is a feasible solution).

If the market matching problem has nonzero solu-
tions yi* for i € [; and t{* for h € H;, then agent j will
have traded w} =¥, Wjy}" + Lien, ujt{*. The mar-
ket clearing prices p € R™ are set as the dual prices
from the first set of constraints of the market match-
ing problem. We adopt a uniform price (all units for
the same shared resource are bought or sold at the
same market clearing price) and linear pricing rule
(price for a bundle is the sum of prices for all compo-
nents in the bundle). Thus, the payment for agent j
on a trade w; is p'w;. As a result, agent j’s new val-
ues are ¢; + w]* for j=1,...,k and the dealer ends



with ¢, — Z;-(:l wj. The dealer’s inventory level stays
nonnegative and she retains excess resources result-
ing from unbalanced trades. Assume that the cash
endowment for agent j at resource level ¢; is ¢;(c)).
The cash endowments are updated as ¢;(c; + w}) =
ej(cj) —p'w; for j=1,...,k and ey(c; — Z;;l wi) =
eo(co) + Z?:l p'w;.

DEerINITION 4 (WEALTH). Given the cash endow-
ment e;(c;) and the level of shared resources c;,
agent j’s wealth is Wi(c;) = ¢;(c;) — zj(c)).

Note that the negative sign on z;(c;) reflects cost
minimization. Based on the above settlement rule, we
can further show that an agent’s wealth after trad-
ing is no less than his wealth before trading, formally
stated in Lemma 2.

LeEMMA 2 (WEALTH NONDECREASING TRADE). If agent j
trades with w?, then her wealth after trading is nondecreas-
ing, i.e., Wj(c/-) < W/-(c]- + w]*-‘).

3.3. The Market Dynamics

In the following, we describe the iterative market
procedure in the context of this study, which is an
extended form of the original BTM framework. We
first explain the dynamic price discovery process. We
then discuss some important market properties in the
computational market environment.

3.3.1. The Iterative Market Procedure. In an
exchange, trading takes place in trading sessions. The
two types of trading sessions are call market and
continuous market sessions (Harris 2002). In a call
market, orders submitted to the system will be accu-
mulated in the order book and processed simultane-
ously at periodic intervals. All agents trade at the
same time when the market is called. In contrast, a
continuous market arranges immediate execution as
orders arrive. As orders arrive asynchronously, the
market attempts to clear every time there are new
orders. The BTM framework is designed as a hybrid
form of continuous and call markets. The market
starts as a continuous market and agents participate
asynchronously. We only use a call market to restart
trading after a trading halt in order to avoid prema-
ture market closure.

The market allocation is an iterative process. In
each round, participating agents select resource bun-
dles based on their currently available market prices*
using the decision rule specified in (3) and then sub-
mit their bids. Upon receiving bids, the dealer solves
the market matching problem (4). New market prices
are discovered as the dual prices from the first set
of constraints of the market matching problem. The

* Note that different agents may have different market price infor-
mation because of their asynchronous participation.

dealer announces the current market prices. If there is
a price change compared to the prior round, the next
round begins. The market continues to operate as a
continuous market. If the new prices repeat the prior
round’s prices and the market is not operating as a
call market yet, the dealer will initiate a market call.
All agents are informed that this might be the last
round of trading so new bids arrive synchronously,
if there are any. If the new prices repeat the prior
round’s prices and the market is already operating
as a call market, the market closes. Figure 1 provides
a sketch of the iterative market process. The actual
implementation involves many more details that we
will explain in §4.

3.3.2. An Overview of Market Properties. In auc-
tion market design, incentive compatibility, individ-
ual rationality, budget balance, allocative efficiency,
and social welfare are important market properties.
Because we do not impose truth revelation, agents
may not bid truthfully in each round of the auc-
tion. However, an efficient auction outcome can be
achieved by incremental revelation of agent prefer-
ences through the iterative trading process.

The BTM mechanism ensures individual rational-
ity in the sense that each agent expects nonnegative
gain from a trade. The market settlement ensures that
any trade from the agent is wealth nondecreasing
(Lemma 2).

In the traditional auction environment, the auction-
eer is typically not considered a player of the mech-
anism. The failure of budget balance implies that
the auctioneer earns negative revenues. Under the
BTM framework, when the dealer adopts a passive
inventory policy as in Guo et al. (2007), she earns
nonnegative revenues. The Myerson-Satterthwaite
impossibility result does not apply to our trading
environment. When the dealer actively trades on her
own account (as in this study), we treat the dealer as
a player of the mechanism. Because all resources are
exchanged among agents and the dealer via side pay-
ments in the system, the BTM mechanism is budget
balanced.

Under the standard assumption of neoclassical eco-
nomics that goods are continuously divisible, agents
play the role of buyers or sellers in the market
depending on their endowments and preferences. As
seen in Lemma 1, agents maximize utility using a
best-response strategy in each round of the market
trading. Because no agent is interested in submit-
ting any new bundles based on the market prices at
the algorithm termination, no one is willing to give
up resources in exchange for cash or to buy addi-
tional resource to lower operating costs. Therefore,
the BTM mechanism terminates in competitive equi-
libriums where the final prices and allocation clear



Figure 1 A Simplified Flow Chart of the BTM Model
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the market by equating marginal rates of substitution
among agents.

In auction, allocative efficiency is achieved when
total value over all agents is maximized. Define
agent j’s aggregate trade of resources in round R as
Wig = & wy;, the sum of all traded resource bundles
for agent j up to round R. We have the following

lemma.

LEMMA 3 (ALLOCATIVE EFFICIENCY). Given the ini-
tial endowment of resources ¢® = (c{,...,c}) and the
aggregated trade of resources Wy = (Wyg, ..., Wig), an
efficient allocation is achieved if and only if the following
equality holds: Z;‘Zl zj(c) + w;g) = Z(c).

We will show in §4.5 that, at algorithm termina-
tion, an optimal allocation to the central problem can
be achieved so that the total operating cost of all
agents is minimized; this equals to the central prob-
lem operating cost Z(c). Therefore, the BTM mech-
anism guarantees full allocative efficiency. In any
round of the auction, the degree of allocative effi-
ciency is measured as the ratio of the total operating
costs of all agents at the current resource levels to
the overall operating cost in the central problem, i.e.,
Z?:l zj(c? +Wir)/ Z(c).

Social welfare is measured by the total wealth
from both agents and the dealer, i.e., Zfzolf\fj(cj) =
Z?:o ej(cj) - Z;;l zj(cj). Because the market is budget
balanced, the final cash endowments in the system
equal the total initial cash endowments, which are

redistributed among agents and the dealer through
bundle trading in the market. At the algorithm ter-
mination, the market achieves efficient allocation. The
total operating cost of all agents is minimized and
equals the central problem operating cost Z(c). There-
fore, the social welfare is maximized at the algorithm
termination.

4., Model Extension and

the Adapted Algorithm

Market performance is largely affected by the way
trading is organized, including how the dealer per-
forms market intermediation, how market informa-
tion is accessed, and how orders are communicated.
We incorporate these factors in an extended BTM
model. We then detail an adapted, asynchronous
implementation of the extended BTM algorithm. We
further provide theoretical justifications for an effi-
cient market design and convergence of the algorithm
to a systemwide optimal solution.

4.1. The Dealer’s Market Intermediation

Although real-world exchanges such as the NYSE rely
on market intermediaries to supply liquidity, it is
unclear whether holding intertemporal inventory can
facilitate real-time trades in the BTM environment.
In market microstructure theory (O’'Hara 1995), the
dealer’s optimization problem has been studied from
various aspects with inventory and pricing as the



major concern. In inventory-based models, Amihud
and Mendelson (1980) found that the dealer has a
preferred inventory position. As the dealer finds her
inventory departing from the preferred position, she
moves prices to bring her position back. Based on
this insight, we borrowed a term from the inventory
management literature and designed the safety stock
inventory policy. Under this, the dealer trades on her
own account to maintain a certain level of predefined
safety stock. Following a similar notion, the specula-
tive price inventory model is a variation of the safety
stock inventory model, where deviation of target price
rather than target inventory triggers the dealer’s trad-
ing decisions. We describe the two inventory policies
in detail next.

4.1.1. The Safety Stock (SS) Policy. Under the SS
policy, the dealer maintains a safety stock level s € R™.
Once any component of the dealer’s inventory level
drops below the target level (i.e., (¢)); <s;), the dealer
attempts to buy the difference from the market to
restore her target inventory. This is accomplished by
adding a buy order at the current market price of that
item in the market matching problem. Let 1; be the
jth unit vector and y; be the buy amount for the jth
shared resource in the dealer’s account. The revised
market matching problem is

_max {Z(Zl (w)y;+ Z L. (u”)t")
Y; i=0, fh>0’ j=1 \iel;
y,>0
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The objective maximizes the total market surplus
from both agents and the dealer. The first set of mar-
ket clearing constraints says that when the dealer sub-
mits buy orders for resources, the right-hand side
dealer’s inventory for those resources are restricted
to zero, which prevents the dealer from selling from
her own inventory. The last set of constraints state
that the dealer’s order fulfillment does not exceed the
specified amount s; — (¢o);-

4.1.2. The Speculative Price (SP) Policy. Under
the SP policy, the dealer speculates on market prices.
Let r € R" be her speculative price levels. Once the

dealer observes that a resource price for item j drops
below 7 (i-e., pj < rj), she attempts to buy as much
as possible from the market at current market price.
She also attempts to sell as much as possible from
her inventory as long as the current market price
is greater than r; (i.e, p; > r,). Let q and g} be the
buy and sell amounts, respectlvely, for the ]tlzl shared
resource in the dealer’s account. The revised market
matching problem is expressed in (6):
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The overall objective is to maximize the total mar-
ket surplus. Again, in the first set of constraints, a
buy order for the jth shared resource restricts the
right-hand side for the jth resource to be zero so that
dealer cannot buy from her own inventory. The last
constraint means that the sell amount cannot exceed
the dealer’s available inventory. No short selling is
allowed.

The SS and SP inventory policies allow the dealer to
perform active market intervention. This is in direct
contrast with the passive inventory policy stated in
problem (4) and used in Guo et al. (2007), which we
call the naive inventory policy or NA policy. In real-
ity, it is reasonable to assume that the dealer, who
regulates market prices, has an informational advan-
tage over agents. In order to understand the effect
of differential information on market performance,
we design two additional policies that we refer to
as the full information safety stock (FISS) policy and
the full information speculative price (FISP) policy,
respectively. By full information, we mean that the
dealer knows the true market prices for resources
(using them within the SP policy and bidding the true
market prices rather than buying at the current mar-
ket prices in the SS policy). It is worth noting that
both FISS and FISP are used to calibrate the value
of true market information on the dealer’s market
intermediation. Our algorithm does not rely on such
knowledge to converge. All together, we have the fol-
lowing treatment for the dealer’s inventory policies:
V e {NA,SS, SP, FISS, FISP}.

for j where p; > r;.



4.2. Agent Forecasting of Future Market Prices

In the iterative market trading framework, market
performance is largely affected by agent bundle elic-
itation. This allows for many possible forms of agent
strategic behavior in both bundle selection and bundle
pricing. The original BTM model focused on agents
underbidding resource bundles and assuming that
the bundle selection followed problem (3), where an
agent uses the most recently observed market price.
We call this myopic learning (denoted as M). In this
paper, we look at agent strategic bundle selection,
where agents use forecasted market prices to deter-
mine their most preferred bundles. We denote the
forecast learning as F.

In addition, the level of information transparency
is a market design issue. One possible design is that
market price information is restricted to participat-
ing agents. Agents who have asynchronous market
interactions may get different real-time market prices.
In this sense, they have asymmetric access (denoted
as A) to market information. Alternatively, market
price information can be broadcast to all agents
regardless of their asynchronous participation. In this
case, agents have symmetric access (denoted as S)
to market information. All together, we use the fol-
lowing treatment set to account for the four possible
combinations: L€ {MA, MS, FS,FA}. For example,
MA can be read as myopic learning with asymmetric
access to market information. When we give L with-
out a subscript, we mean that all agents use the same
learning strategy.

In designing the forecast learning model, we
recognize that there are many types of forecast-
ing techniques for time-series data, including mov-
ing average, exponential smoothing, regression, and
autoregressive methods among others (Makridakis
et al. 1983). Of these, an exponential weighted mov-
ing average (EWMA) learning model (Roberts 1959) is
chosen because of its simplicity and tractability. More
sophisticated methods are left for future study.

Let p;r be agent j’s forecasted market price in round
R and mj be agent j’s observed market price. Set
Pjo = my, where m; is the initial market price vector.
For R > 1, the price forecast model is: pjr = amr +
(1 —a)pj r_1, where 0 < @ <1 is the smoothing con-
stant. The smoothing constant a determines the rate
at which older market prices enter into the forecast of
the new market price. In the myopic learning mod-
els, we set « =1 so only the most recently acquired
market price matters. In the EWMA forecast models,
we use the smoothing constant o =0.8, where rela-
tively higher weight is given to the currently observed
market price. Certainly we can treat the smoothing
constant as a parameter rather than a constant. Ini-
tial pilot runs show that there was no significant
difference between chosen parameter values in the
range [0.5, 0.9].

4.3. Asynchronous Communication

Because of a variety of reasons such as the inherent
latency of Internet technology, the cost of frequent
market participation, and the nature of uncoor-
dinated decision making in distributed systems,
traders would have different communication fre-
quencies to interact with the market. Consequently,
asynchronous communication may affect different
sequences of order arrival that, in turn, may affect
market convergence. We model the level of asyn-
chronous communication as the probability of each
agent’s participation in each round of market trad-
ing, denoted as P;. We design four levels of asyn-
chronous communication: P e {0.2,0.5,0.8,1}. For
example, treatment P; = 0.2 models the most asyn-
chronous communication scenario in which agent j
has a 20% probability of communicating with the mar-
ket in each round of market trading. When we give
P without a subscript, we mean that all agents use
the same value. Thus, treatment P =1 indicates that
all agents participate in each round of market trading.
This is the case studied by BTM.

4.4. Implementation of the Extended
Market Model

There are several implementation challenges in terms
of adapting the original BTM algorithm to the
extended asynchronous market trading environment.
First, we must avoid premature market closure risk
(which leads to a suboptimal solution to the central
problem). Second, we must ensure proper market clo-
sure without repeatedly exchanging the same sets of
bundles among agents and the dealer with zero gains
from trades (a cycling problem). We discuss our algo-
rithmic treatment and theoretical justification to these
nontrivial issues in the online supplement. In the fol-
lowing, we give several definitions and describe a
complete implementation of the extended algorithm.

DEFINITION 5 (AcCTIVE/INACTIVE TRADING). (a) In
any round of market iteration, if an agent solves his
bundle determination problem, the agent is active;
otherwise, the agent is inactive.

(b) In any round of market iteration, if there are no
new orders, we say the market is inactive; otherwise,
we say the market is active.

(c) If there are positive market trades (i.e., the mar-
ket matching problem yields a nonzero solution) in a
round, then we call it an active trading round.

Note that it is possible that an agent who solved
his bundle determination problem in a round is not
interested in submitting any new orders.

DerINITION 6 (VALUE-ADDED/NONVALUE-ADDED
TRADING). In an active trading round, if the market
surplus is nonzero, we call it value-added trading;
otherwise, it is a nonvalue-added trading.



DerINITION 7 (ExCLUDED LisT AND OSCILLATION
LisT). The excluded list contains the indices for all
trading agents in a nonvalue-added trading round,
and the oscillation list keeps track of the dealer’s
inventory status in a nonvalue-added trading round.

The extended BTM algorithm can be implemented
as follows.

Step 0 (Initialization). Initialize dealer (j = 0) and
agent (j=1,...,k), cash endowments e, and initial
allocations ;. Initialize the market price vector 7; =0,
j=0,..., k. Select agents’” communication frequency
P e (0, 1] and learning model L, j=1,..., k. Select
the dealer’s inventory policy V. Initialize the periodic
contact cycle length X.°

Set the outstanding limit and unlimited order books
I;=2 and H; =& for agents j=1, ..., k. Set the non-
participation tracking index for agent j as T; =0, the
total number of rounds as R =0, and the number of
inactive rounds as Q =0. Set index sets New = & and
Trade = @ to track agents who submit new bundles
and who have positive market trades, respectively. Set
the excluded agent list as Exclude = @ and the dealer’s
inventory oscillation list as [nvOsc = @.

Step 1 (Agent Bundle Selection). R <— R+1. If agent j
communicates with the dealer, then reset T, =0; oth-
erwise, T; <~ T; + 1. If T =X, then the dealer commu-
nicates the current market prices T < P, invites the
agent to participate, and resets T; = 0; otherwise, the
dealer does nothing with the agent.

A participating agent j forecasts market prices pi
based on his learning model L;. Based on pj, the
agent solves his bundle determination problem. If
there is a new bundle, then the dealer adds the new
limited bundle orders w; to I; and the unlimited bun-
dle orders u; to H;. Then, the dealer adds index j to
set New.

If New # @, then Q =0 and go to step 2; other-
wise, Q <~ Q+1. If Q <2X, repeat step 1; otherwise,
if V#£NA, V <~ NA and go to step 2 and if V=NA,
then go to step 4.

Step 2 (Market Matching). If ¢, € InvOsc and
New C Exclude, then ¢, < 0. Calculate MAPN; =
Iy allpi—piall, R = 5 based on . If MAPN < 1,°
then set V < NA. The dealer solves the market-
matching problem defined by inventory policy V.
Add agents who have positive market matches to
set Trade. The dealer announces the shadow price p
(the duals to the clearing constraints of the market-
matching problem) as the new market prices. The

® To prevent premature market closure, the dealer will communicate
with an inactive agent if she finds that the agent is inactive for X
rounds.

®*MAPN, is defined as the moving average price norm over the
last five consecutive rounds. It is used to time the dealer’s switch
from other active inventory policies to the naive inventory policy.

dealer saves the current prices m; < p for j=0 and
j € New U Trade.

If there is a nonzero solution to the market-
matching problem and the market surplus is nonzero,
then reset Exclude = @. Also, InvOsc = @. Go to step 3.

If there is a nonzero solution to the market-
matching problem and the market surplus is zero,
then add agents who are involved in the trade to
Exclude and add c, to InvOsc. If there is only one agent
in the set Trade, then reset New = @ and Trade = &
and go to step 1; otherwise, go to step 3.

If there is no market match, then reset New = @& and
Trade = @. Go to step 1.

Step 3 (Market Settlement). Let w; be the aggregate
matched bundle for agent j. For j € Trade, ¢; < ¢;+ w}

and ¢; <— ¢; —p'w;. The dealer updates ¢, <- c— Z;'(=1 ¢
and ey <= €y+p' 3 et W;- Reset [; = @ and H; = & for
j € Trade. Reset New = @ and Trade = @. Go to step 1.

Step 4 (Market Call). R <~ R+ 1. All agents use the
current market price m, for their bundle determina-
tion. If there are new orders, then the dealer is to add
the new limited bundle orders w; to I; and unlim-
ited bundle orders u; to H;, add index j to set New,
and reset T;=0 for j=1,...k. Then, Q=0 and go to

step 2; otherwise, stop.

4.5. Efficient Market Design

Under the assumptions of agent myopic learning and
truthful pricing, the finite termination property at the
system optimal solution was proved under the orig-
inal BTM framework (Guo et al. 2007, Theorems 3
and 4). They also proposed an adaptation of their
synchronous market model to an asynchronous envi-
ronment (Guo et al. 2007, pp. 19-20). When incorpo-
rating asynchronous communication, agent learning
strategies, and the dealer’s active market intervention,
this section offers new insights about efficient market
design under the extended market paradigm. The fol-
lowing corollaries are extensions to Theorems 3 and 4
in Guo et al. (2007), respectively, that we apply to the
asynchronous BTM trading environment. Proofs are in
the online supplement.

CoroLLARY 1 (FINITE CONVERGENCE). In the asyn-
chronous BTM trading environment, if agents use a
myopic learning strategy, then the continuous market con-
verges to an optimal allocation in a finite number of trades.
If agents use a forecast learning strategy, there exists a
positive probability that a continuous market yields a sub-
optimal allocation. However, a combined form of continu-
ous and call markets can preserve the finite convergence

property.

Corollary 1 shows that agent learning strate-
gies have important implications for efficient market
design. Although a continuous market is sufficient
for convergence and optimality under agent myopic



learning, an efficient continuous market operation
must be facilitated by the call market design when
agents use a sophisticated learning strategy such as
forecast learning. This treatment is similar to the prac-
tice that some stock markets such as NYSE use calls
to restart their trading after a trading halt.

As to the impact of agent strategic behavior on
market convergence, Guo et al. (2007) studied one
special case where agents underbid for a preferred
bundle. This study complements previous work by
taking into account the strategic impact of bun-
dle selection. Corollary 2 shows a market conver-
gence property for the adapted BTM algorithm under
the new conditions of asynchronous communication,
the dealer’s active market intermediation, and agent
strategic learning that we are exploring here.

COROLLARY 2 (OPTIMAL ALLOCATION). Regardless of
agents’ strategic behavior in bundle pricing and bundle
selection, the adapted BTM algorithm terminates in a finite
number of trades with an optimal allocation.

In reality, strategic behavior by distributed agents
cannot be prevented. Our mechanism is robust
against agent strategic activities. This result shows the
promise of using algorithmic market mechanisms to
deal with such practical implementation challenges.

5. Market Experiment Design

In this section, we describe a controlled experiment
aimed at understanding the fundamental effects of
key market design factors on market operations. We
first present our market treatments. We then detail our
parametric choices and sample generation methods in
our large-scale simulation.

5.1. Market Treatments

In the previous section, we discussed various types
of dealer inventory policies, agent learning models,
and market communication patterns. Additionally,
the bundle trading market can be organized based
on different initial market conditions. For example, in
a distributed organizational setting, the central plan-
ner handles the procurement of new organizational
resources and thus has the initial resource owner-
ship. Double auction-based smart market applica-
tions, in contrast, do not have a centralized ownership
of resources. Initially, the shared resources are ran-
domly dispersed among the production agents. We
study both possibilities of initial market configura-
tions, denoted as the dealer’s initial resource owner-
ship: O € {0, 1}. Here, O = 0 means the dealer does not
hold any resources initially and O =1 indicates that
all resources are centralized at the beginning of the
trading period. Table 1 summarizes the 2 x5x4 x4 =
160 combinations of our market treatments.

Table 1 Computational Market Treatments
Market
participants Experimental design Market treatments
Dealer Initial resource ownership 0¢{0,1}

Market intermediation models V' < {NA, SS, SP, FISS, FISP}
Agents Asynchronous communication P, €{0.2,05,08, 1}

Learning models L; € {MA, MS, FS, FA}

5.2. Parametric Choices

Corresponding to the above-mentioned design, pol-
icy parameters such as the preferred inventory level
s; and speculative prices p; for each resource compo-
nent (j=1,...,m) need to be defined for the dealer’s
inventory strategy. For each individual inventory tar-
get s;, we assume that the dealer randomly selects a
level between 5% and 20% of the total resource avail-
ability for that specific resource. If the dealer does
not have any informational advantage, we arbitrar-
ily select a speculation level not far from zero for
each individual price target p;, i.e., a random number
between 0.1 and 0.3. In the case that the dealer has
an informational advantage, we set the price target as
the equilibrium price for component j (i.e., the opti-
mal dual values for the shared resource constraints in
the central problem).

The parameter selections were made after various
pilot runs. These design parameters had face valid-
ity as judged by an examination of our trading data.
On average, the dealer switched her inventory poli-
cies at the time between 3.45% and 26.93% of the
total market iteration is reached. At the point of
switch, the dealer had accumulated between 88.17%
and 99.91% of her total wealth. On average, between
50.88% and 96.25% of the total optimal objective had
been achieved. This showed that the dealer’s switch-
ing strategy was generally effective.

5.3. Sample Generation
In a decentralized market environment, market per-
formance is influenced by both the macrolevel market
characteristics and the microlevel agent decision-
making efficiency. Factors characterizing the market
environment include the number of market partici-
pants k and the number of shared resources m. Factors
describing agents’ internal decision-making complex-
ity include the number of independent resources 4;
that each agent manages and the number of activi-
ties b; that are involved in the agent’s production. Fol-
lowing the experimental design principle (Friedman
and Sunder 1994), we select two values for each factor
representing small and large effects. This is deemed
to be sufficient and Table 2 summarizes our design.
Following Guo et al. (2007), for each of the 16 sce-
narios resulting from the 4 factor combination, we
generate 30 sets of distributed problems. We choose



Table 2 Design for Sample Generation

Market environment Factors Factorial design

Macrolevel (market) Number of agents k € {10, 50}
Number of shared resources me{2, 8}

Microlevel (agent) Number of independent resources  a; € {2, 8}
Number of activities b; {4, 8}

coefficients using a random sampling from a uniform
distribution [—1, 5]. This interval allows for both neg-
ative and positive coefficients. The specific numeric
values for the lower and upper bounds as well as for
each factor pair are set to ease our random generation
of feasible linear programs. Other parametric choices
do not affect the fundamental insights generated from
this study. The 30 random problem instances for each
factor combination allow for reliable statistical tests.
This results in 2 x 2 x 2 x 2 x 30 = 480 independent
samples. Together with the 160 treatments, our sim-
ulation study has 480 x 160 = 76,800 observations to
analyze the market operations. Each was processed
using the new market framework.

6. Experimental Results

In this section, we first illustrate the market price
dynamics and present summary statistics and test
results from our computational data. We then focus
on the impacts of key market design parameters on
market performance as well as agents and the dealer’s
wealth.

6.1. Price Dynamics

One important advantage of our computational
experiment is the detailed level trading data that help
us gain insights about market operation. Figure 2
compares the price discovery process in markets trad-
ing bundles of 2 shared resources with 10 agents and
50 agents, respectively. For illustration purposes, we
only plot the price dynamics for the first resource
under the naive and safety stock inventory policies.

Initially, the two shared resources are randomly dis-
persed among agents. The dealer does not have any
initial inventory. The market starts with a trading
price of zero for both resources. Agents independently
communicate with the dealer with probability P =0.2,
and agents use asymmetric myopic learning strategy.

We have the following observations. First, large
price jumps are more likely to occur when the num-
ber of market participants is not large. Other things
being equal, price changes will be much smoother
when the number of market participants increases.
Second, regardless of the number of market partic-
ipants, prices fluctuate in a relatively large range
at the beginning periods but then nonmonotonically
converge to the equilibrium market price. Third, the
dealer’s active trading on her own account (e.g., SS
policy) often leads to a higher price variation in com-
parison with the naive inventory policy.

6.2. Summary Statistics

From a market design perspective, three important
market outcomes are of primary interest: the speed of
price discovery, the market efficiency, and social wel-
fare. In our iterative market mechanism, the number
of market iterations is an effective measure of price
discovery. Because our bundle auction market guar-
antees full allocative efficiency (Corollary 2), we focus
on the distribution of social welfare under various
scenarios.

As discussed in §3.3.2, social welfare (total wealth of
agents and the dealer) is maximized at the algorithm
termination through redistribution of cash endow-
ments and bundles of shared resources. Because the
dealer is considered a player of the auction mechanism
who trades on her own account and has no outside
subsidies, the market is a zero sum game. We are inter-
ested in the division of wealth among agents and the
dealer. To compare such a relative wealth effect, we
define wealth ratio as total agent net wealth divided
by total system gain. Agent net wealth is calculated as

Figure 2 Market Price Dynamics Under the Naive (NA) and Safety Stock (SS) Inventory Policies
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Table 3

Summary Statistics for 0 =0 (0 = 1): Market Performance and Wealth Effect

Panel (a) Mean number of iterations

Panel (b) Mean wealth ratio

Inventory Market

policy scenario P=0.2 P=05 P=0.8 P=1 P=0.2 P=05 P=0.8 P=1
NA k10m2 65.87 42.77 28.45 23.35 0.88 0.92 0.95 0.97
(39.29) (27.52) (20.01) (16.74) (0.80) (0.79) (0.76) (0.74)

k10m8 288.06 139.14 101.49 52.50 0.63 0.69 0.75 0.79
(94.70) (49.23) (31.19) (23.42) (0.76) (0.73) (0.72) (0.70)

k50m2 96.54 55.66 34.25 25.93 0.94 0.97 0.98 0.98
(80.27) (45.18) (27.29) (20.87) (0.78) (0.75) (0.70) (0.68)

k50m8 302.98 143.72 81.35 48.64 0.82 0.88 0.92 0.93
(221.82) (99.69) (49.79) (35.30) (0.65) (0.63) (0.59) (0.58)

SS k10m2 67.47 44.86 31.37 27.25 1.05 1.04 1.06 1.07
(41.92) (30.55) (23.93) (21.53) (0.82) (0.79) (0.76) (0.74)

k10m8 296.08 155.40 85.21 78.49 1.87 1.05 1.00 0.98
(94.40) (54.40) (36.24) (29.55) (0.80) (0.78) (0.75) (0.72)

k50m2 98.77 58.28 37.50 30.93 1.11 1.09 1.10 1.10
(86.46) (51.20) (34.84) (28.93) (0.83) (0.76) (0.72) (0.69)

k50m8 332.86 143.73 73.16 53.97 1.37 1.06 1.05 1.04
(229.09) (99.50) (50.90) (36.79) (0.71) (0.66) (0.62) (0.60)

SP k10m2 65.06 41.96 30.40 25.81 0.86 0.90 0.94 0.97
(43.40) (31.88) (25.42) (23.25) (0.55) (0.53) (0.54) (0.56)

k10m8 285.00 149.80 92.93 67.48 0.73 0.79 0.84 0.89
(108.27) (69.88) (45.93) (37.44) (0.75) (0.76) (0.78) (0.78)

k50m2 99.46 54.63 34.48 27.73 0.93 0.96 0.98 0.98
(79.16) (46.85) (31.61) (26.34) (0.51) (0.47) (0.43) (0.42)

k50m8 309.55 145.56 7410 53.13 0.87 0.93 0.96 0.97
(228.11) (103.94) (55.16) (41.18) (0.64) (0.62) (0.61) (0.58)

FISS k10m2 66.31 42.46 29.83 25.62 0.87 0.93 0.96 0.98
(42.12) (30.86) (23.69) (21.69) (0.81) (0.80) (0.75) (0.74)

k10m8 281.89 138.55 75.03 55.30 0.73 0.80 0.86 0.90
(88.60) (51.40) (33.35) (28.27) (0.76) (0.75) (0.73) (0.71)

k50m2 98.60 56.51 36.30 28.30 1.03 1.01 1.01 1.00
(85.71) (52.00) (34.68) (28.02) (0.82) (0.77) (0.72) (0.69)

k50m8 302.35 140.96 70.29 51.77 0.98 0.98 0.98 0.98
(215.81) (98.73) (49.04) (36.43) (0.68) (0.65) (0.61) (0.59)

FISP k10m2 64.00 42.51 29.54 25.30 0.99 1.01 1.01 1.01
(44.25) (33.13) (26.25) (23.84) (0.77) (0.78) (0.79) (0.79)

k10m8 291.88 138.27 83.40 55.59 0.76 0.82 0.86 0.89
(98.93) (60.54) (40.14) (32.47) (0.78) (0.80) (0.82) (0.81)

k50m2 93.38 54.79 35.18 28.02 1.21 1.18 1.09 1.09
(77.34) (47.58) (33.00) (27.90) (0.85) (0.82) (0.80) (0.79)

k50m8 304.24 143.28 74.25 58.22 0.99 1.00 0.99 0.99
(225.95) (102.54) (54.60) (41.01) (0.74) (0.73) (0.71) (0.70)

Note. Data are averaged across four learning strategies.

the final wealth minus the initial cash endowment. The
total system gain is the total reduction of operating
costs from all agents. If the dealer earns zero wealth in
the auction, then all system gains are allocated among
agents. Thus, the wealth ratio would be one. If the
dealer earns positive (negative) wealth in the auction,
then the total agent net wealth would be less (more)
than the total system gain. As a result, the wealth ratio
would be less (greater) than one. In short, a higher
wealth ratio implies higher agent surplus. We report
the summary statistics for both the number of market
iterations and the wealth ratio in Table 3.

As shown in panel (a) of Table 3, given a market
scenario and the dealer’s inventory policy, more syn-
chronized communication (higher P) leads to quicker

market convergence. Moreover, both the number of
market participants and the size of the trading bun-
dle negatively impact market convergence. In a highly
synchronized environment (e.g., P = 1) with a small
number of agents (e.g., 10 agents) trading simple
bundles (e.g., 2 shared resources), the average num-
ber of rounds for market convergence is as low as
16.74. When the market is highly asynchronous (e.g.,
P =0.2) and relatively large (e.g., 50 agents) and
complicated (e.g., 8 shared resources), the average
number of rounds for convergence in the worst case
is 332.86. This is not a computational burden for
artificial traders. For example, the average comput-
ing time for the worst-case scenario is less than a
second.



Table 4

Regression Model and Coefficient Estimates: Effects on Market Convergence

Dealer initial resources (0 = 0)

Dealer initial resources (0 =1)

m=2 m=38 m=2 m=38

Model k=10 k=50 k=10 k=50 k=10 k=50 k=10 k=50
Intercept 75.12% 118.07+ 334.05+ 406.58" 43.29 96.20** 103.09++ 272.66*
AsyCom

Pos — P —22.97* —40.82 —151.15** —186.05"* —11.40 —33.23"* —39.89+* —123.28"*

Pos—Pos —36.30* —62.24+ —217.15% —259.86%* —18.34 —49.50% —59.61"* —172.26"

— Py —40.82 —69.27+ —237.13* —281.49+ —20.78* —55.38"* —66.75* —186.02+*

Inventory

SS—NA 2.54x 3.50%* 10.01%+ 3.08 3.59%* 6.95* 4.01* 2.42

SP—NA 1,14 1.03 4.88* 0.24 5.09%+ 2.59¢ 15,75+ 5.44

FISS — NA 0.74 1.67 —-0.40 -2.11 3.70% 6.70* 0.77 —1.65

FISP —NA 0.77 -0.91 1.18 1.80 5.98%+ 3.05¢ 8.39 4.38
Learning

MS — MA —10.39* —24.01" —21.02%* —68.07+ —5.25%* —20.92% —7.70% —46.22+*

FS — MA —16.35* —34.23"* —79.04+ —124.46% —7.72 —28.32+* —20.77* —81.11%

FA —MA —12.72% —27.84+ —78.02% —114.28" —6.09* —23.84% —19.12% —75.14*
R-square 0.65 0.54 0.55 0.50 0.19 0.26 0.16 0.25

*p < 0.05, **p < 0.01, and ***p < 0.001.

Although our algorithm guarantees termination at
the optimal resource allocation in a finite number
of trades, actual traders may not be satisfied with
just a promise of finiteness. For human traders, we
suggest a pure call market design (P = 1) to syn-
chronize market communication and reduce the total
number of iterations. Alternatively, a market mecha-
nism designer may trade off the allocative efficiency
with the total number of rounds for convergence
(i.e., terminate the market iteration when the alloca-
tive efficiency reaches a threshold level such as 98%).
Our computational data suggested that agent trad-
ing in early rounds significantly contributes to the
total allocative efficiency while trading in later rounds
mainly fine-tunes the allocation to the market equilib-
rium. Thus, terminating the market process early may
not result in unacceptable deviations from optimal.

When the dealer does not have initial resource own-
ership (O =0), data in panel (b) shows that the dealer
generated positive profit under NA and SP while she
earned negative net wealth under almost all instances
of the SS inventory policy. This is mainly because the
dealer’s objective was to maintain her target inven-
tory levels without considering the prices she paid for
the resources. Comparing FISS(FISP) with SS(SP), we
see that the informational advantage helped increase
the dealer’s wealth under the SS policy but did not
seem helpful under the SP policy. The dealer also
experienced profit loss under FISS and FISP in large
markets with simple bundles being traded. Because
a smaller wealth ratio implies lower agent welfare,
we see that asynchronous communication will lead to
more agent welfare loss. In contrast, when the dealer
initially holds all shared resources (O = 1), she earns

positive profit under all five inventory policies. More-
over, the dealer earns higher profit when the market
communication is more synchronized.

Finally, comparing O =0 and O =1, we see that the
dealer’s inventory centralization has positive impacts
on the market performance and the dealer’s wealth.
For example, in the worst-case scenario k50m8 and P =
0.2, the market converged between 215.81 and 229.09
rounds when the dealer had all initial resources in
contrast to the convergence range of 302.35 to 332.86
rounds when the initial resources were randomly allo-
cated among agents. We further observe that, though
the wealth ratio varied from 0.63 to 1.87 in initial ran-
dom resource allocation, it varied from 0.42 to 0.85
when the dealer held all of the initial shared resources.
On average, the dealer earns a higher profit when she
initially owns all the shared resources.

6.3. Impact of Key Market Design Parameters on
Market Performance

In order to understand the general effect of different
market design options on market performance, we
ran regression models at different levels of granularity
under different scenarios of the initial resource allo-
cation. The benchmark scenario is the asynchronous
communication (P = 0.2), the naive inventory pol-
icy (V =NA), and myopic learning with asymmetric
access to information (L = MA). Table 4 shows the
intercept and coefficients from the model estimation.’

7 Coefficients in Table 4 were based on the full data set that involves
9,600 observations for each regression. We performed two robust-
ness tests. In the first test, we ran the regression based on the 16
refined classes specified in Table 2, which included 2,400 observa-
tions in each regression. In the second test, we randomly extracted
3 replications rather than using the 30 replications for each of the



The overall regression model is highly significant
and yields R-square values from 0.5 to 0.65 when
the dealer does not hold initial resources and from
0.19 to 0.26 when the dealer has all of the initial
resources. The coefficients for asynchronous commu-
nication and agent learning are highly significant
at the 0.001 level and with the expected signs. For
example, under O =0, if the asynchronous commu-
nication level changes from P =02 to P =1, on
average, the number of iterations will increase by
40.82 rounds in the k10m2 market and by 281.49
rounds in the k50m8 market. The larger the bundle
size, the more likely it is that market performance is
negatively affected by asynchronous communication.
Overall, higher levels of asynchronous communica-
tion (smaller P) monotonically degrade market per-
formance under all scenarios.

Among the four learning models, we see that
the biggest performance improvement was obtained
under the FS method. For instance, under O = 0,
the change of agent learning model from MA to FS
can, on average, increase the market performance
by 16.35 rounds in the k10m2 market and by 124.46
rounds in the k50m8 market. It suggests that the abil-
ity to symmetrically access market information and
actively predict market price movement can lead to
better market performance. A practical significance
of this finding is that the mechanism designer may
consider increasing market information transparency
and facilitate agent learning to mitigate the negative
effect of asynchronous communication on market
performance.

Although there is no significant performance dif-
ference between the naive and other active inventory
policies in large market trading complex bundles,
the NA policy outperforms SS and SP policies when
the market trades relatively simple bundles or when
the number of agents is not large. This suggests that
it may not be desirable for the dealer to perform
active market intervention in relatively simple trad-
ing environments such as small numbers of bundles
or market participants, especially when the dealer has
the resource ownership.

In addition, the dealer’s informational advantage
can mitigate the effect of delayed convergence in
all market scenarios when O = 0. For example, in
the market of 10 agents and 8 shared resources, the
SS policy leads to an average 10 rounds delay in
convergence but the FISS policy has the effect of
speeding up convergence by 0.4 rounds. When O =1,
the dealer’s informational advantage can mitigate

16 refined classes. The same regression model as in Table 4 was run
but the number of observations was 860. Similar qualitative insights
held for these tests. All factors affecting asynchronous communica-
tion and agent learning were still significant at the 0.001 level.

the effect of delayed convergence in markets trading
complex bundles, but it has no effect in markets trad-
ing simple bundles. Overall, the effect of true mar-
ket information on market performance is positive
but does not seem statistically significant. However,
the negative signs of the estimated coefficients show
the potential that the dealer’s liquidity provision can
improve market performance when the dealer has
better market price information than agents.

We further conducted paired t-tests on the effect
of dealer inventory policies on market performance
under different levels of agent asynchronous commu-
nication and learning models. A representative sce-
nario L = MA is presented in Table 1 in the online
supplement. There are several interesting observa-
tions. First, different inventory policies do not yield
statistically significant market performance when the
market communication is highly asymmetric and
asynchronous (L =MA, P =0.2, 0.5). This is probably
because of the difficulty of matching bundles when
agents cannot coordinate the timing of their decision
making to facilitate trades among themselves. Second,
when the market is fully synchronized (P = 1), we
observe that the naive inventory policy either outper-
formed or yielded a comparable performance versus
other active inventory policies (statistically significant
at 0.05 level). It seems to suggest that there is no
need for the dealer to perform active market interven-
tion because the synchronized market has an inherent
market liquidity effect in bundle execution.

7. [Extensions

In the previous section, we studied several key factors
that affect market performance and the agent surplus
under the controlled experiment design. In this sec-
tion, we run additional experiments to allow for a
number of extensions, including a test for agent strat-
egy and randomization of factors. Our computational
results suggest that all qualitative insights are still
valid and that the market model can be generalized
to more realistic market environments.

7.1. Strategic Bidding

As discussed earlier, agent strategic behaviors mainly
fall into two general categories: strategic bundle
selection and pricing. In our controlled experiment,
strategic bundle selection was enabled by allowing
agents to predict market price movement. In this
section, we run additional experiments to allow for
strategic bidding.

We start with the original problem structure that
has 30 replications for 16 macro- and microlevel com-
binations (see Table 2). The test sample size is 480. We
allow agents to randomly choose market communica-
tion frequency P; and freely select a learning model L;.
We use three bidding strategies and the dealer’s five



inventory policies as treatments. The total number of
observations in this experiment is 480 x 3 x 5=7,200.
The three bidding strategies are: truthful bidding
(TRUE), random bidding (RAN), and fixed percentage
bidding (FIX). In the random bidding strategy, an
agent bids any random value between the true bun-
dle valuation and the lowest market acceptable price
(the current winning bid price plus a small increment
of epsilon). In the fixed percentage bidding strategy,
we assume that the agent always bids at 80% of the
acceptable bidding range (the interval between the
lowest market acceptable price and the true valua-
tion of the bundle). Table 5 summarizes the effects of
different strategies on market performance and agent
surplus.

Not surprisingly, the summarized data in panel (a)
of Table 5 shows that the best market performance
occurs when agents bid truthfully. The truthful strat-
egy outperforms the fixed percentage bidding strat-
egy, which outperforms the random bidding strategy.
The effect of strategic pricing is consistent with the
findings from the original Guo et al. (2007) study,
which derived the same ranking of agent strategy and
found that agent strategic pricing merely slowed the
speed of market convergence without impacting the
market finite convergence property. Our current study
shows that strategic bundle selection is helpful but
that strategic pricing definitely slows down market
convergence.

Because the dealer earns positive profit if the
wealth ratio is less than one, panel (b) shows that the
dealer is always profitable under the naive inventory

policy but will incur some profit loss when adopting
active inventory policies, especially when the number
of market participants is large.

In order to see whether the dealer’s different inven-
tory policies would have an effect on market liquidity,
we performed several additional analyses detailed in
the online supplement. In Table 2, we observe that
both the dealer’s and the market total trading volume
increase as either the number of market participants
or the number of shared resources increases. More-
over, the effect of market size is larger than the effect
of bundle complexity on market total trading volume.

Table 3 in the online supplement shows that market
price variation is not statistically significant under dif-
ferent inventory policies regardless of agent bidding
strategies. Although financial market theory suggests
that high trading volume corresponds to low price
volatility, this does not seem to be supported by our
trading data. We also see that the dealer has actively
traded in complex market environments without sig-
nificantly improving market performance. This indi-
cates that a dealer’s active intermediation does not
necessarily lead to quicker price discovery. We cau-
tion the mechanism designer that traditional financial
market insights may not be directly applied and trans-
ferred to the BTM trading environment.

7.2. Randomization

In this section, we further randomize our market
experiment to reflect more realistic market participa-
tion. First, we allow agents to differ in their internal

Table 5 Summary Statistics Under Different Bidding Strategies
Market Inventory policy Panel (a) Mean number of iterations Panel (b) Mean wealth ratio
k m v TRUE RAN FIX TRUE RAN FIX
10 2 NA 39.98 69.13 53.94 0.92 0.97 0.97
SS 43.19 170.22 57.58 1.04 1.18 1.37
SP 41.10 71.45 54.11 0.92 0.99 0.98
FISS 41.28 67.47 55.09 0.95 0.99 0.97
FISP 39.28 70.48 53.96 1.02 1.11 1.05
8 NA 113.21 249.23 132.73 0.71 0.89 0.85
SS 146.73 201.50 151.64 1.03 1.94 1.42
SP 147.23 217.14 142.23 0.80 0.96 0.94
FISS 119.99 182.54 146.11 0.83 0.96 0.92
FISP 127.58 304.87 142.21 0.81 0.99 0.96
50 2 NA 51.68 71.46 59.43 0.97 0.99 0.99
SS 55.70 70.39 64.79 1.09 1.14 1.12
SP 52.74 69.54 65.98 0.97 1.02 0.99
FISS 54.01 68.64 58.98 1.02 1.01 1.02
FISP 50.38 69.70 61.40 1.10 1.17 1.16
8 NA 129.63 207.85 161.46 0.90 0.96 0.95
SS 123.71 187.06 134.28 1.06 1.28 1.65
SP 126.85 153.95 133.39 0.94 1.03 1.03
FISS 122.79 306.56 123.00 0.98 1.02 1.02
FISP 121.55 162.61 159.61 1.00 1.05 1.07




structures in terms of the number of independent
resources 4; and the number of activities b; to man-
age. Second, in addition to the market communica-
tion frequencies and learning strategies, agents may
choose their own bidding strategies. In this random-
ized experiment, we still adopted the base macrolevel
market design as in the controlled experiment (see
Table 2). This resulted in four market configurations
consisting of different numbers of agents and shared
resources. Under each market scenario, we generated
120 random samples. The dealer’s inventory strat-
egy was the only treatment. As a result, we had
4 x 120 x 5=2,400 observations for a formal statisti-
cal test.

Table 4 in the online supplement shows that bun-
dle size or complexity has a major impact on market
convergence. Furthermore, except for the safety stock
inventory policy, all other inventory policies yielded
quicker market convergence in larger markets when
trading complex bundles. This suggests that our BTM
framework is scalable to larger-sized auctions with
larger-sized bundles.

8. Summary, Conclusions, and

Future Research

This paper extends the original BTM framework to a
more general, asynchronous market implementation
environment. The new market model allows a dealer
to perform active market intervention by adopting
sophisticated inventory policies. We also incorporate
individual agent learning so that each agent can
form expectations of the market price movements.
Under the extended framework, we theoretically jus-
tify finite convergence and optimality properties of
the market. We further study how a number of key
market design parameters including market commu-
nication and information exchange patterns, the inter-
mediary’s role of liquidity provision, and agents’
responsive learning ability and strategic bidding
could affect market performance. Understanding the
joint impact of these factors on market performance
appears vital to a real-world deployment of the pro-
posed market framework in an asynchronous Internet
environment.

Generally speaking, agents experience more welfare
loss in more asynchronous market environments. Mar-
ket performance is negatively affected by both asyn-
chronous communication and market information
asymmetry but is positively affected by agent learn-
ing. In terms of agent strategic behavior, we find that
strategic bundle selection would speed up but strate-
gic pricing would slow down market convergence.

Contrary to the conventional wisdom that a dealer’s
intertemporal liquidity provision may improve mar-
ket performance, we find that it is generally unde-
sirable to perform active market intervention in

simple market trading environments where an inher-
ent market liquidity effect dominates, especially when
the dealer has significant resource ownership. More-
over, the dealer’s initial resources centralization has
positive impacts on the market performance and the
dealer’s wealth. When deciding to adopt active mar-
ket intermediation, the dealer tends to earn positive
profit under the speculative price policy but negative
profit under the safety stock policy. Though the effect
is insignificant, our trading data also suggests that the
dealer’s informational advantage has the potential to
improve market performance and dealer profit under
the safety stock policy.

Interestingly, we observe that, though bundle com-
plexity has a bigger impact than market size on mar-
ket convergence, market size has a larger effect than
bundle complexity on trading volume. We further find
that high trading volume does not correlate to low
price volatility and quicker price discovery. There-
fore, we caution the mechanism designer that tra-
ditional insights from financial market design may
not be directly transferrable to the bundle trading
market environment. This poses additional challenges
for practical bundle trading, double auction market
design.

Our major contribution of this study is an extended
BTM mechanism in an asynchronous market environ-
ment characterized by asymmetric information, agent
strategic trading, and a dealer’s active market inter-
vention. We prove that the convergence of the pro-
posed algorithm to an optimal solution leads to an
efficient auction design. Our computational market
simulation further shows that the algorithmic imple-
mentation is robust to a number of dealer and agent
manipulations. The proposed framework provides
flexibility, scalability, and robustness to Internet-based
market implementations. It can extend the current
market ability to more effectively handle sophisti-
cated trades.

Our proposed BIM framework offers additional
insights into existing market mechanism designs. For
example, the proposed framework has the potential
to improve upon currently active and heavily traded
markets such as the European Energy Exchange by
allowing for more flexible bundle combinations (e.g.,
specifying the sell and buy items in the same bun-
dle), by relaxing the “fill-or-kill” constraint to divisi-
ble trades, and by the use of a market intermediary
to supply liquidity.

Additionally, formal theories of organizational
structure treat the organization as a mechanism
to assemble costly acquired, distributed decision-
relevant information (Marschak 2006). As Internet-
oriented organizational models such as networked
organizations and virtual organizations emerge,
our findings shed new light on designing global



information systems that not only facilitate the effi-
cient allocation of key organizational resources but
also enable such organizational structural changes.
Our proposed approach provides a useful framework
to address mechanism implementation challenges in
formal models of distributed organization.

There are several limitations and possible exten-
sions. We have not provided a formal analysis of
how market makers should be compensated for tak-
ing on affirmative obligations to supply liquidity. In
general, determining the optimal level of inventory
provision or price speculation is hard, if not impossi-
ble, especially under a dynamic market trading envi-
ronment like ours. In this research, we use random,
predetermined, static inventory policies for the dealer.
It would be interesting to see how the dealer could
adjust her inventory policies as well as the preferred
inventory positions as she updates her belief when
more market information is available. This leaves
questions on optimal dynamic liquidity provisions in
computational market settings to future research.

As is typical in many studies, we do not consider
transaction fees. An interesting question is whether a
dealer would have an incentive to prolong the bid-
ding process if transaction fees were charged. From
Table 3, we see that agents generally incur more wel-
fare loss if the market takes longer to converge. From
the system optimization perspective, there still exist
profitable trades if a dealer who does not engage in
production intentionally holds some inventory. The
dealer, instead, may incur a cost of holding inven-
tory but may earn profit by charging transaction
fees to agents. It is not clear whether the cost could
be offset by the gain. How transaction fees would
affect a dealer’s incentive to trade as well as affect
market convergence is an interesting future research
direction.

Electronic Companion

An electronic companion to this paper is available as
part of the online version at http://dx.doi.org/10.1287/
isre.1110.0366.

Appendix

General model notation

c: Total available shared resources in the system

Z(c): Overall operating cost of the central problem

j=1,..., k: Index of agents

dj e R%: Vector of agent j’s cost

x; € RY: b;-dimensional decision variables controlled by
agent j

N; e RA*bi, Ce R a; x b and m x b; activity
matrices, respectively

n; € RY: a;-dimensional capacity vectors of agent j’s
independent resources

¢; € R™: m-dimensional vectors of agent j’s shared
resources

e;(c;): Agent j’s cash when his shared resource is ¢;

zj(c;): Agent j’s operating cost when his shared
resource is ¢;

Wil(cj) = ej(c;) —z(c;): Agent j’s wealth when the shared
resource is c;

w € R™: m-dimensional bundle (a bundle containing m
shared resources)

Ii(w): Agent j’s bidding price for bundle w

H;, I: Agent j’s limited and unlimited order sets,
respectively

w]’ €R",iel;: Agent j’s ith limited bundle in the order
set I;

u]d €R"™, he H;: Agent j’s hth unlimited bundle in the
order set H;

wjr € R™: Aggregated trading bundles for agent j up to
round R

p € R™: m-dimensional prices for the shared resources

Pir € R™: Agent j’s forecasted market price in round R

¢o € R™: m-dimensional vectors of the dealer’s inventory

ey(co): The dealer’s cash endowment when she owns ¢,
inventory

s € R™: m-dimensional vector of the dealer’s safety stock
level

r € R™: m-dimensional vector of the dealer’s speculative
price level

Experimental setting notation

k € {10,50}: Number of agents

m € {2,8}: Number of shared resources in a bundle (size
of a bundle)

a; € (2, 8}: Agent j’s number of independent resources

b; € {4, 8}: Agent j’s number of production activities

P;€{0.2,0.5,0.8,1}: Agent j’s asynchronous
communication level

Lie {MA, MS, FS, FA}: Agent j’s learning model

V €{NA,SS, SP, FISS, FISP}: The dealer’s inventory
policies (market intermediation models)

O €{0, 1}: The dealer’s resource ownership

MAPN: Moving average price norm (to measure
aggregate price variation)

X: The dealer’s periodic contact cycle length
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