15 research outputs found
<i>In</i> <i>vitro </i>regulation of fibroblast growth factor 23 by 25-hydroxyvitamin D and 1,25-dihydroxyvitamin D synthesized by osteocyte-like MC3T3-E1 cells
Fibroblast growth factor 23 (FGF23) is produced and secreted by osteocytes and is essential for maintaining phosphate homeostasis. One of the main regulators of FGF23, 1,25-dihydroxyvitamin D (1,25(OH)2D3), is primarily synthesized in the kidney from 25-hydroxyvitamin D (25(OH)D) by 1α-hydroxylase (encoded by CYP27B1). Hitherto, it is unclear whether osteocytes can convert 25(OH)D and thereby allow for 1,25(OH)2D3 to induce FGF23 production and secretion locally. Here, we differentiated MC3T3-E1 cells toward osteocyte-like cells expressing and secreting FGF23. Treatment with 10-6 M 25(OH)D resulted in conversion of 25(OH)D to 150 pmol/L 1,25(OH)2D3 and increased FGF23 expression and secretion, but the converted amount of 1,25(OH)2D3 was insufficient to trigger an FGF23 response, so the effect on FGF23 was most likely directly caused by 25(OH)D. Interestingly, combining phosphate with 25(OH)D resulted in a synergistic increase in FGF23 expression and secretion, likely due to activation of additional signaling pathways by phosphate. Blockage of the vitamin D receptor (VDR) only partially abolished the effects of 25(OH)D or 25(OH)D combined with phosphate on Fgf23, while completely inhibiting the upregulation of cytochrome P450 family 24 subfamily A member 1 (Cyp24a1), encoding for 24-hydroxylase. RNA sequencing and in silico analyses showed that this could potentially be mediated by the nuclear receptors Retinoic Acid Receptor β (RARB) and Estrogen Receptor 2 (ESR2). Taken together, we demonstrate that osteocytes are able to convert 25(OH)D to 1,25(OH)2D3, but this is insufficient for FGF23 activation, implicating a direct effect of 25(OH)D in the regulation of FGF23, which occurs at least partially independent from its cognate VDR. Moreover, phosphate and 25(OH)D synergistically increase expression and secretion of FGF23, which warrants investigating consequences in patients receiving a combination of vitamin D analogues and phosphate supplements. These observations help us to further understand the complex relations between phosphate, vitamin D, and FGF23.</p
Organic phosphate but not inorganic phosphate regulates Fgf23 expression through MAPK and TGF-êžµ signaling
One of the main regulators of phosphate homeostasis is fibroblast growth factor 23 (FGF23), secreted by osteocytes. The effects of organic versus inorganic dietary phosphate on this homeostasis are unclear. This study used MC3T3-E1 FGF23-producing cells to examine the transcriptomic responses to these phosphates. Most importantly, the expression and secretion of FGF23 were only increased in response to organic phosphate. Gene ontology terms related to a response to environmental change were only enriched in cells treated with organic phosphate while cells treated with inorganic phosphate were enriched for terms associated with regulation of cellular phosphate metabolism. Inhibition of MAPK signaling diminished the response of Fgf23 to organic phosphate, suggesting it activates FGF23. TGF-β signaling inhibition increased Fgf23 expression after the addition of organic phosphate, while the negative TGF-β regulator Skil decreased this response. In summary, the observed differential response of FGF23-producing to phosphate types may have consequences for phosphate homeostasis.</p
Organic phosphate but not inorganic phosphate regulates Fgf23 expression through MAPK and TGF-êžµ signaling
One of the main regulators of phosphate homeostasis is fibroblast growth factor 23 (FGF23), secreted by osteocytes. The effects of organic versus inorganic dietary phosphate on this homeostasis are unclear. This study used MC3T3-E1 FGF23-producing cells to examine the transcriptomic responses to these phosphates. Most importantly, the expression and secretion of FGF23 were only increased in response to organic phosphate. Gene ontology terms related to a response to environmental change were only enriched in cells treated with organic phosphate while cells treated with inorganic phosphate were enriched for terms associated with regulation of cellular phosphate metabolism. Inhibition of MAPK signaling diminished the response of Fgf23 to organic phosphate, suggesting it activates FGF23. TGF-β signaling inhibition increased Fgf23 expression after the addition of organic phosphate, while the negative TGF-β regulator Skil decreased this response. In summary, the observed differential response of FGF23-producing to phosphate types may have consequences for phosphate homeostasis.</p
Immune responses and side effects of five different oil-based adjuvants in mice
In this study, five different oil based adjuvants were compared to assess efficacy and side effects. Mice were injected subcutaneously (s.c.) or intraperitoneally (i.p.) with a weak immunogen (synthetic peptide) emulsified in Freund's adjuvant (FA), Specol, RIBI, TiterMax or Montanide ISA50. Efficacy of adjuvants was evaluated based on their properties to induce peptide specific IgGl, IgG2a and total lgG antibodies, native protein cross- reactive antibodies and cytokine production. Side effects were evaluated based on clinical and behavioural abnormalities, and (histo)pathological changes. Although marked differences in isotype profile and height of titre are observed among the different adjuvants used, we found that FA, Montanide ISA50 and Specol worked equally well in the s.c. and i.p. route, TiterMax functioned only when given i.p. and RIBI also did not perform up to par. The number of cytokine (interferon-gamma and interleukin-4) producing spleen cells was significantly higher after injection of RIBI compared with other adjuvants. Injection of FA or TiterMax resulted in severe pathological changes while after RIBI injection minimal changes were observed. In conclusion, high peptide specific antibody levels with limited side effects can be obtained by s.c. injection of peptide combined with Montanide ISA50 or Specol as alternatives to FA
Assessment of side effects induced by injection of different adjuvant/antigen combinations in rabbits and mice
We evaluated the side effects induced by injection of Freund's adjuvant (FA) and alternative adjuvants combined with different antigens. Rabbits and mice were injected subcutaneously, intramuscularly (rabbits) and intraperitoneally (mice) with different adjuvants (FA, Specol, RIBI, TiterMax, Montanide ISA50) in combination with several types of antigens (synthetic peptides, autoantigen, glycolipid, protein, mycoplasma or viruses). The effects of treatment on the animals' well-being were assessed by clinical and behavioural changes (POT and LABORAS assays) and gross and histopathological changes. In rabbits, treatment did not appear to induce acute or prolonged pain and distress. Mice showed behavioural changes immediately after (predominantly secondary) immunization. Injection of several adjuvant/antigen mixtures resulted in severe pathological changes, depending on adjuvant, type of antigen, animal species used and route of injection. Both rabbits and mice showed pathological changes ranging from marked to severe after injection of FA, and ranging from minimal to marked after Specol and Montanide injections. Pathological changes after RIBI injections were severe in rabbits, though slight in mice. After TiterMax injections pathological changes were moderate in rabbits, though severe in mice. In conclusion, injection of FA according to present guidelines resulted mostly in severe pathological changes, whereas only very few clinical and behavioural signs indicated prolonged severe pain. Our findings indicate that Montanide ISA50 and Specol induce acceptable antibody titres, and cause fewer pathological changes than FA. Thus they are effective alternatives to FA
A rat model for dose-response relationships of Salmonella Enteritidis infection.
AIMS: To develop an animal model to study dose-response relationships of enteropathogenic bacteria. METHODS AND RESULTS: Adult, male Wistar Unilever rats were exposed orally to different doses of Salmonella enterica serovar Enteritidis after overnight starvation and neutralization of gastric acid by sodium bicarbonate. The spleen was the most sensitive and reproducible organ for detection of dose-dependent systemic infection. Illness was only observed in animals exposed to doses of 10(8) cfu or more. At lower doses, histopathological changes in the gastro-intestinal tract were observed, but these were not accompanied by illness. Marked changes in numbers and types of white blood cells, as well as delayed-type hyperresponsiveness, indicated a strong, dose-dependent cellular immune response to Salm. Enteritidis. CONCLUSION: The rat model is a sensitive and reproducible tool for studying the effects of oral exposure to Salm. Enteritidis over a wide dose range. SIGNIFICANCE AND IMPACT OF THE STUDY: The rat model allows controlled quantification of different factors related to the host, pathogen and food matrix on initial stages of infection by food-borne bacterial pathogens