2,684 research outputs found

    Hepatitis C Virus-Induced Monocyte Differentiation Into Polarized M2 Macrophages Promotes Stellate Cell Activation via TGF-beta

    Get PDF
    BACKGROUND and AIMS: Monocyte and macrophage (MPhi) activation contributes to the pathogenesis of chronic hepatitis C virus (HCV) infection. Disease pathogenesis is regulated by both liver-resident MPhis and monocytes recruited as precursors of MPhis into the damaged liver. Monocytes differentiate into M1 (classic/proinflammatory) or M2 (alternative/anti-inflammatory) polarized MPhis in response to tissue microenvironment. We hypothesized that HCV-infected hepatoma cells (infected with Japanese fulminant hepatitis-1 [Huh7.5/JFH-1]) induce monocyte differentiation into polarized MPhis. METHODS: Healthy human monocytes were co-cultured with Huh7.5/JFH-1 cells or cell-free virus for 7 days and analyzed for MPhi markers and cytokine levels. A similar analysis was performed on circulating monocytes and liver MPhis from HCV-infected patients and controls. RESULTS: Huh7.5/JFH-1 cells induced monocytes to differentiate into MPhis with increased expression of CD14 and CD68. HCV-MPhis showed M2 surface markers (CD206, CD163, and Dendritic cell-specific intercellular adhesion molecule-3-grabbing non-integrin (DC-SIGN)) and produced both proinflammatory and anti-inflammatory cytokines. HCV-induced early interleukin 1beta production promoted transforming growth factor (TGF)beta production and MPhi polarization to an M2 phenotype. TGF-beta secreted by M2-MPhi led to hepatic stellate cell activation indicated by increased expression of collagen, tissue inhibitor of metalloproteinase 1, and alpha-smooth muscle actin. In vivo, we observed a significant increase in M2 marker (CD206) expression on circulating monocytes and in the liver of chronic HCV-infected patients. Furthermore, we observed the presence of a unique collagen-expressing CD14+CD206+ monocyte population in HCV patients that correlated with liver fibrosis. CONCLUSIONS: We show an important role for HCV in induction of monocyte differentiation into MPhis with a mixed M1/M2 cytokine profile and M2 surface phenotype that promote stellate cell activation via TGF-beta. We also identified circulating monocytes expressing M2 marker and collagen in chronic HCV infection that can be explored as a biomarker

    CD81/CD9 tetraspanins aid plasmacytoid dendritic cells in recognition of HCV-infected cells and induction of IFNα

    Get PDF
    Recognition of hepatitis C virus (HCV)-infected hepatocyes and interferon (IFN) induction are critical in antiviral immune response. We hypothesized that cell-cell contact between pDCs and HCV-infected cells was required for IFNα induction via involvement of cell surface molecules. Co-culture of human peripheral blood mononuclear cells (PBMCs) with genotype 1a full length HCV genomic replicon cells (FL) or genotype 2a JFH-1 virus infected hepatoma cells (JFH-1), not with uninfected hepatoma cells (Huh7.5), induced IFNα production. Depletion of pDCs from PBMCs attenuated IFNα release and purified pDCs produced high levels of IFNα after co-culture with FL replicons or JFH-1 infected cells. IFNα induction by HCV-containing hepatoma cells required viral replication, direct cell-cell contact with pDCs, and receptor-mediated endocytosis. We determined that the tetraspanin proteins, CD81 and CD9 and not other HCV entry receptors were required for IFNα induction in pDCs by HCV infected hepatoma cells. Disruption of cholesterol-rich membrane microdomains, the localization site of CD81 or inhibition of CD81 downstream molecule, Rac GTPase, inhibited IFNα production from co-cultures. IFNα production by HCV infected hepatoma cells was decreased in pDCs from HCV infected patients compared to normal controls. We found that pre-exposure of normal PBMCs to HCV viral particles attenuated IFNα induction by HCV infected hepatoma cells or TLR ligands and this inhibitory effect could be prevented by an anti-HCV E2 blocking antibody. In conclusion, our novel data show that recognition of HCV-infected hepatoma cells by pDCs involves CD81/CD9-associated membrane microdomains and induces potent IFNα production

    Distinct Toll-like receptor expression in monocytes and T cells in chronic HCV infection

    Get PDF
    AIM: Hepatitis C virus often establishes chronic infections. Recent studies suggest that viral and bacterial infections are more common in HCV-infected patients compared to controls. Pathogens are recognized by Toll-like receptors (TLRs) to shape adaptive and innate immune responses. METHODS: In this study, to assess the ability of HCV-infected host to recognize invading pathogens, we investigated Toll-like receptor expression in innate (monocytes) and adaptive (T cells) immune cells by real-time PCR. RESULTS: We determined that RNA levels for TLRs 2, 6. 7, 8, 9 and 10 mRNA levels were upregulated in both monocytes and T cells in HCV-infected patients compared to controls. TLR4 was only upregulated in T lymphocytes, while TLR5 was selectively increased in monocytes of HCV-infected patients. MD-2, a TLR4 co-receptor, was increased in patients\u27 monocytes and T cells while CD14 and MyD88 were increased only in monocytes. CONCLUSION: Our data reveal novel details on TLR expression that likely relates to innate recognition of pathogens and immune defense in HCV-infected individuals

    Exosomes derived from alcohol-treated hepatocytes horizontally transfer liver specific miRNA-122 and sensitize monocytes to LPS

    Get PDF
    Hepatocyte damage and inflammation in monocytes/macrophages are central to the pathogenesis of alcoholic hepatitis (AH). MicroRNAs (miRNAs) regulate all of these processes. MiRNA-122 is abundantly expressed in hepatocytes while monocytes/macrophages have low levels. The role of exosomes in AH and possible cross talk between hepatocyte-derived exosomes and immune cells is not explored yet. Here, we show that the number of exosomes significantly increases in the sera of healthy individuals after alcohol binge drinking and in mice after binge or chronic alcohol consumption. Exosomes isolated from sera after alcohol consumption or from in vitro ethanol-treated hepatocytes contained miRNA-122. Exosomes derived from ethanol-treated Huh7.5 cells were taken up by the recipients THP1 monocytes and horizontally transferred a mature form of liver-specific miRNA-122. In vivo, liver mononuclear cells and Kupffer cells from alcohol-fed mice had increased miRNA-122 levels. In monocytes, miRNA-122 transferred via exosomes inhibited the HO-1 pathway and sensitized to LPS stimulation and increased levels of pro-inflammatory cytokines. Finally, inflammatory effects of exosomes from ethanol-treated hepatocytes were prevented by using RNA interference via exosome-mediated delivery of a miRNA-122 inhibitor. These results demonstrate that first, exosomes mediate communication between hepatocytes and monocytes/macrophages and second, hepatocyte-derived miRNA-122 can reprogram monocytes inducing sensitization to LPS

    Inhibition of TLR8- and TLR4-induced Type I IFN induction by alcohol is different from its effects on inflammatory cytokine production in monocytes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Prolonged alcohol consumption is a significant co-factor in the progression of chronic viral infections including hepatitis C and HIV, which are both single-stranded RNA viruses. Toll like receptor 8 (TLR8), a pattern recognition receptor expressed in monocytes, senses viral single stranded RNA as a danger signal and leads to the induction of Type I interferon (IFN) as well as the pro-inflammatory cytokine, tumor necrosis factor alpha (TNF alpha). Lipopolysaccharide (LPS), a Toll like receptor 4 (TLR4) ligand, was shown to affect inflammatory cell activation after alcohol consumption and in HIV and HCV infections. Here we hypothesized that alcohol exposure modulates TLR8- and TLR4-ligand-induced monocyte activation and affects both type I IFN and inflammatory cytokine induction.</p> <p>Results</p> <p>The TLR8 ligand, CL075, as well as the TLR4 ligand, LPS, resulted in a significant induction of TNF alpha both at the mRNA and protein levels in human monocytes. We found that both acute and prolonged alcohol treatment resulted in inhibition of type I IFN induction by either TLR8 or TLR4 ligands in human monocytes at the protein and mRNA levels. In contrast to Type I IFN production, the effects of acute and prolonged alcohol were different on inflammatory cytokine activation after TLR8 or TLR4 ligand stimulation. Acute alcohol inhibited TLR8- or TLR4-induced TNF alpha protein and mRNA induction while it augmented IL-10 production in monocytes. In contrast, prolonged alcohol treatment augmented TNF alpha without affecting IL-10 production significantly in response to either TLR8 or TLR4 ligand stimulation.</p> <p>Conclusions</p> <p>These novel results suggest first, that alcohol has a profound inhibitory effect on Type I IFN induction regardless of intracellular (TLR8) or cell surface-derived (TLR4) danger signals. Second, both acute and prolonged alcohol exposure can inhibit antiviral Type I IFN pathway activation. Third, the opposite effects of acute (inhibitory) and prolonged alcohol (augmentation) treatment on pro-inflammatory cytokine activation extend to TLR8-induced signals beyond the previously shown TLR4/LPS pathway.</p

    Modern methods in drilling.

    Get PDF
    Tato bakalářská práce se věnuje moderním metodám vrtání. První část je zaměřena na rozdělení jednotlivých metod vrtání, na jejich popis a možnosti využití v průmyslové praxi. Druhá část je věnována orientaci v produktech dvou nejvýznamnějších výrobců vrtacích nástrojů.This Bachelor’s thesis deals with modern methods in drilling. In the first part, the drilling methods are divided, followed by each method description and practical usage. The second part is devoted to the way of orientation in products of couple most significant producers of drilling tools.

    A Proposal for a Methodology of a Knee Joint Replacement Femoral Part 3D Model Creation

    Get PDF
    Cílem diplomové práce je navrhnout metodiku tvorby 3D modelu femorální částí kolenní náhrady. Protože koleno je nejzatěžovanější kloub v těle, je v první části popsána jeho funkce, složení a biomechanické poměry. Druhá část je zaměřena na degenerativní onemocnění kolenních kloubů, které v pozdější fázi vedou k implantaci standardních kolenních náhrad. Třetí část pojednává o konstrukci standardních kolenních náhrad včetně její implantace. Poslední část je věnována konstrukci individuální kolenní náhrady, zejména pak její femorální části.The aim of the Diploma Thesis is to propose the methodology of a 3D model creation of a femoral part of a knee joint replacement. As the knee joint is the most loaded joint of the human body, the function, description and biomechanics relation is described in first part of the Thesis. The second part is focused on degenerative damage of knee joints that leads to the implantation of standard knee joint replacements. The third part deals with the construction of standard knee joint replacements and their surgery implantation. The last part of the Thesis describes the creation of an individual knee joint replacement, especially the femoral part.

    Exosomes from hepatitis C infected patients transmit HCV infection and contain replication competent viral RNA in complex with Ago2-miR122-HSP90

    Get PDF
    Antibodies targeting receptor-mediated entry of HCV into hepatocytes confer limited therapeutic benefits. Evidence suggests that exosomes can transfer genetic materials between cells; however, their role in HCV infection remains obscure. Here, we show that exosomes isolated from sera of chronic HCV infected patients or supernatants of J6/JFH1-HCV-infected Huh7.5 cells contained HCV RNA. These exosomes could mediate viral receptor-independent transmission of HCV to hepatocytes. Negative sense HCV RNA, indicative of replication competent viral RNA, was present in exosomes of all HCV infected treatment non-responders and some treatment-naive individuals. Remarkably, HCV RNA was associated with Ago2, HSP90 and miR-122 in exosomes isolated from HCV-infected individuals or HCV-infected Huh7.5 cell supernatants. Exosome-loading with a miR-122 inhibitor, or inhibition of HSP90, vacuolar H+-ATPases, and proton pumps, significantly suppressed exosome-mediated HCV transmission to naive cells. Our findings provide mechanistic evidence for HCV transmission by blood-derived exosomes and highlight potential therapeutic strategies

    Increased number of circulating exosomes and their microRNA cargos are potential novel biomarkers in alcoholic hepatitis

    Get PDF
    BACKGROUND: It has been well documented that alcohol and its metabolites induce injury and inflammation in the liver. However, there is no potential biomarker to monitor the extent of liver injury in alcoholic hepatitis patients. MicroRNAs (miRNAs) are a class of non-coding RNAs that are involved in various physiologic and pathologic processes. In the circulation, a great proportion of miRNAs is associated with extracellular vesicles (EVs)/exosomes. Here, we hypothesized that the exosome-associated miRNAs can be used as potential biomarkers in alcoholic hepatitis (AH). METHODS: Exosomes were isolated from sera of alcohol-fed mice or pair-fed mice, and plasma of alcoholic hepatitis patients or healthy controls by ExoQuick. The exosomes were characterized by transmission electron microscopy and Western blot and enumerated with a Nanoparticle Tracking Analysis system. Firefly microRNA Assay was performed on miRNA extracted from mice sera. TaqMan microRNA assay was used to identify differentially expressed miRNAs in plasma of cohort of patients with AH versus controls followed by construction of receiver operating characteristic (ROC) curves to determine the sensitivity and specificity of the candidates. RESULTS: The total number of circulating EVs was significantly increased in mice after alcohol feeding. Those EVs mainly consisted of exosomes, the smaller size vesicle subpopulation of EVs. By performing microarray screening on exosomes, we found nine inflammatory miRNAs which were deregulated in sera of chronic alcohol-fed mice compared to controls including upregulated miRNAs: miRNA-192, miRNA-122, miRNA-30a, miRNA-744, miRNA-1246, miRNA 30b and miRNA-130a. The ROC analyses indicated excellent diagnostic value of miRNA-192, miRNA-122, and miRNA-30a to identify alcohol-induced liver injury. We further validated findings from our animal model in human samples. Consistent with the animal model, total number of EVs, mostly exosomes, was significantly increased in human subjects with AH. Both miRNA-192 and miRNA-30a were significantly increased in the circulation of subjects with AH. miRNA-192 showed promising value for the diagnosis of AH. CONCLUSION: Elevated level of EVs/exosomes and exosome-associated miRNA signature could serve as potential diagnostic markers for AH. In addition to the biomarker diagnostic capabilities, these findings may facilitate development of novel strategies for diagnostics, monitoring, and therapeutics of AH
    corecore