1,071 research outputs found

    Semiconductor quantum dots for electron spin qubits

    Get PDF
    We report on our recent progress in applying semiconductor quantum dots for spin-based quantum computation, as proposed by Loss and DiVincenzo (1998 Phys. Rev. A 57 120). For the purpose of single-electron spin resonance, we study different types of single quantum dot devices that are designed for the generation of a local ac magnetic field in the vicinity of the dot. We observe photon-assisted tunnelling as well as pumping due to the ac voltage induced by the ac current driven through a wire in the vicinity of the dot, but no evidence for ESR so far. Analogue concepts for a double quantum dot and the hydrogen molecule are discussed in detail. Our experimental results in laterally coupled vertical double quantum dot device show that the Heitler–London model forms a good approximation of the two-electron wavefunction. The exchange coupling constant J is estimated. The relevance of this system for two-qubit gates, in particular the SWAP operation, is discussed. Density functional calculations reveal the importance of the gate electrode geometry in lateral quantum dots for the tunability of J in realistic two-qubit gates

    Density functional scheme for calculating the pair density

    Full text link
    The density functional scheme for calculating the pair density is presented by means of the constrained-search technique. The resultant single-particle equation takes the form of the modified Hartree-Fock equation which contains the kinetic contribution of the exchange-correlation energy functional as the correlation potential. The practical form of the kinetic contribution is also proposed with the aid of the scaling relations of the kinetic energy functionals.Comment: 5 page

    Scheme for calculating the orbital-dependent exchange-correlation potential using the virial theorem: Application to atomic systems

    Get PDF
    We present a density-functional scheme for calculating the orbital-dependent exchange-correlation potential using the virial theorem as a sum rule. In order to check the validity of this scheme, atomic-structure calculations only with the exchange potential are performed. The accuracy of this scheme is shown to be comparable to that of the optimized effective potential (OEP) method, while the computational workload is extremely reduced compared to the OEP method.ArticlePHYSICAL REVIEW A. 78(1):012501 (2008)journal articl

    Extensions and block decompositions for finite-dimensional representations of equivariant map algebras

    Full text link
    Suppose a finite group acts on a scheme XX and a finite-dimensional Lie algebra g\mathfrak{g}. The associated equivariant map algebra is the Lie algebra of equivariant regular maps from XX to g\mathfrak{g}. The irreducible finite-dimensional representations of these algebras were classified in previous work with P. Senesi, where it was shown that they are all tensor products of evaluation representations and one-dimensional representations. In the current paper, we describe the extensions between irreducible finite-dimensional representations of an equivariant map algebra in the case that XX is an affine scheme of finite type and g\mathfrak{g} is reductive. This allows us to also describe explicitly the blocks of the category of finite-dimensional representations in terms of spectral characters, whose definition we extend to this general setting. Applying our results to the case of generalized current algebras (the case where the group acting is trivial), we recover known results but with very different proofs. For (twisted) loop algebras, we recover known results on block decompositions (again with very different proofs) and new explicit formulas for extensions. Finally, specializing our results to the case of (twisted) multiloop algebras and generalized Onsager algebras yields previously unknown results on both extensions and block decompositions.Comment: 41 pages; v2: minor corrections, formatting changed to match published versio

    Charge-noise-free Lateral Quantum Dot Devices with Undoped Si/SiGe Wafer

    Full text link
    We develop quantum dots in a single layered MOS structure using an undoped Si/SiGe wafer. By applying a positive bias on the surface gates, electrons are accumulated in the Si channel. Clear Coulomb diamond and double dot charge stability diagrams are measured. The temporal fluctuation of the current is traced, to which we apply the Fourier transform analysis. The power spectrum of the noise signal is inversely proportional to the frequency, and is different from the inversely quadratic behavior known for quantum dots made in doped wafers. Our results indicate that the source of charge noise for the doped wafers is related to the 2DEG dopant.Comment: Proceedings of the 12th Asia Pacific Physics Conferenc

    The role of convective overshooting clouds in tropical stratosphere-troposphere dynamical coupling

    Get PDF
    International audienceThis paper investigates the role of deep convection and overshooting convective clouds in stratosphere–troposphere dynamical coupling in the tropics during two large major stratospheric sudden warming events in January 2009 and January 2010. During both events, convective activity and precipitation increased in the equatorial Southern Hemisphere as a result of a strengthening of the Brewer–Dobson circulation induced by enhanced stratospheric planetary wave activity. Correlation coefficients between variables related to the convective activity and the vertical velocity were calculated to identify the processes connecting stratospheric variability to the troposphere. Convective overshooting clouds showed a direct relationship to lower stratospheric upwelling at around 70–50 hPa. As the tropospheric circulation change lags behind that of the stratosphere, outgoing longwave radiation shows almost no simultaneous correlation with the stratospheric upwelling. This result suggests that the stratospheric circulation change first penetrates into the troposphere through the modulation of deep convective activity
    • …
    corecore