1,047 research outputs found

    Classical Structures Based on Unitaries

    Full text link
    Starting from the observation that distinct notions of copying have arisen in different categorical fields (logic and computation, contrasted with quantum mechanics) this paper addresses the question of when, or whether, they may coincide. Provided all definitions are strict in the categorical sense, we show that this can never be the case. However, allowing for the defining axioms to be taken up to canonical isomorphism, a close connection between the classical structures of categorical quantum mechanics, and the categorical property of self-similarity familiar from logical and computational models becomes apparent. The required canonical isomorphisms are non-trivial, and mix both typed (multi-object) and untyped (single-object) tensors and structural isomorphisms; we give coherence results that justify this approach. We then give a class of examples where distinct self-similar structures at an object determine distinct matrix representations of arrows, in the same way as classical structures determine matrix representations in Hilbert space. We also give analogues of familiar notions from linear algebra in this setting such as changes of basis, and diagonalisation.Comment: 24 pages,7 diagram

    Passengers' destinations from China: low risk of Novel Coronavirus (2019-nCoV) transmission into Africa and South America

    Get PDF
    Novel Coronavirus (2019-nCoV [SARS-COV-2]) was detected in humans during the last week of December 2019 at Wuhan city in China, and caused 24 554 cases in 27 countries and territories as of 5 February 2020. The objective of this study was to estimate the risk of transmission of 2019-nCoV through human passenger air flight from four major cities of China (Wuhan, Beijing, Shanghai and Guangzhou) to the passengers' destination countries. We extracted the weekly simulated passengers' end destination data for the period of 1–31 January 2020 from FLIRT, an online air travel dataset that uses information from 800 airlines to show the direct flight and passengers' end destination. We estimated a risk index of 2019-nCoV transmission based on the number of travellers to destination countries, weighted by the number of confirmed cases of the departed city reported by the World Health Organization (WHO). We ranked each country based on the risk index in four quantiles (4th quantile being the highest risk and 1st quantile being the lowest risk). During the period, 388 287 passengers were destined for 1297 airports in 168 countries or territories across the world. The risk index of 2019-nCoV among the countries had a very high correlation with the WHO-reported confirmed cases (0.97). According to our risk score classification, of the countries that reported at least one Coronavirus-infected pneumonia (COVID-19) case as of 5 February 2020, 24 countries were in the 4th quantile of the risk index, two in the 3rd quantile, one in the 2nd quantile and none in the 1st quantile. Outside China, countries with a higher risk of 2019-nCoV transmission are Thailand, Cambodia, Malaysia, Canada and the USA, all of which reported at least one case. In pan-Europe, UK, France, Russia, Germany and Italy; in North America, USA and Canada; in Oceania, Australia had high risk, all of them reported at least one case. In Africa and South America, the risk of transmission is very low with Ethiopia, South Africa, Egypt, Mauritius and Brazil showing a similar risk of transmission compared to the risk of any of the countries where at least one case is detected. The risk of transmission on 31 January 2020 was very high in neighbouring Asian countries, followed by Europe (UK, France, Russia and Germany), Oceania (Australia) and North America (USA and Canada). Increased public health response including early case recognition, isolation of identified case, contract tracing and targeted airport screening, public awareness and vigilance of health workers will help mitigate the force of further spread to naïve countries

    Project MOSI: rationale and pilot-study results of an initiative to help protect zoo animals from mosquito-transmitted pathogens and contribute data on mosquito spatio–temporal distribution change

    Get PDF
    Mosquito-borne pathogens pose major threats to both wildlife and human health and, largely as a result of unintentional human-aided dispersal of their vector species, their cumulative threat is on the rise. Anthropogenic climate change is expected to be an increasingly significant driver of mosquito dispersal and associated disease spread. The potential health implications of changes in the spatio-temporal distribution of mosquitoes highlight the importance of ongoing surveillance and, where necessary, vector control and other health-management measures. The World Association of Zoos and Aquariums initiative, Project MOSI, was established to help protect vulnerable wildlife species in zoological facilities from mosquito-transmitted pathogens by establishing a zoo-based network of fixed mosquito monitoring sites to assist wildlife health management and contribute data on mosquito spatio-temporal distribution changes. A pilot study for Project MOSI is described here, including project rationale and results that confirm the feasibility of conducting basic standardized year-round mosquito trapping and monitoring in a zoo environment

    Development of a strontium optical lattice clock for the SOC mission on the ISS

    Get PDF
    Ultra-precise optical clocks in space will allow new studies in fundamental physics and astronomy. Within an European Space Agency (ESA) program, the Space Optical Clocks (SOC) project aims to install and to operate an optical lattice clock on the International Space Station (ISS) towards the end of this decade. It would be a natural follow-on to the ACES mission, improving its performance by at least one order of magnitude. The payload is planned to include an optical lattice clock, as well as a frequency comb, a microwave link, and an optical link for comparisons of the ISS clock with ground clocks located in several countries and continents. Within the EU-FP7-SPACE-2010-1 project no. 263500, during the years 2011-2015 a compact, modular and robust strontium lattice optical clock demonstrator has been developed. Goal performance is a fractional frequency instability below 1x10^{-15}, tau^{-1/2} and a fractional inaccuracy below 5x10^{-17}. Here we describe the current status of the apparatus' development, including the laser subsystems. Robust preparation of cold {88}^Sr atoms in a second stage magneto-optical trap (MOT) is achieved.Comment: 27 Pages, 15 figures, Comptes Rendus Physique 201

    The Global Health Security index and Joint External Evaluation score for health preparedness are not correlated with countries' COVID-19 detection response time and mortality outcome

    Get PDF
    Global Health Security Index (GHSI) and Joint External Evaluation (JEE) are two well-known health security and related capability indices. We hypothesised that countries with higher GHSI or JEE scores would have detected their first COVID-19 case earlier, and would experience lower mortality outcome compared to countries with lower scores. We evaluated the effectiveness of GHSI and JEE in predicting countries' COVID-19 detection response times and mortality outcome (deaths/million). We used two different outcomes for the evaluation: (i) detection response time, the duration of time to the first confirmed case detection (from 31st December 2019 to 20th February 2020 when every country's first case was linked to travel from China) and (ii) mortality outcome (deaths/million) until 11th March and 1st July 2020, respectively. We interpreted the detection response time alongside previously published relative risk of the importation of COVID-19 cases from China. We performed multiple linear regression and negative binomial regression analysis to evaluate how these indices predicted the actual outcome. The two indices, GHSI and JEE were strongly correlated (r = 0.82), indicating a good agreement between them. However, both GHSI (r = 0.31) and JEE (r = 0.37) had a poor correlation with countries' COVID-19–related mortality outcome. Higher risk of importation of COVID-19 from China for a given country was negatively correlated with the time taken to detect the first case in that country (adjusted R2 = 0.63–0.66), while the GHSI and JEE had minimal predictive value. In the negative binomial regression model, countries' mortality outcome was strongly predicted by the percentage of the population aged 65 and above (incidence rate ratio (IRR): 1.10 (95% confidence interval (CI): 1.01–1.21) while overall GHSI score (IRR: 1.01 (95% CI: 0.98–1.01)) and JEE (IRR: 0.99 (95% CI: 0.96–1.02)) were not significant predictors. GHSI and JEE had lower predictive value for detection response time and mortality outcome due to COVID-19. We suggest introduction of a population healthiness parameter, to address demographic and comorbidity vulnerabilities, and reappraisal of the ranking system and methods used to obtain the index based on experience gained from this pandemic

    Nuclear medium modifications of the NN interaction via quasielastic (p,p\vec p,\vec p ') and (p,n\vec{p},\vec{n}) scattering

    Full text link
    Within the relativistic PWIA, spin observables have been recalculated for quasielastic (p,p\vec p,\vec p ') and (p,n\vec p,\vec n) reactions on a 40^{40}Ca target. The incident proton energy ranges from 135 to 300 MeV while the transferred momentum is kept fixed at 1.97 fm^{-1}. In the present calculations, new Horowitz-Love--Franey relativistic NN amplitudes have been generated in order to yield improved and more quantitative spin observable values than before. The sensitivities of the various spin observables to the NN interaction parameters, such as (1) the presence of the surrounding nuclear medium, (2) a pseudoscalar versus a pseudovector interaction term, and (3) exchange effects, point to spin observables which should preferably be measured at certain laboratory proton energies, in order to test current nuclear models. This study also shows that nuclear medium effects become more important at lower proton energies (\leq 200 MeV). A comparison to the limited available data indicates that the relativistic parametrization of the NN scattering amplitudes in terms of only the five Fermi invariants (the SVPAT form) is questionable.Comment: 10 pages, 6 Postscript figures, uses psfig.sty and article.sty, submitted to Phys. Rev.

    Design of a pulse power supply unit for micro-ECM

    Get PDF
    Electrochemical micro-machining (μECM) requires a particular pulse power supply unit (PSU) to be developed in order to achieve desired machining performance. This paper summarises the development of a pulse PSU meeting the requirements of μECM. The pulse power supply provides tens of nanosecond pulse duration, positive and negative bias voltages and a polarity switching functionality. It fulfils the needs for tool preparation with reversed pulsed ECM on the machine. Moreover, the PSU is equipped with an ultrafast overcurrent protection which prevents the tool electrode from being damaged in case of short circuits. The developed pulse PSU was used to fabricate micro-tools out of 170 μm WC-Co alloy shafts via micro-electrochemical turning and drill deep holes via μECM in a disk made of 18NiCr6. The electrolyte used for both processes was a mixture of sulphuric acid and NaNO3 aqueous solutions.The research reported in this paper is supported by the European Commission within the project “Minimizing Defects in Micro-Manufacturing Applications (MIDEMMA)” (FP7-2011-NMP-ICT-FoF-285614

    Dengue outbreaks in Bangladesh: Historic epidemic patterns suggest earlier mosquito control intervention in the transmission season could reduce the monthly growth factor and extent of epidemics

    Get PDF
    Dengue is endemic in Bangladesh and is an important cause of morbidity and mortality. Suppressing the mosquito vector activity at the optimal time annually is a practical strategy to control dengue outbreaks. The objective of this study was to estimate the monthly growth factor (GF) of dengue cases over the past 12 years as a means to identify the optimal time for a vector-control programme in Bangladesh. We reviewed the monthly cases reported by the Institute of Epidemiology, Disease Control and Research of Bangladesh during the period of January 2008–December 2019. We calculated the GF of dengue cases between successive months during this period and report means and 95% confidence intervals (CI). The median number of patients admitted to the hospital with dengue fever per year was 1554 (range: 375–101,354). The mean monthly GF of dengue cases was 1.2 (95% CI: 0.4–2.4). The monthly GF lower CI between April and July was > 1, whereas from September to November and January the upper CI was 1 compared to 20% (19/96) months between August and March of the same period. The monthly GF was significantly correlated with monthly rainfall (r = 0.39) and monthly mean temperature (r = 0.30). The growth factor of the dengue cases over the last 12 years appeared to follow a marked periodicity linked to regional rainfall patterns. The increased transmission rate during the months of April–July, a seasonally determined peak suggests the need for strengthening a range of public health interventions, including targeted vector control efforts and community education campaigns

    Equation of state for the 2+1 dimensional Gross-Neveu model at order 1/N

    Get PDF
    We calculate the equation of state of the Gross-Neveu model in 2+1 dimensions at order 1/N, where N is the number of fermion species. We make use of a general formula valid for four-fermion theories, previously applied to the model in 1+1 dimensions. We consider both the discrete and continuous symmetry versions of the model. We show that the pion-like excitations give the dominant contribution at low temperatures. The range of validity for such pion dominance is analyzed. The complete analysis from low to high temperatures also shows that in the critical region the role of composite states is relevant, even for quite large N, and that the free-component behaviour at high T starts at about twice the mean field critical temperature.Comment: 19 pages, RevTeX, 10 figures.p

    Change Actions: Models of Generalised Differentiation

    Full text link
    Cai et al. have recently proposed change structures as a semantic framework for incremental computation. We generalise change structures to arbitrary cartesian categories and propose the notion of change action model as a categorical model for (higher-order) generalised differentiation. Change action models naturally arise from many geometric and computational settings, such as (generalised) cartesian differential categories, group models of discrete calculus, and Kleene algebra of regular expressions. We show how to build canonical change action models on arbitrary cartesian categories, reminiscent of the F\`aa di Bruno construction
    corecore