23 research outputs found

    Green and Fire Resistant Nanocellulose/Hemicellulose/Clay Foams

    Get PDF
    Lightweight polymer foams from synthetic polymers are commonly used in a wide-spread spectrum of application fields. Their intrinsic flammability coupled with restrictions on flame retardant chemicals poses a severe threat to safety. Here, fire resistant foams comprising biobased components capable of replacing petroleum-based foams are investigated. Cellulose nanofibers are combined with 2D montmorillonite nanoplatelets and a native xyloglucan hemicellulose binder, using a water-based freeze casting approach. Due to the silicate nanoplatelets, these lightweight foams self-extinguish the flame during flammability tests. The limiting oxygen index is as high as 31.5% and in the same range as the best fire-retardant synthetic foams available. In cone calorimetry, the foams display extremely low combustion rates. Smoke release is near the detection limit of the instrument. In addition, the foams are withstanding the penetration of a flame torch focused on one side of the specimen (T on surface 800 °C) and structural integrity is maintained. At the same time, the unexposed side is insulated, as demonstrated by a through-thickness temperature drop of 680 °C cm−1. The results represent a tremendous opportunity for the development of fire-safe foams combining excellent sustainability with multifunctional performance

    Green and Fire Resistant Nanocellulose/Hemicellulose/Clay Foams

    Get PDF
    AbstractLightweight polymer foams from synthetic polymers are commonly used in a wide‐spread spectrum of application fields. Their intrinsic flammability coupled with restrictions on flame retardant chemicals poses a severe threat to safety. Here, fire resistant foams comprising biobased components capable of replacing petroleum‐based foams are investigated. Cellulose nanofibers are combined with 2D montmorillonite nanoplatelets and a native xyloglucan hemicellulose binder, using a water‐based freeze casting approach. Due to the silicate nanoplatelets, these lightweight foams self‐extinguish the flame during flammability tests. The limiting oxygen index is as high as 31.5% and in the same range as the best fire‐retardant synthetic foams available. In cone calorimetry, the foams display extremely low combustion rates. Smoke release is near the detection limit of the instrument. In addition, the foams are withstanding the penetration of a flame torch focused on one side of the specimen (T on surface 800 °C) and structural integrity is maintained. At the same time, the unexposed side is insulated, as demonstrated by a through‐thickness temperature drop of 680 °C cm−1. The results represent a tremendous opportunity for the development of fire‐safe foams combining excellent sustainability with multifunctional performance

    Oriented clay nanopaper from biobased components--mechanisms for superior fire protection properties

    No full text
    The toxicity of the most efficient fire retardant additives is a major problem for polymeric materials. Cellulose nanofiber (CNF)/clay nanocomposites, with unique brick-and-mortar structure and prepared by simple filtration, are characterized from the morphological point of view by scanning electron microscopy and X-ray diffraction. These nanocomposites have superior fire protection properties to other clay nanocomposites and fiber composites. The corresponding mechanisms are evaluated in terms of flammability (reaction to a flame) and cone calorimetry (exposure to heat flux). These two tests provide a wide spectrum characterization of fire protection properties in CNF/montmorrilonite (MTM) materials. The morphology of the collected residues after flammability testing is investigated. In addition, thermal and thermo-oxidative stability are evaluated by thermogravimetric analyses performed in inert (nitrogen) and oxidative (air) atmospheres. Physical and chemical mechanisms are identified and related to the unique nanostructure and its low thermal conductivity, high gas barrier properties and CNF/MTM interactions for char formatio

    Bioinspired and Highly Oriented Clay Nanocomposites with a Xyloglucan Biopolymer Matrix: Extending the Range of Mechanical and Barrier Properties

    No full text
    The development of clay bionanocomposites requires processing routes with nanostructural control. Moreover, moisture durability is a concern with water-soluble biopolymers. Here, oriented bionanocomposite coatings with strong in-plane orientation of clay platelets are for the first time prepared by continuous water-based processing. Montmorillonite (MTM) and a “new” unmodified biological polymer (xyloglucan (XG)) are combined. The resulting nanocomposites are characterized by FE-SEM, TEM, and XRD. XG adsorption on MTM is measured by quartz crystal microbalance analysis. Mechanical and gas barrier properties are measured, also at high relative humidity. The reinforcement effects are modeled. XG dimensions in composites are estimated using atomistic simulations. The nanostructure shows highly oriented and intercalated clay platelets. The reinforcement efficiency and effects on barrier properties are remarkable and are likely to be due to highly oriented and well-dispersed MTM and strong XG–MTM interactions. Properties are well preserved in humid conditions and the reasons for this are discussed

    Nacre-Mimetic Clay/Xyloglucan Bionanocomposites: A Chemical Modification Route for Hygromechanical Performance at High Humidity

    No full text
    Nacre-mimetic bionanocomposites of high montmorillonite (MTM) clay content, prepared from hydrocolloidal suspensions, suffer from reduced strength and stiffness at high relative humidity. We address this problem by chemical modification of xyloglucan in (XG)/MTM nacre-mimetic nanocomposites, by subjecting the XG to regioselective periodate oxidation of side chains to enable it to form covalent cross-links to hydroxyl groups in neighboring XG chains or to the MTM surface. The resulting materials are analyzed by FTIR spectroscopy, thermogravimetric analysis, carbohydrate analysis, calorimetry, X-ray diffraction, scanning electron microscopy, tensile tests, and oxygen barrier properties. We compare the resulting mechanical properties at low and high relative humidity. The periodate oxidation leads to a strong increase in modulus and strength of the materials. A modulus of 30 GPa for cross-linked composite at 50% relative humidity compared with 13.7 GPa for neat XG/MTM demonstrates that periodate oxidation of the XG side chains leads to crucially improved stress transfer at the XG/MTM interface, possibly through covalent bond formation. This enhanced interfacial adhesion and internal cross-linking of the matrix moreover preserves the mechanical properties at high humidity condition and leads to a Young’s modulus of 21 GPa at 90%RH
    corecore