15 research outputs found

    Water entry of a body which moves in more than six degrees of freedom

    Get PDF
    The water entry of a three-dimensional smooth body into initially calm water is examined. The body can move freely in its 6 d.f. and may also change its shape over time. During the early stage of penetration, the shape of the body is approximated by a surface of double curvature and the radii of curvature may vary over time. Hydrodynamic loads are calculated by the Wagner theory. It is shown that the water entry problem with arbitrary kinematics of the body motion, can be reduced to the vertical entry problem with a modified vertical displacement of the body and an elliptic region of contact between the liquid and the body surface. Low pressure occurrence is determined; this occurrence can precede the appearance of cavitation effects. Hydrodynamic forces are analysed for a rigid ellipsoid entering the water with 3 d.f. Experimental results with an oblique impact of elliptic paraboloid confirm the theoretical findings. The theoretical developments are detailed in this paper, while an application of the model is described in electronic supplementary materials

    A note on the Kutta condition in Glauert's solution of the thin aerofoil problem

    Get PDF
    Glauert's classical solution of the thin aerofoil problem (a coordinate transformation, and splitting the solution into a sum of a singular part and an assumed regular part written as a Fourier sine series) is usually presented in textbooks on aerodynamics without a great deal of attention being paid to the rĂ´le of the Kutta condition. Sometimes the solution is merely stated, apparently satisfying the Kutta condition automatically. Quite often, however, it is misleadingly suggested that it is by the choice of a sine series that the Kutta condition is satisfied. It is shown here that if Glauert's approach is interpreted in the context of generalised functions, (1) the whole solution, i.e. both the singular part and any non-Kutta condition solution, can be written as a sine-series, and (2) it is really the coordinate transformation which compels the Kutta condition to be satisfied, as it enhances the edge singularities from integrable to non-integrable, and so sifts out solutions not normally representable by a Fourier series. Furthermore, the present method provides a very direct way to construct other, more singular solutions. A practical consequence is that (at least, in principle) in numerical solutions based on Glauert's method, more is needed for the Kutta condition than a sine series expansion

    The shape of dendritic tips

    No full text

    Ideal Fluid

    No full text
    corecore