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Abstract

The water entry of a three-dimensional smooth body into initially calm water is examined.

The body can move freely in its six degrees of freedom and may also change its shape over

time. During the early stage of penetration, the shape of the body is approximated by a surface

of double curvature and the radii of curvature may vary over time. Hydrodynamic loads are

calculated by the Wagner theory. It is shown that the water entry problem with arbitrary

kinematics of the body motion, can be reduced to the vertical entry problem with a modified

vertical displacement of the body and an elliptic region of contact between the liquid and the

body surface. Low pressure occurence is determined; this occurence can precede the appearance

of cavitation effects. Hydrodynamic forces are analysed for a rigid ellipsoid entering the water

with three degrees of freedom. Experimental results with an oblique impact of elliptic paraboloid

confirm the theoretical findings. The theoretical developments are detailed in the present paper,

while an application of the model is described in supplementary materials.

keywords: Water impact, three-dimensional flow, free body motion, hydrodynamic loads.

1 Introduction

We consider a three-dimensional object with a smooth surface, such as the bow part of a ship hull
or the fuselage of an aircraft, approaching the water surface after lifting off or arriving from the
atmosphere and penetrating the liquid free surface. The body motion can be computed only by
numerical means by taking into account the large displacements of the body, the cavity forma-
tion behind the body and the viscous forces acting on the body surface. This problem was stud-
ied by [Kleefsman et al.(2005)], [Maruzewski et al.(2010)], [Tassin et al.(2013)], [ Yang & Qiu(2012)]
among others. The early stage of water entry, when the wetted surface is in rapid expansion, is diffi-
cult to capture numerically but this is the stage during which the hydrodynamic loads acting on the
body are very high and may affect the body motions even for longer times.

We focus on the initial stage of the three-dimensional motion of a free body just after the time
instant, t = 0, at which the body touches the water surface at a single point.We consider bodies
whose dimensions are of the order of few metres, such as the fuselage of an aircraft or the bow part
of a ship hull. For the water entry of such shapes the following assumptions are usually made : i) the
viscous effects are neglected since neither a boundary layer nor a separated flow has time enough to
develop, ii) the surface tension effects are not taken into account since the local curvature of the free
surface is very small (except at the jet root), and iii) the acceleration of the fluid particles exceeds
the acceleration of gravity. Those are the reasons for which neither Reynolds nor Froude and Weber
numbers are included in the present problem.

In the present analysis, the liquid is assumed to be incompressible and inviscid. The generated
flow is irrotational and three-dimensional. Initially, t = 0, the water surface is flat and horizontal.
The body surface in the contact region is approximated by a double curvature surface with two radii
of curvature, Rx and Ry, which are not necessarily equal and may depend on time t.
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Figure 1: Sketch of a three dimensional body entering an initially flat free surface. The translational
and rotational motions (thick arrows) are described in an earth fixed coordinate system. In the
linearised domain, D(t) is the instantaneous expanding wetted surface. This is the projection of the
actual wetted surface on the horizontal plane (x, y). The contact line is the intersection line between
the moving body surface and the deformed free surface in both physical and linearized domain.

Under the assumption of large curvature radii compared to the penetration depth, the resulting
boundary-value problem is known as the Wagner entry problem (see [Wagner(1932)]) or ”flat-disk
approximation” or Wagner’s approach. This three-dimensional problem was studied in the past
for the standard case of the vertical entry of an elliptic paraboloid (see [Scolan & Korobkin(2001),
Korobkin(2002), Scolan & Korobkin(2003), Korobkin & Scolan(2006)]). Note that the Wagner the-
ory assumes small deadrise angles and the wetted area, which expands in all directions over time.
For more complex body motions, the oblique impact of an axisymmetric body was studied in
[Moore et al.(2012)] and the oblique impact of an elliptic paraboloid in [Scolan & Korobkin(2012)].
The present paper aims at generalizing the entry of a smooth three-dimensional body that moves in
all possible DoF and changes its shape over time as well. We are unaware of results by others deal-
ing with such complex motions of the body entering water and the corresponding three-dimensional
flows. It is shown in the present paper that angular motions of a body change significantly the
hydrodynamic loads and their distributions over the wetted part of the body surface. The pressure
distribution is carefully analysed in section 5, the zones of negative loads are identified, and the
duration of the Wagner stage is examined.

The physical formulation of the entry problem within the Wagner approach is illustrated in Figure
(1). The jet flow originated at the periphery of the wetted part of the body surface is not shown in
this Figure. The water entry problem for an arbitrary smooth body is formulated in terms of the
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displacement potential φ(x, y, z, t) (see [Korobkin(1985), Howison et al.(1991)])






















∇2φ = 0 (z < 0),
φ = 0 (z = 0, (x, y) /∈ D(t)),
φ,z = f(x, y, t) (z = 0, (x, y) ∈ D(t)),
φ → 0 (x2 + y2 + z2 → ∞),
φ ∈ C2(z < 0) ∩ C1(z ≤ 0) .

(1)

Here the lower half-plane z < 0 corresponds to the flow domain, D(t) is the contact region between the
entering body and the liquid, the rest of the boundary, z = 0, (x, y) /∈ D(t), corresponds to the liquid
free surface. The position of the entering body surface is described by the equation z = f(x, y, t).
In this paper, the function f(x, y, t) includes the six degrees of freedom of the rigid body motions
and the deformations of the body surface expressed in an earth fixed coordinate system. The last
condition in (1) implies that the displacement potential φ is a smooth function in the flow region,
and is continuous together with its first derivatives φ,x, φ,y and φ,z up to the boundary including the
boundary (see [Korobkin & Pukhnachov(1988)]). The latter condition is equivalent to the Wagner
condition (see [Wagner(1932)]) and serves to determine the shape and position of the contact region
D(t). Note that the time t is a parameter in this formulation. The problem can be solved at any time
instant independently. The derivatives φ,x, φ,y and φ,z provide the displacements of liquid particles
in the corresponding directions.

The function f(x, y, t) from (1) is determined in §2 for the given motions of a rigid body. The
displacement potential φ(x, y, 0, t) in the contact region D(t) and the shape of this region are de-
termined in §3. Hydrodynamic forces and moments acting on the body are calculated in §4. The
hydrodynamic pressure distribution is analysed in §5. In §6, we consider the problem of a rigid
ellipsoid entering water surface at an angle of attack. The obtained results are summarised and
conclusions are drawn in §7.

2 Shape function of a body during its impact on the water

surface

To determine the function f(x, y, t) in (1), we consider the equations describing the position of the
surface of a moving body by taking into account a possible variation of the body shape over time.
Let the surface of the body be described by the equation z1 = F (x1, y1, t) in the coordinate system
moving together with the body and such that the global x, y, z and local x1, y1, z1 coordinates coincide
at the impact instant t = 0. Here F (0, 0, t) = 0, F,x1

(0, 0, t) = 0, F,y1
(0, 0, t) = 0, and F (x1, y1, t) > 0,

where |x1| > 0, |y1| > 0 are small. The body surface, z1 = F (x1, y1, t), is hence approximated close
to the origin by the Taylor series

z1 =
x2

1

2Rx(t)
+

y2
1

2Ry(t)
+ O(r4

1/R
3), (2)

where r2
1 = x2

1 + y2
1 and R is an averaged curvature radius. We suppose that Ry(t) ≥ Rx(t) and

introduce ǫ =
√

1 − Rx(t)/Ry(t) as the eccentricity of the horizontal, z1 = const, sections of the
elliptic paraboloid (2).

The body displacements in x−, y− and z−directions are given by the functions xb(t), yb(t)
and −h(t) respectively. The body also rotates with an angle αx(t) around the x1-axis (roll angle),
αy(t) around the y1-axis (pitch angle), αz(t) around the z1-axis (yaw angle). We assume that the
displacements xb(t), yb(t), h(t) and the angles αx(t), αy(t), αz(t) are small and equal to zero at t = 0.
The penetration depth h(t) is chosen here to characterise the initial stage during which h(t)/Rx(t) ≪
1. The orders of other displacements and angles will be specified below.
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For small angles of rotation the global and local coordinates are related by the following equations

x = x1 + xb(t) − y1αz(t) − z1αy(t), (3)

y = y1 + yb(t) + x1αz(t) − z1αx(t), (4)

z = z1 − h(t) + x1αy(t) + y1αx(t). (5)

The linear size of the wetted area is estimated by neglecting all motions except the vertical one
and by neglecting the free surface elevation. Within this rough approximation, the wetted area is
enclosed by the intersection line between the entering body z = x2/(2Rx(t)) + y2/(2Ry(t)) − h(t)

and the plane z = 0. Therefore, x and y in the wetted area are of the order of
√

h(t)Rx(t) for small
h(t)/Rx(t). All terms in equations (3)-(5) are of the same order during the initial stage if xb(t) and
yb(t) are of the order of

√

h(t)Rx(t), and the angles αx(t), αy(t) = O(
√

h(t)/Rx(t)), αz(t) = O(1)
as h(t)/Rx(t) ≪ 1. Note that any yaw angles are allowed but we assume αz(t) ≪ 1 in the next
developments, keeping in mind that the duration of the initial stage is small and the yaw angle, as
other angles cannot vary significantly during this short period. With these orders of the motions
all terms in (5) are of the same order. In (4), all terms are of order of O(

√

h(t)Rx(t)) except the

last term which is of a higher order, O(
√

h3(t)/Rx(t)), and can be neglected in the leading order.
A similar analysis applied to (3) finally provides that relations (3)-(5) can be approximated in the
leading order by

x = x1 + xb(t), y = y1 + yb(t), z = z1 − h(t) + x1αy(t) + y1αx(t). (6)

Substituting (6) in (2) and rearranging the terms, we obtain

z =
(x − X(t))2

2Rx(t)
+

(y − Y (t))2

2Ry(t)
− Z(t), (7)

where
X(t) = xb(t) − Rx(t)αy(t), Y (t) = yb(t) − Ry(t)αx(t), (8)

Z(t) = h(t) +
1

2
[Ry(t)α

2
x(t) + Rx(t)α

2
y(t)]. (9)

The right-hand side in (7) provides the function f(x, y, t) in the formulation (1). Note that the
horizontal displacements of the body, xb(t) and yb(t), are allowed to be much greater than the
vertical displacement h(t).

3 Displacement potential in the contact region

The expression of the shape function f(x, y, t) following from equation (9) makes it possible to
introduce the self-similar variables λ, µ, ν as in [Korobkin(2002)]

x = X(t) + B(t)λ, y = Y (t) + B(t)µ, z = B(t)ν, B(t) =
√

2Rx(t)Z(t), (10)

and the new potential Φ(λ, µ, ν) by

φ = Z(t)B(t)Φ(λ, µ, ν). (11)

The boundary-value problem with respect to the new unknown potential Φ follows from (1)






















∇2Φ = 0 (ν < 0),
Φ = 0 (ν = 0, (λ, µ) /∈ Dǫ),
Φ,ν = λ2 + (1 − ǫ2)µ2 − 1 (ν = 0, (λ, µ) /∈ Dǫ),
Φ → 0 (λ2 + µ2 + ν2 → ∞),
Φ ∈ C2(ν < 0) ∩ C1(ν ≤ 0).

(12)
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Here Dǫ is the contact region in the stretched variables. Its shape depends on the only parameter
ǫ =

√

1 − Rx(t)/Ry(t). The problem (12) is the same as that for an elliptic paraboloid entering
the liquid vertically at constant speed. The solution of the latter problem was well investigated by
[Scolan & Korobkin(2001), Korobkin(2002), Scolan & Korobkin(2003), Korobkin(2005)] in the past.
It was found that the contact region Dǫ is the ellipse

λ2

a2
+

µ2

b2
≤ 1, (13)

where a =
√

1 − e2b, b =
√

3/(2 − e2 − ǫ2) and e(ǫ) is the eccentricity of the contact region defined
by the equation

ǫ2 =
2(e4 − e2 + 1)E(e)/K(e) − (1 − e2)(2 − e2)

(1 + e2)E(e)/K(e) + e2 − 1
, (14)

K(e) and E(e) are the complete elliptic integrals of the first and second kind as defined in [Gradshteyn & Ryzhik
The displacement potential Φ(λ, µ, 0) in the contact region is given by [Korobkin(2002)] in the form

Φ(λ, µ, 0) = − 2a

3E(e)

(

1 − λ2

a2
− µ2

b2

)
3

2

. (15)

Note that the displacement potential (15) in the stretched coordinates system does not depend on
any motions but only on the eccentricity of the body sections. This eccentricity can be a function of
time.

The comparison between theoretical and experimental results are illustrated in Figures (2) and
(3). We consider the oblique entry of an elliptic paraboloid defined by the constant curvature radii
Rx = 0.75m and Ry = 2m. The kinematics of the moving (undeformable) body reduce to two
translational motions in the plane (y, z). The y-horizontal and vertical velocities are ẏb = 0.59m/s
and ḣ = 0.79m/s respectively. The expansion of the wetted surface is computed and compared to
the observations made during an experimental programme at BGO First (La Seyne/Mer, France) in
2011. This programme is described in [Scolan(2012)]. A submerged camera is placed on the basin
floor below the impact point. It records along a vertical axis upwards at a frequency of 200 frames
per second. In Figure (2) the periphery of the wetted surface at different time instants is marked
by a thick white line. Indeed this line is elliptic and it is not affected by the horizontal motion.
The results are collected in figure (3). Since the velocities are constant, it is expected that the

lengths of the wetted surface increase as
√

t, hence the quantities aB/
√

ḣ and bB/
√

ḣ are plotted in
terms of

√
t. The variation is therefore linear. The agreement is satisfactory since the error between

experiments and theory is within 10%, even at the initial stage where it is more difficult to detect
the contact line accurately. The absolute error ∆a of measurement is approximately one third the
size of the cell grid (0.05m) yielding the highest relative error of 20%. More results are available
in [Scolan & Korobkin(2012)]. In particular it is observed that the theory slightly overpredicts the
experimental data regarding the size of the wetted surface.

4 Hydrodynamic loads and equations of the body motions

Taking into account that the hydrodynamic pressure p, the velocity potential ϕ and the displacement
potentail φ as well, are zero on the free surface and at infinity, the expressions of the force ~F and
moment ~M can reduce to

~F (t) =
d

dt

∫ ∫

D̃(t)

ρϕ~ndS, ~M(t) =
d

dt

∫ ∫

D̃(t)

ρϕ(~r × ~n)dS, (16)
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Figure 2: Snapshots of the expanding wetted surface for an oblique entry of elliptic paraboloid defined
by Rx = 0.75m, Ry = 2m. The experimental set-up is described in [Scolan(2012)]. The constant
vertical velocity and y-horizontal velocity are ḣ = 0.79m/s and ẏb = 0.59m/s respectively. There are
no rotations in the experiments. The camera records at 200Hz. The periphery of the wetted area of
the body surface at different time instants is marked by a thick white line.
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Figure 3: Time variations of the major and minor semi-axes of the elliptic wetted surface, respectively

bB(t) and aB(t), divided by
√

ḣ. Comparison of experimental data (marks) and theoretical results
(solid lines). The vertical velocity and y-horizontal velocity are ḣ = 0.79m/s and ẏb = 0.59m/s
respectively.

as shown in [Kochin et al.(1964)] for a body moving in unbounded fluid (see pp 394-397). Here ρ

is the density of the liquid. The hydrodynamic moment ~M1(t) with respect to the point of the first
contact on the body surface, ~rb(t) = (xb, yb,−h), is calculated as

~M1(t) = ~M(t) − ~rb(t) × ~F (t), (17)

If the position of the entering body is given by the equation z = f(x, y, t) as in (1), then

~r = (x, y, f(x, y, t)), ~ndS = (f,x, f,y,−1)dxdy. (18)

The shape function f(x, y, t) is given by (7) and the displacement potential φ by (11) and (15). It
should be noted that ff,x, ff,y = O(h

√

h/Rx) and x, y = O(
√

hRx). Therefore, the terms ff,x and
ff,y can be neglected with the relative accuracy O(h/Rx). The vertical component of the moment is
smaller than two other components and the hydrodynamic loads do not depend on the small yaw angle
αz(t). Therefore, the yaw motion can be computed by integration of the corresponding equation,
in which the moment is independent of this angle, after other motions have been determined. The
equation for the yaw angle is not considered in the following.

Evaluating the integrals in (16), we obtain

Fx(t) = − d

dt

(

ρA(t)

Rx(t)

dX

dt

)

, Fy(t) = − d

dt

(

ρA(t)

Ry(t)

dY

dt

)

, Fz(t) =
d2

dt2

(

ρA(t)
)

, (19)

Mx(t) =
d2

dt2

(

ρA(t)Y (t)
)

, My(t) = − d2

dt2

(

ρA(t)X(t)
)

, (20)

A(t) = −
∫ ∫

D(t)

φ(x, y, 0, t)dxdy = N(ǫ)Z
5

2 (t)R
3

2

x , N(ǫ) =
8
√

2πa2b

15E(e)
. (21)

Note that ǫ in (21) can be a function of time for varying radii of the body curvature. It is important
to note that Fz(t) is independent of the body displacements xb(t) and yb(t) in horizontal directions.
However, the force and the moments are strongly dependent on the angles of the body rotations.
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If the body is free to move after impact, then the equations of the body motions read

d

dt

(

m(t)
dxb

dt

)

= Fx(t),
d

dt

(

m(t)
dyb

dt

)

= Fy(t), − d

dt

(

m(t)
dh

dt

)

= Fz(t), (22)

d

dt

(

Jx(t)
dαx

dt

)

= M1x(t), − d

dt

(

Jy(t)
dαy

dt

)

= M1y(t), (23)

where m(t) is the mass of the body and Jx(t), Jy(t) are its moments of inertia, which could be
functions of time if the body changes its shape over time. Equations (22) can be integrated once
with the result

m(t)
dxb

dt
= −ρA(t)

Rx(t)

dX

dt
+ m(0)ẋb(0), m(t)

dyb

dt
= −ρA(t)

Ry(t)

dY

dt
+ m(0)ẏb(0), (24)

m(t)
dh

dt
+

d(ρA)

dt
= m(0)ḣ(0). (25)

Here ẋb(0), ẏb(0) and −ḣ(0) are the initial velocities of the body motions in x−, y− and z− directions.
Equations (24) yield the speeds of the horizontal motions in terms of the angles of rotation, their
time derivatives and the vertical displacement h(t)

dxb

dt
=

ẋb(0)m(0)/m(t) + mx(t)[Rxαy],t
1 + mx(t)

,
dyb

dt
=

ẏb(0)m(0)/m(t) + my(t)[Ryαx],t
1 + mx(t)

, (26)

where

mx(t) =
ρA(t)

m(t)Rx(t)
, my(t) =

ρA(t)

m(t)Ry(t)
. (27)

The vertical displacement h(t) is governed by equation (25) which can be integrated in time if the
mass of the body is constant. It is convenient to introduce the length scale

L =

(

m

ρN(ǫ)

)
2

3 1

Rx(t)
, (28)

and a new non-dimensional displacement Z̃ = Z(t)/L. Then equation (25) provides

Z̃ + Z̃
5

2 =
ḣ(0)t

L
+

Ry(t)

2L
α2

x +
Rx(t)

2L
α2

y. (29)

The nonlinear equation (29) serves to calculate Z̃(t) for given angles of rotation αx(t) and αy(t) at
time t. Note that we did not use equations for the radii of the body curvature. We assume below
that the Rx(t) and Ry(t) are given functions of time.

An application is described in supplementary material (8). Given the time variations of the
7 variables (h, Rx, Ry, αx, αy, xb, yb) (hence denoted 7 DoF case) which completely define the state
of the dynamical system, the expansion of the wetted surface and the time variation of the loads
are assessed. The influence of complex kinematics on the loads is also examined for a free drop
configuration; in that case the 7 DoF and the single DoF case (pure vertical motion) are compared.
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5 Pressure distribution

The pressure follows from the linearised Bernoulli equation p = −ρϕ,t = −ρφ,t2 , where φ(x, y, 0, t) in
the wetted area is given by (10), (11) and (15). If we note φ = −G3/2(x, y, t), then G appears as a
polynomial of order two with respect to x and y and we can express G as

G(x, y, t) =

i+j≤2
∑

i,j=0

βij(t)x
iyj, (30)

where all (non zero) coefficients βij only depend on time. Then the pressure can be expressed as

p =
3ρ

4
√

G

(

2G̈G + Ġ2
)

, (31)

where overdot stands for time derivative and the expression 2G̈G + Ġ2 is a polynomial of order 4 in
x and y.

We first examine the behaviour of the pressure close to the contact line, where G(x, y, t) vanishes
and the pressure is approximated by

p(x, y, 0, t) ≈ 3

4
ρ

C3/2

√

1 − λ2/a2 − µ2/b2

(

∂

∂t

(

λ2

a2
+

µ2

b2

))2

. (32)

The time derivative in (32) is calculated for fixed x and y by taking into account the relations (10)
between x, y and λ, µ. As also noted by [Moore et al.(2012)], this time derivative is proportional
to the normal velocity of expansion of the wetted surface and the first time instant t⋆, when this
derivative is zero, provides the duration of the Wagner stage of impact. To find t⋆ and the place on
the expanding contact line, where the derivative is zero at t⋆, we search the minimum of the time
derivative in (32). After some manipulations, and assuming that the ratio Rx(t)/Ry(t) does not
depend on time, it is shown that t⋆ is obtained from

a2Ḃ2(t⋆) = Ẋ2(t⋆) + k2Ẏ 2(t⋆). (33)

Equation (33) provides the duration of the Wagner stage t⋆ for a body whose aspect ratio kγ =
√

Rx/Ry is constant and which moves with 5 DoF. Note that the yaw motion can be approximately
neglected during the early stage of impact. Under the same assumptions, it is also shown that the
pressure vanishes in the direction of the translational motion. The calculations are more complicated
for a general case where kγ is a function of time.

We are concerned in the following with the zones of negative pressure in the contact region. These
zones are bounded by the lines p(x, y, 0, t) = 0 which are defined by the equation Ġ2 + 2G̈G = 0 as
follows from (31). In the latter equation, the first term is positive and G(x, y, t) ≥ 0 in the contact
region. Therefore, the negative pressure zone may exist only if G̈(x, y, t) ≤ 0. Then it would be of
interest to determine the roots of the polynomial Ġ2 + 2G̈G. In practice it is not an easy task to
find the lines p = 0. On the other hand, provided that the time variations of (h, Rx, Ry, αx, αy, xb, yb)
are given, the numerical computations of the coefficients βij and their first and second derivatives
in time are rather staightforward. For example, a finite difference scheme is expected to be accurate
enough to compute β̇ij and β̈ij if the time variations of (h, Rx, Ry, αx, αy, xb, yb) are regular.

The pressure distribution on the wetted surface is studied below for a rigid three-dimensional
body with constant radii of curvature Rx and Ry. In this case, the identity holds: 2ZḂ = ŻB at
any time, and Ġ calculated from (30) does not contain polynomials of x and y greater than 1. By
introducing the change of variables between coordinates systems (λ, µ), and (ξ, η) as follows

ξ(x, y, t) =

√
2

a

(

a2Ḃ

2
+ λẊ + k2µẎ

)

, η(x, y, t) =
1

b

(

µẊ − λẎ
)

, (34)
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we can re-arrange 2G̈G + Ġ2 in equation (31), so that

4p
√

G

3ρH2
= 2Z

(

1 − λ2

a2
− µ2

b2

)

G(2) +
4Z2

a2B2

(

a2Ḃ2

2
− Ẋ2 − k2Ẏ 2 + ξ2 + η2

)

. (35)

with

G(2) =

(

a
√

8Rx

3E

)2/3
(

Z̈ +
2Z

B

(

λẌ

a2
+

µŸ

b2

))

, (36)

We can conclude that the second term in (35) is positive in the contact region D(t) as long as

T (t) =
a2Ḃ2

2
− Ẋ2 − k2Ẏ 2 > 0. (37)

The criterion (37) is quite in line with the results of [Moore et al.(2012)] who dealt with the oblique
entry of an elliptic paraboloid as well. As soon as the left hand side of equation (37) changes its
sign, and provided the body motion is such that G(2) = 0, the pressure becomes negative in a region
which is circular in variables (ξ, η) and starts to increase from ξ = 0 and η = 0. The location of the
first point (xo, yo) in the contact region where p ≤ 0, and the time instant of its appearance to are
defined by ξ(xo, yo, to) = 0 and η(xo, yo, to) = 0, with

xo = X − Ẋa2BḂ

2(Ẋ2 + k2Ẏ 2)
, yo = Y − Ẏ a2BḂ

2(Ẋ2 + k2Ẏ 2)
, (38)

where all quantities are evaluated at time to. Once it happens, the wetted surface where the pressure
is negative increases monotonically. The corresponding surface is a circle in the coordinate system
(ξ, η). In the coordinate system (x, y), that area is constructed parametrically by inverting the linear
system (34) with ξ = rT (t) cos γ and η = rT (t) sin γ, where r ∈ [0, 1] and γ ∈ [0, 2π].

As an example, we restrict the body kinematics to translational motions in the plane (y, z) with

Ẋ = 0. By introducing the non-dimensional measure of time τ = Ẏ
bḂ

, the instant at which the

pressure first vanishes in the contact region corresponds to τ = 1√
2

as it follows from equation (37).
The expanding elliptic area of negative pressure is enclosed by the curve

x2

a2B2
+ 2

(y − Y + bB
2τ

)2

b2B2
= 1 − 1

2τ 2
. (39)

The ellipse (39) is centered at a point xe = 0 and ye = Y − bB
2τ

, in the downstream part of the wetted

surface with respect to the y translational motion. The aspect ratio of this ellipse is
√

2k and can be
greater than 1 if Rx/Ry > 0.42. Note that the aspect ratio of the contact region (13) is equal to k.
The time t⋆ at which the negative pressure zone (39) approaches the contact line (13) corresponds to
τ = 1 i.e. when the translational velocity Ẏ becomes equal to the velocity of expansion of the wetted
surface bḂ. The corresponding point of intersection is xi = 0 and yi = Y −bB. The negative pressure
area hence extends over half the wetted surface, downstream. At the point of intersection, the radii
of curvature (in the horizontal plane) of the two curves, the contact line and the zero pressure line
(equation 39), are identical bBk2. Therefore the two curves do not intersect elsewhere than at point
(xi, yi).

In supplementary material (8), the evolution of the negative pressure zone is assessed for a more
general case. It is shown that the negative pressure surface may expand much faster than the wetted
surface itself.
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6 Oblique impact of an ellipsoid on the flat free surface

This section is motivated by the problem of aircraft landing on the water surface. The fuselage of
an aircraft is an elongated structure and hydrodynamic loads acting on it during landing can be
described by the strip theory [Tassin et al.(2013)]. By ”strip theory” we mean a way to construct
a three-dimensional flow solution over an elongated body by computing successive twodimensional
solutions in cross sections perpendicular to the direction of the maximum elongation of a body.
However, at the very beginning of the landing, the contact region of the fuselage is not elongated
and the three-dimensional impact theory should be used to describe the loads during this stage.

As an illustration we consider the oblique impact of the ellipsoid

x̂2

â2
+

ŷ2

b̂2
+

ẑ2

ĉ2
= 1 (40)

on an initially flat water surface z = 0. In equation (40), x̂, ŷ and ẑ are local coordinates with
the origin at the centre of the ellipsoid, and â, b̂ and ĉ are the corresponding semi-axis. Initially,
the ellipsoid is above the flat free surface, inclined at an angle α0 and touches the free surface at
the origin of the global coordinate system x, y, z. Then the body starts to move in the (x, z) plane
with the global coordinates of its centre being xc(t) and zc(t) and the angle of rotation α(t), where
α(0) = α0 and

zc(0) =
√

ĉ2 cos2 α0 + â2 sin2 α0, xc(0) = (â2 − ĉ2) sin α0 cos α0/zc(0). (41)

In this section, the displacements Xc(t) = xc(t)− xc(0) and Zc(t) = zc(t)− zc(0), and the angle α(t)
are assumed to be given functions of time t. Using the relations

x̂ = (x − xc) cos α + (z − zc) sin α, ẑ = −(x − xc) sin α + (z − zc) cos α, ŷ = y (42)

between the local and global coordinates, equation (40) can be written in the global coordinates and
approximated around the point of the first contact, x = y = z = 0, in a similar way as it has been
done in §2 (see Eq. 7). The difference is that now the body motion is described with respect to its
centre and the angle of the body rotation is not assumed to be small. The result is

z ≈ (x − X(t))2

2Rx(t)
+

y2

2Ry(t)
− Z(t), (43)

where
Rx(t) = Â3(t)D̂3(t)â2ĉ2, Ry(t) = Â(t)D̂(t)b̂2, X(t) = R2

x(t)K(t), (44)

Z(t) = Rx(t)K
2(t) + D̂(t)/Â(t) − xc(t)B̂(t)/Â2(t) − zc(t) (45)

and

Â(t) =
√

â−2 sin2 α(t) + ĉ−2 cos2 α(t), B̂(t) = (â−2 − ĉ−2) sin α(t) cos α(t), (46)

D̂(t) =

√

1 − x2
c(t)/(Ââĉ)2, K(t) = B̂(t)/Â2(t) + xc(t)/(Â3D̂â2ĉ2). (47)

Calculations are performed for the ellipsoid with semi-axis â = 10m, b̂ = 10m and ĉ = 3m, which
is initially inclined at angle α0 = −6o. The ellipsoid moves with the horizontal speed 5m/s and
penetrates water at speed 1 m/s. The ellipsoid rotates with a constant angular velocity α(t) =
α0 + αvt/T , where αv = 60 and T is chosen as 1s. These kinematics are arbitrary but satisfy the
basic assumptions of the model.

The positions of three points of the contact line, xm(t), xp(t) and yp(t), in the global coordinates
are shown in Figure (4). Here xm(t) and xp(t) are the maximum and minimum x− coordinates of
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the contact line, and yp(t) is the y− semi-axis of the contact line. It is observed that the speed of the
rear point of the contact line ẋm(t) is zero at t = 0.67s, which is the duration of the Wagner stage of
impact in the case under consideration (see § 5).

Equations (19) - (21), (44) - (45) provide the forces Fx(t), Fz(t) and the moment Mc(t) =
zcFx − xcFz − My(t) with respect to the centre of the ellipsoid (see Figure 5) during the Wagner
stage, 0 < t < 0.67s. The vertical force Fz(t) is always positive and almost linear. The horizontal
force Fx(t) is negative and much greater than the vertical force at the end of the Wagner stage.
The moment Mc(t) is positive for 0 < t < 0.3s while trying to increase the angle of the ellipsoid
inclination, and negative after t > 0.3s while trying to sink the ellipsoid. In these calculations the
motions of the body are prescribed.

7 Conclusion

Three-dimensional problem of water impact by a smooth body has been studied. The body moves in
six degrees of freedom and changes its shape over time. The liquid flow and the pressure distribution
caused by the impact were obtained within the Wagner theory of water impact. Hydrodynamic forces
and moments acting on the body were derived in analytical form.

It was shown that water entry of a three-dimensional body moving with six degrees of freedom
is rather different from pure vertical entry of the same body. Horizontal displacements of the body
and its angular motions may lead to appearance of low-pressure zones in the wetted part of the body
surface. These zones may expand in time and approach the periphery of the wetted area, which leads
to separation of the liquid surface from the surface of the body at the end of the impact stage of the
entry. The present Wagner model fails when cavitation effects appear and when a zone of negative
pressure arrives at the contact line. The horizontal velocity of the body can be much higher than its
vertical velocity within the present analysis.

The ditching of an aircraft is a particular application of the present theoretical study. The
ditching involves mainly the heave, surge and pitch motions of the aircraft. It was shown that the
actual shape of the aircraft fuselage can be approximated by an elliptic paraboloid close to the initial
contact point and the corresponding shape is characterized by time varying radii of curvature. If
the latter are large enough compared to the penetration depth, the Wagner theory provides reliable
results in terms of the loads.

Comparisons with experimental results for an oblique entry of an elliptic paraboloid support the
present theoretical results for moderate horizontal velocities. In particular it is confirmed that an
elliptic paraboloid entering an initially flat free surface with both horizontal and vertical velocities
has an expanding wetted surface which is elliptic as well.
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8 Supplementary material: application of the model

That supplementary material contains an application of the model presented in the main body of
the paper.

The 7 variables (h, Rx, Ry, αx, αy, xb, yb) completely define the state of the dynamical system.
We consider the impact problem for a three-dimensional body, the radii of curvature of which are
given functions of time Rx(t) = Rx(0) + Ṙx(0)t, Ry(t) = Ry(0) + Ṙy(0)t, where Rx(0) = 0.75m,
Ṙx(0) = −4m/s, Ry(0) = 2m and Ṙy(0) = 30m/s. The body moves at speeds ẋb(t) = 7m/s,
ẏb(t) = 2m/s, ḣ(t) = 1m/s in the x−, y− and z−directions respectively. The angular velocities
of the body are α̇x(t) = 1rd/s, α̇y(t) = 2rd/s. The aspect ratio kγ(t) =

√

Rx(t)/Ry(t) of the

horizontal sections of the body and the aspect ratio k(t) = a(t)/b(t) =
√

1 − e2(t) of the wetted
surface are shown in Figure (6a) as functions of time. The time simulation runs up to t = 0.05s. The
modified vertical displacement Z(t) of the body is given by equation (9) and shown in Figure (6b).
It is observed that the modified penetration depth Z(t) is greater than the vertical displacement of
the body h(t) = ḣ(0)t. The Wagner line (periphery of the wetted surface) and the Karman line
(intersection of the body with the undisturbed free surface) are computed and plotted in the global
coordinate system in Figure (7a) for 0 < t < 0.05s. These lines for the vertical entry of the rigid
body (1 DoF) are shown in Figure (7b).

As expected, Figures (7) show that the surface made of all the Wagner lines overlaps the surface
made of all the Karman lines. The effect of translational motion along the x and y axes, and the
variations of the curvature radii are noticeable. The configurations of the submerged body and the
related free surface deformation are shown in Figure (8). The free surface elevation in Figure (8) is
given by [Korobkin & Scolan(2006)]

η(x, y, t) = − 1

2π

∫ ∫

D(t)

∆2φ(x0, y0, t)dx0dy0
√

(x − x0)2 + (y − y0)2
, ((x, y) ∈ FS(t)) , (48)

where ∆2φ is the planar Laplacian of the displacement potential in the wetted area. The integration
in (48) is performed numerically over the elliptic wetted surface D(t). It should be noted that we
cannot expect any asymmetries of the free surface elevation around the body from the equation (48).
The free surface pattern is only affected by the body rotations through the modified penetration
depth Z(t), which is always greater than h(t) (see equation 9). However, it is not affected by the
horizontal motions of the body in the Wagner model.

The force and moment components are computed by equations (19) and (20). The time variations
of (Fx, Fy, Fz, Mx, My) are plotted in Figure (9) for the simple vertical motion (1 DoF) and for
the complex kinematics (7 DoF). A parametric study of the influence of each degree of freedom
(independently of the others) is performed. That study is not detailed here for sake of brevity. It
is remarkable that the vertical force is substantially increased compared to the 1 DoF case, mainly
due to the increasing curvature radii along the y direction. On the other hand the horizontal force
is comparable to the vertical force even though it increases more slowly with time.

Free-drop penetration is considered next. Only the vertical motion is free while the horizontal
motions (xb, yb) are forced. The time variations of the parameters (Rx, Ry, αx, αy, xb, yb) are the same
as in Figure (6). The vertical kinematics are computed for the pure vertical motion (1 DoF) and
for the complex kinematics (7 DoF). The mass of the body is m = 10kg and its initial velocity is
ḣ(0) = 1m/s. Figures (10) show the time variations of the penetration depth, the velocity and the
acceleration. The modification of the shape due to the change of the curvature radii is found to be
the main reason for the difference in kinematics.

The evolution of the negative pressure zone is illustrated in Figure (11) for a more general case.
The body motions and deformation are governed by the same time variations as for Figure (6). The
velocities in x, y and z directions are constant, and the body has angular motions with constant
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Figure 6: Time variation of (a) the aspect ratios kγ =
√

Rx/Ry (solid line) and k = a/b (dashed
line), (b) the penetration depth h (solid line), the modified penetration depth Z (dashed line) and
the difference Z − h (dotted line) .

angular velocities as well. Therefore the second derivative of the corrected penetration depth Z is
not zero. It is given by equation (9), Z̈(t) = Ryα̇

2
x +Rxα̇

2
y. In spite of a non-zero contribution of G(2)

(see equation 49) the pressure drops below zero. Figures (11) show the expansion of the negative
pressure area as time increases. In the present case, the negative pressure surface expands much
faster than the wetted surface itself. It should be noted that this surface mainly migrates towards
the negative x region since the horizontal x− velocity is greater than the horizontal y− velocity.
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the penetration of the body forced to evolve either with 7 DoF (a) or 1 DoF (b). For 7 DoF, the
time variations of parameters (Rx, Ry, αx, αy, xb, yb) are given in the text.
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Figure 11: Successive plots of the contact line at time t = 0.010s, t = 0.011s, t = 0.012s and
t = 0.013s. The surface of negative pressure is dark and the bigger ellipse gives the finite limit of the
elliptic paraboloid. The curves are plotted in the coordinate system centered at (X, Y ). The time
variations of 7 parameters (Rx, Ry, αx, αy, h, xb, yb) are the same as for figure (6).
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