53 research outputs found

    Identification of patterns of transmission of Salmonella within swine production systems using pulsed field gel electrophoresis (PFGE) and repetitive sequence polymerase chain reaction (REP-PCR): a quantitative analysis

    Get PDF
    Pulsed field gel e lectrophoresis (PFGE) using 3 enzymes (Spe I, Xba I, Avr II) and repetitive sequence polymerase chain reaction (REP-PCR) with 3 primers (BOX, ERIC, REP) were compared with respect to their validity as a method for identifying transmission of Salmonella on swine farms. Sixty-eight isolates of Salmonella were obtained from feces of swine, cats, mice, and birds, insect body parts, water and floor samples, and boot scrapings collected on 9 swine farms in Illinois USA. Genetic distances between isolates were calculated using the Dice matching coefficient. Cluster analysis of distance matrices was conducted using the UPGMA algorithm

    Potential core species and satellite species in the bacterial community within the rabbit caecum

    Get PDF
    A bacteria library was constructed from the caecum of a rabbit maintained under standard conditions. The complete gene 16S rRNA gene was sequenced. The 228 clones obtained were distributed in 70 operational taxonomic units (OTUs). The large majority of the OTUs were composed of one or two clones and seven OTUs contained half of the sequences. Fourteen sequences had high similarity to the sequence already registered in databases (threshold of 97%). Only one of these sequences has been identified as Variovorax sp. (99% identity). Units were distributed mainly (94%) in the Firmicutes phylum. Three sequences were related to Bacteroidetes. Nine clusters were defined in the phylogenic tree. A great diversity of caecal bacteria of the rabbit was shown. Half of the sequences generated in this library were distributed in the phylogenetic tree near the sequences characterized previously in rabbit caecum (potential core species), and the other half of the sequences were well separated (satellite species)

    Microbial Fuel Cells and Microbial Ecology: Applications in Ruminant Health and Production Research

    Get PDF
    Microbial fuel cell (MFC) systems employ the catalytic activity of microbes to produce electricity from the oxidation of organic, and in some cases inorganic, substrates. MFC systems have been primarily explored for their use in bioremediation and bioenergy applications; however, these systems also offer a unique strategy for the cultivation of synergistic microbial communities. It has been hypothesized that the mechanism(s) of microbial electron transfer that enable electricity production in MFCs may be a cooperative strategy within mixed microbial consortia that is associated with, or is an alternative to, interspecies hydrogen (H2) transfer. Microbial fermentation processes and methanogenesis in ruminant animals are highly dependent on the consumption and production of H2in the rumen. Given the crucial role that H2 plays in ruminant digestion, it is desirable to understand the microbial relationships that control H2 partial pressures within the rumen; MFCs may serve as unique tools for studying this complex ecological system. Further, MFC systems offer a novel approach to studying biofilms that form under different redox conditions and may be applied to achieve a greater understanding of how microbial biofilms impact animal health. Here, we present a brief summary of the efforts made towards understanding rumen microbial ecology, microbial biofilms related to animal health, and how MFCs may be further applied in ruminant research

    Biochemical and Mutational Analysis of Glutamine Synthetase Type III from the Rumen Anaerobe Ruminococcus albus 8

    No full text
    Two different genes encoding glutamine synthetase type I (GSI) and GSIII were identified in the genome sequence of R. albus 8. The identity of the GSIII protein was confirmed by the presence of its associated conserved motifs. The glnN gene, encoding the GSIII, was cloned and expressed in Escherichia coli BL21 cells. The recombinant protein was purified and subjected to biochemical and physical analyses. Subunit organization suggested a protein present in solution as both monomers and oligomers. Kinetic studies using the forward and the γ-glutamyl transferase (γ-GT) assays were carried out. Mutations that changed conserved glutamic acid residues to alanine in the four GSIII motifs resulted in drastic decreases in GS activity using both assays, except for an E380A mutation, which rather resulted in an increase in activity in the forward assay compared to the wild-type protein. Reduced GSIII activity was also exhibited by mutating, individually, two lysines (K308 and K318) located in the putative nucleotide-binding site to alanine. Most importantly, the presence of mRNA transcripts of the glnN gene in R. albus 8 cells grown under ammonia limiting conditions, whereas little or no transcript was detected in cells grown under ammonia sufficient conditions, suggested an important role for the GSIII in the nitrogen metabolism of R. albus 8. Furthermore, the mutational studies on the conserved GSIII motifs demonstrated, for the first time, their importance in the structure and/or function of a GSIII protein

    Identification of patterns of transmission of Salmonella within swine production systems using pulsed field gel electrophoresis (PFGE) and repetitive sequence polymerase chain reaction (REP-PCR): a quantitative analysis

    No full text
    Pulsed field gel e lectrophoresis (PFGE) using 3 enzymes (Spe I, Xba I, Avr II) and repetitive sequence polymerase chain reaction (REP-PCR) with 3 primers (BOX, ERIC, REP) were compared with respect to their validity as a method for identifying transmission of Salmonella on swine farms. Sixty-eight isolates of Salmonella were obtained from feces of swine, cats, mice, and birds, insect body parts, water and floor samples, and boot scrapings collected on 9 swine farms in Illinois USA. Genetic distances between isolates were calculated using the Dice matching coefficient. Cluster analysis of distance matrices was conducted using the UPGMA algorithm.</p

    Antimicrobial Use and Resistance in Swine Waste Treatment Systems

    No full text
    Chlortetracycline and the macrolide tylosin were identified as commonly used antimicrobials for growth promotion and prophylaxis in swine production. Resistance to these antimicrobials was measured throughout the waste treatment processes at five swine farms by culture-based and molecular methods. Conventional farm samples had the highest levels of resistance with both culture-based and molecular methods and had similar levels of resistance despite differences in antimicrobial usage. The levels of resistance in organic farm samples, where no antimicrobials were used, were very low by a culture-based method targeting fecal streptococci. However, when the same samples were analyzed with a molecular method detecting methylation of a specific nucleotide in the 23S rRNA that results in resistance to macrolides, lincosamides, and streptogramin B (MLS(B)), an unexpectedly high level of resistant rRNA (approximately 50%) was observed, suggesting that the fecal streptococci were not an appropriate target group to evaluate resistance in the overall microbial community and that background levels of MLS(B) resistance may be substantial. All of the feed samples tested, including those from the organic farm, contained tetracycline resistance genes. Generally, the same tetracycline resistance genes and frequency of detection were found in the manure and lagoon samples for each commercial farm. The levels of tetracycline and MLS(B) resistance remained high throughout the waste treatment systems, suggesting that the potential impact of land application of treated wastes and waste treatment by-products on environmental levels of resistance should be investigated further
    corecore