86 research outputs found

    Solar interacting protons versus interplanetary protons in the core plus halo model of diffusive shock acceleration and stochastic re-acceleration

    Get PDF
    With the first observations of solar γ-rays from the decay of pions, the relationship of protons producing ground level enhancements (GLEs) on the Earth to those of similar energies producing the γ-rays on the Sun has been debated. These two populations may be either independent and simply coincident in large flares, or they may be, in fact, the same population stemming from a single accelerating agent and jointly distributed at the Sun and also in space. Assuming the latter, we model a scenario in which particles are accelerated near the Sun in a shock wave with a fraction transported back to the solar surface to radiate, while the remainder is detected at Earth in the form of a GLE. Interplanetary ions versus ions interacting at the Sun are studied for a spherical shock wave propagating in a radial magnetic field through a highly turbulent radial ray (the acceleration core) and surrounding weakly turbulent sector in which the accelerated particles can propagate toward or away from the Sun. The model presented here accounts for both the first-order Fermi acceleration at the shock front and the second-order, stochastic re-acceleration by the turbulence enhanced behind the shock. We find that the re-acceleration is important in generating the γ-radiation and we also find that up to 10% of the particle population can find its way to the Sun as compared to particles escaping to the interplanetary space

    Old Armenian nasal verbs : archaisms and innovations

    Get PDF
    The prehistory of Old Armenian reveals a strong impact of language contact and internal drift resulting in an intricate combination of Indo-European archaisms and inner-Armenian innovations. The dissertation contributes to the study of such phenomena by examining a set of Old Armenian verbal classes that can be securely connected to their Indo-European prototypes, namely, the so-called nasal classes with a dental nasal phoneme in the affixes marking the imperfective stem of their paradigms. Traditionally, the comparative historical grammar of Old Armenian has been concerned mainly with formal morphological correspondences, whereas the lexico-syntactic categories behind the morphological changes have been largely neglected. In the present dissertation, the evolution of the verbal classes from Proto-Indo-European to Old Armenian is examined according to a set of formal and semantic parameters including the morphological structure of the verbal paradigm, the argument structure, and the aspectual features. In particular, the dissertation describes Proto-Armenian changes of transitivity marking, analogical spread of the verbal suffixes based on aspectual meanings, the direction of root levelling over the verbal paradigm, and paradigmatic types of verbal classes that can be postulated for Proto-Armenian and dialectal Proto-Indo-European. Descriptive and Comparative Linguistic

    Electromagnetic and corpuscular emission from the solar flare of 1991 June 15: Continuous acceleraton of relativistic particles

    Get PDF
    Data on X-,γ-ray, optical and radio emission from the 1991 June 15 solar flare are considered. We have calculated the spectrum of protons that producesγ-rays during the gradual phase of the flare. The primary proton spectrum can be described as a Bessel-function-type up to 0.8 GeV and a power law with the spectral index ≈3 from 0.8 up to 10 GeV or above. We have also analyzed data on energetic particles near the Earth. Their spectrum differed from that of primary protons producingγ-ray line emission. In the gradual phase of the flare additional pulses of energy release occurred and the time profiles of cm-radio emission andγ-rays in the 0.8–10 MeV energy band and above 50 MeV coincided. A continuous and simultaneous stochastic acceleration of the protons and relativistic electrons at the gradual phase of the flare is considered as a natural explanation of the data

    Numerical simulations of chromospheric hard X-ray source sizes in solar flares

    Full text link
    X-ray observations are a powerful diagnostic tool for transport, acceleration, and heating of electrons in solar flares. Height and size measurements of X-ray footpoints sources can be used to determine the chromospheric density and constrain the parameters of magnetic field convergence and electron pitch-angle evolution. We investigate the influence of the chromospheric density, magnetic mirroring and collisional pitch-angle scattering on the size of X-ray sources. The time-independent Fokker-Planck equation for electron transport is solved numerically and analytically to find the electron distribution as a function of height above the photosphere. From this distribution, the expected X-ray flux as a function of height, its peak height and full width at half maximum are calculated and compared with RHESSI observations. A purely instrumental explanation for the observed source size was ruled out by using simulated RHESSI images. We find that magnetic mirroring and collisional pitch-angle scattering tend to change the electron flux such that electrons are stopped higher in the atmosphere compared with the simple case with collisional energy loss only. However, the resulting X-ray flux is dominated by the density structure in the chromosphere and only marginal increases in source width are found. Very high loop densities (>10^{11} cm^{-3}) could explain the observed sizes at higher energies, but are unrealistic and would result in no footpoint emission below about 40 keV, contrary to observations. We conclude that within a monolithic density model the vertical sizes are given mostly by the density scale-height and are predicted smaller than the RHESSI results show.Comment: 19 pages, 9 figures, accepted for publication in Ap

    Interplanetary Protons versus Interacting Protons in the 2017 September 10 Solar Eruptive Event

    Get PDF
    We analyze the relativistic proton emission from the Sun during the eruptive event on 2017 September 10, which caused a ground-level enhancement (GLE 72) registered by the worldwide network of neutron monitors. Using the neutron monitor data and interplanetary transport modeling both along and across interplanetary magnetic field (IMF) lines, we deduce parameters of the proton injection into the interplanetary medium. The inferred injection profile of the interplanetary protons is compared with the profile of the >100 MeV gamma-ray emission observed by the Fermi Large Area Telescope, attributed to pion production from the interaction of >300 MeV protons at the Sun. GLE 72 started with a prompt component that arrived along the IMF lines. This was followed by a more prolonged enhancement caused by protons arriving at the Earth across the IMF lines from the southwest. The interplanetary proton event is modeled using two sources-one source at the root of the Earth-connected IMF line and another source situated near the solar western limb. The maximum phase of the second injection of interplanetary protons coincides with the maximum phase of the prolonged >100 MeV gamma-ray emission that originated from a small area at the solar western limb, below the current sheet trailing the associated coronal mass ejection (CME). A possible common source of interacting protons and interplanetary protons is discussed in terms of proton acceleration at the CME bow shock versus coronal (re-)acceleration in the wake of the CME

    Sources of SEP Acceleration during a Flare-CME Event

    Full text link
    A high-speed halo-type coronal mass ejection (CME), associated with a GOES M4.6 soft X-ray flare in NOAA AR 0180 at S12W29 and an EIT wave and dimming, occurred on 9 November 2002. A complex radio event was observed during the same period. It included narrow-band fluctuations and frequency-drifting features in the metric wavelength range, type III burst groups at metric--hectometric wavelengths, and an interplanetary type II radio burst, which was visible in the dynamic radio spectrum below 14 MHz. To study the association of the recorded solar energetic particle (SEP) populations with the propagating CME and flaring, we perform a multi-wavelength analysis using radio spectral and imaging observations combined with white-light, EUV, hard X-ray, and magnetogram data. Velocity dispersion analysis of the particle distributions (SOHO and Wind in situ observations) provides estimates for the release times of electrons and protons. Our analysis indicates that proton acceleration was delayed compared to the electrons. The dynamics of the interplanetary type II burst identify the burst source as a bow shock created by the fast CME. The type III burst groups, with start times close to the estimated electron release times, trace electron beams travelling along open field lines into the interplanetary space. The type III bursts seem to encounter a steep density gradient as they overtake the type II shock front, resulting in an abrupt change in the frequency drift rate of the type III burst emission. Our study presents evidence in support of a scenario in which electrons are accelerated low in the corona behind the CME shock front, while protons are accelerated later, possibly at the CME bow shock high in the corona.Comment: Solar Physics, November 2007, in pres
    • …
    corecore