2,518 research outputs found

    MERLIN/VLA imaging of the gravitational lens system B0218+357

    Get PDF
    Gravitational lenses offer the possibility of accurately determining the Hubble parameter (H_0) over cosmological distances, and B0218+357 is one of the most promising systems for an application of this technique. In particular this system has an accurately measured time delay (10.5+/-0.4 d; Biggs et al. 1999) and preliminary mass modelling has given a value for H_0 of 69 +13/-19 km/s/Mpc. The error on this estimate is now dominated by the uncertainty in the mass modelling. As this system contains an Einstein ring it should be possible to constrain the model better by imaging the ring at high resolution. To achieve this we have combined data from MERLIN and the VLA at a frequency of 5 GHz. In particular MERLIN has been used in multi-frequency mode in order to improve substantially the aperture coverage of the combined data set. The resulting map is the best that has been made of the ring and contains many new and interesting features. Efforts are currently underway to exploit the new data for lensing constraints using the LensClean algorithm (Kochanek & Narayan 1992).Comment: Accepted for publication in MNRAS. 6 pages, 4 included PostScript figure

    The Effects of Massive Substructures on Image Multiplicities in Gravitati onal Lenses

    Full text link
    Surveys for gravitational lens systems have typically found a significantly larger fraction of lenses with four (or more) images than are predicted by standard ellipsoidal lens models (50% versus 25-30%). We show that including the effects of smaller satellite galaxies, with an abundance normalized by the observations, significantly increases the expected number of systems with more than two images and largely explains the discrepancy. The effect is dominated by satellites with ~20% the luminosity of the primary lens, in rough agreement with the typical luminosities of the observed satellites. We find that the lens systems with satellites cannot, however, be dropped from estimates of the cosmological model based on gravitational lens statistics without significantly biasing the results.Comment: 23 pages, 7 figures, more discussion of sis vs sie and inclusion of uncorrelated contribution

    Finding Gravitational Lenses With X-rays

    Get PDF
    There are 1\sim 1, 0.1 and 0.01 gravitationally lensed X-ray sources per square degree with soft X-ray fluxes exceeding 1015,101410^{-15}, 10^{-14} and 1013ergs/scm210^{-13} ergs/s cm^{-2} respectively. These sources will be detected serendipitously with the Chandra X-ray Observatory at a rate of 1--3 lenses per year of high resolution imaging. The low detection rate is due to the small area over which the HRC and ACIS cameras have the <1\farcs5 FWHM resolution necessary to find gravitational lenses produced by galaxies. Deep images of rich clusters at intermediate redshifts should yield one wide separation (\Delta\theta \gtorder 5\farcs0) multiply-imaged background X-ray source for every 10\sim 10, 30 and 300 clusters imaged to the same flux limits.Comment: 13 pages, including 5 figures, submitted to ApJ Letter

    The quiescent progenitors of four Type II-P/L supernovae

    Get PDF
    We present Large Binocular Telescope difference imaging data for the final years of four Type II-P/L supernovae progenitors. For all four, we find no significant evidence for stochastic or steady variability in the U, B, V, or R-bands. Our limits constrain variability to no more than roughly 5-10% of the expected R-band luminosities of the progenitors. These limits are comparable to the observed variability of red supergiants in the Magellanic Clouds. Based on these four events, the probability of a Type II-P/L progenitor having an extended outburst after Oxygen ignition is <37% at 90% confidence. Our observations cannot exclude short outbursts in which the progenitor returns to within ~10% of its quiescent flux on the time scale of months with no dust formation.Comment: 9 pages, 8 figures, 1 table. Accepted to MNRA

    High resolution observations and mass modelling of the CLASS gravitational lens B1152+199

    Get PDF
    We present a series of high resolution radio and optical observations of the CLASS gravitational lens system B1152+199 obtained with the Multi-Element Radio-Linked Interferometer Network (MERLIN), Very Long Baseline Array (VLBA) and Hubble Space Telescope (HST). Based on the milliarcsecond-scale substructure of the lensed radio components and precise optical astrometry for the lensing galaxy, we construct models for the system and place constraints on the galaxy mass profile. For a single galaxy model with surface mass density Sigma(r) propto r^-beta, we find that 0.95 < beta < 1.21 at 2-sigma confidence. Including a second deflector to represent a possible satellite galaxy of the primary lens leads to slightly steeper mass profiles.Comment: 7 pages, post-referee revision for MNRA

    The Optical, Ultraviolet, and X-ray Structure of the Quasar HE 0435-1223

    Full text link
    Microlensing has proven an effective probe of the structure of the innermost regions of quasars, and an important test of accretion disk models. We present light curves of the lensed quasar HE 0435-1223 in the R band and in the ultraviolet, and consider them together with X-ray light curves in two energy bands that are presented in a companion paper. Using a Bayesian Monte Carlo method, we constrain the size of the accretion disk in the rest-frame near- and far-UV, and constrain for the first time the size of the X-ray emission regions in two X-ray energy bands. The R-band scale size of the accretion disk is about 10^15.23 cm (~23 r_g), slightly smaller than previous estimates, but larger than would be predicted from the quasar flux. In the UV, the source size is weakly constrained, with a strong prior dependence. The UV to R-band size ratio is consistent with the thin disk model prediction, with large error bars. In soft and hard X-rays, the source size is smaller than ~10^14.8 cm (~10 r_g) at 95% confidence. We do not find evidence of structure in the X-ray emission region, as the most likely value for the ratio of the hard X-ray size to the soft X-ray size is unity. Finally, we find that the most likely value for the mean mass of stars in the lens galaxy is ~0.3 M_sun, consistent with other studies.Comment: 13 pages, 7 figures. Replaced with version accepted to Ap
    corecore