1,227 research outputs found

    Theory of spin-orbit coupling in bilayer graphene

    Get PDF
    Theory of spin-orbit coupling in bilayer graphene is presented. The electronic band structure of the AB bilayer in the presence of spin-orbit coupling and a transverse electric field is calculated from first-principles using the linearized augmented plane wave method implemented in the WIEN2k code. The first-principles results around the K points are fitted to a tight-binding model. The main conclusion is that the spin-orbit effects in bilayer graphene derive essentially from the single-layer spin-orbit coupling which comes almost solely from the d orbitals. The intrinsic spin-orbit splitting (anticrossing) around the K points is about 24\mu eV for the low-energy valence and conduction bands, which are closest to the Fermi level, similarly as in the single layer graphene. An applied transverse electric field breaks space inversion symmetry and leads to an extrinsic (also called Bychkov-Rashba) spin-orbit splitting. This splitting is usually linearly proportional to the electric field. The peculiarity of graphene bilayer is that the low-energy bands remain split by 24\mu eV independently of the applied external field. The electric field, instead, opens a semiconducting band gap separating these low-energy bands. The remaining two high-energy bands are spin-split in proportion to the electric field; the proportionality coefficient is given by the second intrinsic spin-orbit coupling, whose value is 20\mu eV. All the band-structure effects and their spin splittings can be explained by our tight-binding model, in which the spin-orbit Hamiltonian is derived from symmetry considerations. The magnitudes of intra- and interlayer couplings---their values are similar to the single-layer graphene ones---are determined by fitting to first-principles results.Comment: 16 pages, 13 figures, 5 tables, typos corrected, published versio

    Mechanical and SEM analysis of artificial comet nucleus samples

    Get PDF
    Since 1987 experiments dealing with comet nucleus phenomena have been carried out in the DFVLR space simulation chambers. The main objective of these experiments is a better understanding of thermal behavior, surface phenomena and especially the gas dust interaction. As a function of different sample compositions and exposure to solar irradiation (xenon-bulbs) crusts of different hardness and thickness were measured. The measuring device consists of a motor driven pressure foot (5 mm diameter), which is pressed into the sample. The applied compressive force is electronically monitored. The microstructure of the crust and dust residuals is investigated by scanning electron microscopy (SEM) techniques. Stress-depth profiles of an unirradiated and an irradiated model comet are given

    Handling and analysis of ices in cryostats and glove boxes in view of cometary samples

    Get PDF
    Comet nucleus sample return mission and other return missions from planets and satellites need equipment for handling and analysis of icy samples at low temperatures under vacuum or protective gas. Two methods are reported which were developed for analysis of small icy samples and which are modified for larger samples in cometary matter simulation experiments (KOSI). A conventional optical cryostat system was modified to allow for transport of samples at 5 K, ion beam irradiation, and measurement in an off-line optical spectrophotometer. The new system consists of a removable window plug containing nozzles for condensation of water and volatiles onto a cold finger. This plug can be removed in a vacuum system, changed against another plug (e.g., with other windows (IR, VIS, VUV) or other nozzles). While open, the samples can be treated under vacuum with cooling by manipulators (cut, removal, sample taking, irradiation with light, photons, or ions). After bringing the plug back, the samples can be moved to another site of analysis. For handling the 30 cm diameter mineral-ice samples from the KOSI experiments an 80x80x80 cm glove box made out of plexiglass was used. The samples were kept in a liquid nitrogen bath, which was filled from the outside. A stream a dry N2 and evaporating gas from the bath purified the glove box from impurity gases and, in particular, H2O, which otherwise would condense onto the samples

    Experimental research method of correction of errors precision ADC nonlinearity

    Get PDF
    Досліджено особливості реалізації методу експериментальних досліджень ефективності корекції похибки нелінійності АЦП, похибка нелінійності яких менша 0,003%. Запропонований метод дозволяє доволі суттєво (в 10…100 разів) зменшити вимоги до взірцевих засобів, які необхідні для проведення експериментального дослідження похибки нелінійності таких прецизійних АЦП, а також визначити ефективність засобів корекції цієї похибки.The article explores the peculiarities of the method of experimental research the effectiveness of error correction of nonlinearity of ADC nonlinearity error of less than 0.003%. The method allows quite significantly (10 ... 100 times) reduce the requirements for exemplary facilities necessary to conduct experimental research nonlinearity errors such precision ADC and also to determine the effectiveness of correcting this error

    Theory of the ac spin-valve effect

    Get PDF
    The spin-valve complex magnetoimpedance of symmetric ferromagnet/normal metal/ferromagnet junctions is investigated within the drift-diffusion (standard) model of spin injection. The ac magnetoresistance---the real part difference of the impedances of the parallel and antiparallel magnetization configurations---exhibits an overall damped oscillatory behavior, as an interplay of the diffusion and spin relaxation times. In wide junctions the ac magnetoresistance oscillates between positive and negative values, reflecting resonant amplification and depletion of the spin accumulation, while the line shape for thin tunnel junctions is predicted to be purely Lorentzian. The ac spin-valve effect could be a technique to extract spin transport and spin relaxation parameters in the absence of a magnetic field and for a fixed sample size.Comment: 5 pages, 4 figure

    Modifications of comet materials by the sublimation process: Results from simulation experiments

    Get PDF
    An active comet like comet Halley loses by sublimation a surface layer of the order of 1 m thickness per perihelion passage. In situ measurements show that water ice is the main constituent which contributes to the gas emission although even more volatile species (CO, NH3, CH4, CO2 etc.) have been identified. Dust particles which were embedded in the ices are carried by the sublimating gases. Measurements of the chemical composition of cometary grains indicate that they are composed of silicates of approximate chondritic composition and refractory carbonaceous material. Comet simulation experiments show that significant modifications of cometary materials occur due to sublimation process in near surface layers which have to be taken into account in order to derive the original state of the material

    Invariant variational principle for Hamiltonian mechanics

    Full text link
    It is shown that the action for Hamiltonian equations of motion can be brought into invariant symplectic form. In other words, it can be formulated directly in terms of the symplectic structure ω\omega without any need to choose some 1-form γ\gamma, such that ω=dγ\omega= d \gamma, which is not unique and does not even generally exist in a global sense.Comment: final version; to appear in J.Phys.A; 17 pages, 2 figure

    Two-atom dark states in electromagnetic cavities

    Get PDF
    The center-of-mass motion of two two-level atoms coupled to a single damped mode of an electromagnetic resonator is investigated. For the case of one atom being initially excited and the cavity mode in the vacuum state it is shown that the atomic time evolution is dominated by the appearance of dark states. These states, in which the initial excitation is stored in the internal atomic degrees of freedom and the atoms become quantum mechanically entangled, are almost immune against photon loss from the cavity. Various properties of the dark states within and beyond the Raman-Nath approximation of atom optics are worked out.Comment: 8 pages, 4 figure

    The Pauli equation with complex boundary conditions

    Full text link
    We consider one-dimensional Pauli Hamiltonians in a bounded interval with possibly non-self-adjoint Robin-type boundary conditions. We study the influence of the spin-magnetic interaction on the interplay between the type of boundary conditions and the spectrum. A special attention is paid to PT-symmetric boundary conditions with the physical choice of the time-reversal operator T.Comment: 16 pages, 4 figure
    corecore