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The spin-valve complex magnetoimpedance of symmetric ferromagnet–normal-metal–ferromagnet

junctions is investigated within the drift-diffusion (standard) model of spin injection. The ac magneto-

resistance—the real part difference of the impedances of the parallel and antiparallel magnetization

configurations—exhibits an overall damped oscillatory behavior, as an interplay of the diffusion and spin

relaxation times. In wide junctions the ac magnetoresistance oscillates between positive and negative

values, reflecting resonant amplification and depletion of the spin accumulation, while the line shape for

thin tunnel junctions is predicted to be purely Lorentzian. The ac spin-valve effect could be a technique to

extract spin transport and spin relaxation parameters in the absence of a magnetic field and for a fixed

sample size.
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Electrical spin injection from a ferromagnetic (F) to a
nonmagnetic (N) conductor is essential for spintronics
[1,2]. Predicted by Aronov [3] and first realized by
Johnson and Silsbee [4–6], it is now a well-established
concept. A biased ferromagnetic-nonmagnetic junction
generates a nonequilibrium spin accumulation within the
spin diffusion length at the interface, building a nonequi-
librium resistance [5,7,8]. In an FNF junction this non-
equilibrium resistance gives rise to the difference in the
junction resistances for parallel (P) and antiparallel (AP)
magnetization orientations of the F regions—the giant
magnetoresistance (GMR) [9,10]. Drift-diffusion theory
along with the spin accumulation concept successfully
describes magnetoresistance effects in charge neutral
[11,12] as well as in space-charge systems [13,14], ena-
bling one to obtain relevant spin-related materials parame-
ters [15], such as the spin relaxation times.

Recently, Rashba has generalized the spin-polarized
drift-diffusion theory to the alternating current (ac) regime
[8,16]. We apply this theory and investigate the complex
impedance Zð!Þ of symmetric FNF junctions. We show
that the real part of the spin-valve magnetoimpedance (we
call it here ac magnetoresistance) �Z ¼ ZAP �ZP of the
junctions exhibits damped oscillations as a function of
frequency. The oscillation period is given by the diffusion
time through the normal layer. In mesoscopic junctions (of
sizes up to the spin relaxation length Ls), the ac magneto-
resistance can be negative at experimentally accessible
frequencies, meaning that the antiparallel configuration
has a lower ac resistance than the parallel one. The nega-
tive ac magnetoresistance is a consequence of a resonant
spin accumulation effect, namely, a resonant spin amplifi-
cation in the P configuration and a resonant spin depletion
in the AP one. In nanoscale junctions (with sizes much less
than Ls), with tunnel contacts, the oscillation period is
large, leaving a nice Lorentzian profile with the width of
the spin relaxation rate. A one-parameter fit to the line

shape (either damped oscillator or Lorentzian) determines
the spin relaxation time �s.
We present the ac spin-valve effect as an alternative to

other methods that measure �s of nonmagnetic conductors,
such as the conduction electron spin resonance, spin pump-
ing, or the Hanle effect, which require magnetic fields, or
to the dc spin injection method (in vertical or lateral
geometries), which requires studying various sample sizes
(distances to electrodes) to extract the spin diffusion length
[17]. In a sense the ac spin-valve effect is similar to the
Hanle effect, which is widely used to find spin relaxation
times in metals and semiconductors [4,18], but the role of
the magnetic field is taken by the frequency; in the Hanle
effect too the signal in general oscillates as a function of
magnetic field, with a modified Lorentzian shape in the
diffusive regime [2].
A microwave measurement of �s in the absence of a

magnetic field may be important as in many conductors the
spin relaxation time depends strongly on it; a striking case
is aluminum in which �s decreases by an order of magni-
tude as the magnetic field increases from 0.05 to 1.3 T [19].
Still, �s obtained by spin resonance tend to be, for a given
temperature, much greater than that obtained from trans-
port techniques, as catalogued for Al and Cu in Ref. [20].
The case of Au is even more striking, as spin resonance
shows that at low temperatures the ratio of �s to the
momentum relaxation time is about one, while transport
techniques predict the ratio to be about 100 [21,22]; at
room temperature, at which phonons are relevant, the ratio
is about 10, as measured by spin pumping [23] which
requires both magnetic field and nanoscale transparent
junctions. For extracting bulk spin relaxation times it
may be preferable to work with tunnel contacts and meso-
scopic samples, so that spin relaxation is not strongly
influenced by the interface and surface effects. (Various
techniques for measuring �s as well as useful data are given
in the review Ref. [15].) The ac spin-valve method could
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potentially explore nano and mesoscopic spin valves, in
both vertical and lateral geometries, at no magnetic field
applied to the normal conductor, and provide the spin
relaxation times at a fixed sample size [24].

We consider a symmetric FNF junction as comprising
two FN junctions in series, see Fig. 1. Each FN junction
has a contact (c) region with a spin-dependent conduc-
tance; otherwise spin is assumed to be preserved at the

contact. The spin-valve dc magnetoresistance �R ¼
�Zð! ¼ 0Þ of a symmetric FNF junction, whoseN region
has width d and the F regions have widths much greater
than the spin diffusion lengths, can be expressed
analytically within the drift-diffusive regime [1,8,16,25].
This dc formula has a straightforward extension to the
harmonic ac regime, and we write the complex magneto-
impedance as

�Zð!; dÞ ¼ 8rNð!Þ½rFð!ÞP�F
þ rcP�c

�2ed=LsNð!Þ

½rFð!Þ þ rc þ rNð!Þ�2e2d=LsNð!Þ � ½rFð!Þ þ rc � rNð!Þ�2 ; (1)

by indicating the complex frequency-dependent quantities
(labeled by the region N and F),

�sð!Þ ¼ �s=ð1� i!�sÞ; (2)

Lsð!Þ ¼ Ls=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� i!�s

p
; (3)

rð!Þ ¼ r=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� i!�s

p
: (4)

Here �s is the spin relaxation time, Ls ¼
ffiffiffiffiffiffiffiffiffi
D�s

p
is the spin

diffusion length, D is the diffusivity, and r ¼ Ls=� is the
effective resistance, with � denoting the conductivity. The
effective contact resistance is rc ¼ ð�" þ�#Þ=4�"�#, with
�� the contact conductance of spin �. Finally, P�F

and P�c

denote the spin polarization of the conductivity and

conductance of the F and contact region, respectively.
Driving ac is assumed to be harmonic with the angular
frequency ! ¼ 2�f, i.e., jðtÞ / e�i!t.
We analyze the spin-valve impedance, based on Eq. (1),

for a realistic model Py=Cu=Py junction, with the
following experimentally obtained data [17,20] at the
temperature T ¼ 4:2 K: LsN ¼ 1 �m, �sN ¼ 42 ps,
DN ¼ 238 cm2 s�1, rN ¼ 14 f�m2, LsF ¼ 5:5 nm, �sF¼
0:6 ps, DF ¼ 0:5 cm2 s�1, rF ¼ 0:42 f�m2, P�F

¼ 0:22.

For the contact characteristics we employ [26]: rcð’ rFÞ ¼
0:5 f�m2 and P�c

¼ 0:4, so the contact interface is ge-

neric, neither tunnel nor transparent. The specific spin
resistivities rF, rN , and rc and hence the spin valve
�Zð!; dÞ are evaluated for a unit cross section. In the
experiment one divides these resistivities by the actual
conductor cross sections, which could be 10�3 � 1 �m2.
Figure 2 presents the calculated magnetoresistance.

In Fig. 2(b) we show the dc magnetoresistance as a
function of the d. With increasing d the magnetoresistance
exponentially decreases, as the injected spin accumulation
is damped. The plot in Fig. 2(c) shows the ratio of the ac to
the dc magnetoresistance, Re½�Zðf; dÞ�=�RðdÞ, as a
function of d and frequency f ¼ !=2�. For a given d,
the ac magnetoresistance oscillates as a function of f,
between positive and negative values. The negative peaks
are considerable fractions (tens of percents) of the dc
values. On the d-f plot the oscillations show hyperbolic
stripes. In Fig. 2(a) the oscillations are shown for d ¼
4 �m. For thin samples, the dependence on f is rather
weak for this generic junction. We will see below that for
tunnel junctions the dependence becomes Lorentzian.
To be specific, consider d ¼ LsN ¼ 1 �m. The ac mag-

netoresistance remains positive for f < 34:8 GHz. Further
increase in the driving frequency leads to a negative
ac spin-valve magnetoresistance: Reð�ZÞ< 0. For d ¼
3LsN ¼ 3 �m the spin-valve magnetoresistance remains
positive up to the frequency f � 6 GHz; then it becomes
negative for 6 GHz & f & 26:1 GHz. There should be
more oscillations observable at larger values of d, but at
the cost of exponentially reducing the magnitude, see
Fig. 2(a). We will see below that the relevant time scale
parameter for the oscillations is the diffusion time through

FIG. 1. Scheme of an FNF spin valve. The spacer N region
has width d and the sizes of the ferromagnetic electrodes are
assumed greater than the corresponding spin diffusion length Ls.
In the dc regime the parallel configurations result in smaller spin
accumulation (dashed line) than in the antiparallel one, demon-
strated by the positive dc spin-valve magnetoresistance. In the ac
regime, this can be reversed (solid): at certain frequency ranges
there can be a resonant spin amplification in the parallel and spin
depletion in the antiparallel configuration, resulting in a negative
ac magnetoresistance.
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the spacer layer. For our model junction, a reasonable
parameter range for measuring the ac oscillations would
be the sample sizes LsN & d & 4LsN. The involved fre-
quency, f ¼ !=2�, ranges are 1 GHz–50 GHz, experi-
mentally well accessible.

Mathematically, the spin-valve oscillations appear natu-
rally. The real dc transport parameters become in the ac
case complex, see Eqs. (2)–(4). The imaginary part of

d=LsNð!Þ gives rise to the ac exponential ed=LsNð!Þ in
Eq. (1) with the trigonometric character and hence a certain
oscillatory behavior of the complex spin-valve impedance
�Zð!Þ. For the frequencies ! � ��1

sN ð� ��1
sF Þ the imagi-

nary part of d=LsNð!Þ plays no role, see Eq. (3). The ac
magnetoresistance exhibits changes on the scales of the
relaxation rate 1=�s or the diffusion rate through the spacer.
These provide the practical limit for the use of microwaves
in the experiment.

We now give a qualitative picture of the predicted os-
cillatory behavior, including the negative ac spin-valve
magnetoresistance. First, we show that the spin-valve im-
pedance �Zð!Þ is related to the contact values of the spin
accumulations in N, for P and AP configurations. From the
standard spin injection model for a symmetric FNF junc-
tion we derive the following formula [27]:

�P
sNðc; tÞ ��AP

sN ðc; tÞ
jðtÞ ¼ rFð!Þ þ rc

rFð!ÞP�F
þ rcP�c

�Zð!Þ: (5)

Here �P=AP
sN ðc; tÞ represent the actual nonequilibrium spin

accumulation in the N spacer for P and AP configurations,

respectively, at the left FN contact interface c (see Fig. 1)
and jðtÞ is the driving harmonic ac. To understand the ac
magnetoresistance oscillations, one needs to look at the
contact spin accumulation only.
The qualitative picture is in Fig. 3, which shows P and

AP configurations at 3 times t ¼ 0, t ¼ TN=4, and t ¼
TN=2, where TN ¼ �sNd

2=L2
sN ¼ d2=DN is the diffusion

time through N. The resonant spin amplification and de-
pletion effect happens if the period of the driving current
jðtÞ is close to the N spacer diffusion time TN , this case is
shown in Fig. 3.
At time t ¼ 0 the current j is negative and electrons are

injected from the left and extracted to the right electrodes,
leaving behind positive and negative spin accumulations,
indicated in Fig. 3 by diffusive packets (the sample is
locally charge neutral, only spin is redistributed nonuni-
formly). The dynamics of these spin packets is governed by
diffusion and relaxation, but not by bias voltage. This is
because in the N spacer, there is no spin-charge coupling
and spin and charge transports are decoupled, see [2]. At
time t ¼ TN=4 the current vanishes, j ¼ 0, as well as the
spin injection and extraction. In the meantime the spin
packets diffusively spread and reach the center of the N
spacer. At t ¼ TN=2 the spin packets reach the other
contacts. Now the current is fully reversed: in the P
configuration the new spin packet is injected at the right
electrode, amplifying the initial injected spin packet that
has traveled from the left. In the AP configuration, the new
spin packet of the opposite sign is injected at the right,
depleting the initial injected spin. Similarly at the left

FIG. 3 (color online). Mechanism for the resonant amplifica-
tion and depletion of the spin accumulation in an ac-driven FNF
junction for parallel (P) and antiparallel (AP) configurations. The
solid lines within the horizontal of the N spacer represent actual

profiles of the nonequilibrium spin accumulation �P=AP
sN ðx; tÞ,

which correspond to the harmonic ac signal jðtÞ shown on the
left. The injected and extracted spin packets and their diffused
and spread positions are shown at three distinct times t ¼ 0,
t ¼ TN=4, and t ¼ TN=2, where TN is the characteristic diffusion
time across the N conductor. Frequency of the driving ac is close
to 1=TN and tones of the packets correspond to F conductors
which initially emitted them.

FIG. 2 (color online). ac spin-valve effect in a model
Py=Cu=Py junction. (a) Calculated ac/dc ratio of the spin-valve
magnetoresistance as a function of f ¼ !=2� for d ¼ 4 �m.
(b) Calculated dc spin-valve magnetoresistance as a function of
d. (c) Calculated ac/dc ratio of the spin-valve magnetoresistance
as a function of d and driving frequency f. The visible light and
dark bands of equal signs are separated by the node lines,
Re½�Zðf; dÞ� ¼ 0.
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electrode. The left contact difference �P
sNðcÞ ��AP

sN ðcÞ at
t ¼ TN=2 becomes negative, the actual current j > 0 and,
according to Eq. (5), we get negative ac magnetoresistance,
Reð�ZÞ< 0.

The qualitative resonance condition, !TN � �, is

equivalent to LsN=d ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!�sN=�

p
. In practice, to see the

negative ac magnetoresistance one prefers d � LsN, so that
!�sN � �, which is the microwave regime. If d * LsN, as
in our model shown in Fig. 2, then the oscillations can be
observed at lower frequencies, but at the cost of decreasing
the magnitude of the ac magnetoresistance due to spin
relaxation. This need not be an issue with tunnel contacts,
as the precision of measuring higher resistances is higher.
On the other hand, no oscillations (within the GHz regime)
should be seen for nanoscale junctions, for d � LsN. We
will show below that this important regime gives a
Lorentzian profile.

We now turn to the case of a junction with tunnel
contacts, rF, rN � rc. (In general, using tunnel barriers
allows us to adopt the junction resistance and size inde-
pendently, providing maximal flexibility in the device
design.) In this case Eq. (1) reduces to

�Z � 4rNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� i!�sN

p P2
�c

sinh½ d
LsN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� i!�sN

p � ; (6)

where LsN ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DN�sN

p
. A single-parameter (�sN, knowing

d andDN) fit of a measurement of the! dependence of the
tunnel spin-valve impedance (relative to the dc value) to
Eq. (6) can determine the spin relaxation time of the
normal region. The shape is illustrated in Fig. 4. Since
�sF is typically an order or two magnitudes smaller than
�sN , the ac effects do not play a significant role in the F
electrodes.

For d * LsN we can approximate �Z as follows:

�Zð!; d; �sNÞ � 8
rNP

2
�cffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� i!�sN
p e�d

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1�i!�sNÞ=DN�sN

p
: (7)

Suppose we know the experimental value of the frequency
!0 at which Re½�Zð!0; dÞ� vanishes. As an alternative to
the fitting, the spin relaxation time can be given by the
equation

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ!2

0�
2
sN

q

!0�sN

¼ tan
d!0ffiffiffiffiffiffiffiffiffiffi
2DN

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�sN

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ!2

0�
2
sN

q
vuut ; (8)

which can be solved for �sN with simple numerics.
In the opposite important case of d � LsN, Eq. (6)

becomes a Lorentzian:

�Zð!; d; �sNÞ � 4
rNP

2
�c

d=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DN�sN

p 1þ i!�sN
1þ!2�2sN

: (9)

The half-width frequency !1=2 at which

Re½�Zð!1=2; dÞ� ¼ 1
2 �RðdÞ determines the spin relaxa-

tion time according to �sN ¼ 1=!1=2. This Lorentzian

shape is rather robust for tunnel junctions, illustrated in
Fig. 4, which also shows an intermediate case of d � LsN .
For transparent contacts (rc � rF, rN) and nanoscale

junctions, d � LsN , the magnetoimpedance is
�Zð!; dÞ � 2rFð!ÞP2

�F
, the square root of the

Lorentzian, but with the width of 1=�sF. The shape is
therefore featureless in the microwave regime, unless the
ferromagnetic contacts have a relatively large spin relaxa-
tion time, in which case �sF could be determined from the
measured shape. In mesoscopic junctions oscillations
should be visible.
In summary, we have presented a simple but robust

theory of the ac spin-valve effect in symmetric FNF
junctions and predict negative ac magnetoresistance due
to resonant amplification and depletion of the spin accu-
mulation in the normal metal region. The oscillating line
shape allows a single-parameter (spin relaxation time)
fitting for mesoscopic and nanoscale spin valves; for the
latter a Lorentzian shape should be seen with tunnel
contacts.
We thank G. Woltersdorf, C. Back, and S. Parkin for

useful discussions about possible experimental realizations
of the ac spin-valve effect. The work has been supported
by the DFG SFB 689.
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[25] J. Fabian and I. Žutić, in From GMR to Quantum
Information, edited by S. Blügel et al. (Forschungs-
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