17 research outputs found

    A nuclear targeting system in Plasmodium falciparum

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The distinct differences in gene control mechanisms acting in the nucleus between <it>Plasmodium falciparum </it>and the human host could lead to new potential drug targets for anti-malarial development. New molecular toolkits are required for dissecting molecular machineries in the <it>P. falciparum </it>nucleus. One valuable tool commonly used in model organisms is protein targeting to specific sub-cellular locations. Targeting proteins to specified locations allows labeling of organelles for microscopy, or testing of how the protein of interest modulates organelle function. In recent years, this approach has been developed for various malaria organelles, such as the mitochondrion and the apicoplast. A tool for targeting a protein of choice to the <it>P. falciparum </it>nucleus using an exogenous nuclear localization sequence is reported here.</p> <p>Methods</p> <p>To develop a nuclear targeting system, a putative nuclear localization sequence was fused with green fluorescent protein (GFP). The nuclear localization sequence from the yeast transcription factor Gal4 was chosen because of its well-defined nuclear localization signal. A series of truncated Gal4 constructs was also created to narrow down the nuclear localization sequence necessary for <it>P. falciparum </it>nuclear import. Transfected parasites were analysed by fluorescent and laser-scanning confocal microscopy.</p> <p>Results</p> <p>The nuclear localization sequence of Gal4 is functional in <it>P. falciparum</it>. It effectively transported GFP into the nucleus, and the first 74 amino acid residues were sufficient for nuclear localization.</p> <p>Conclusions</p> <p>The Gal4 fusion technique enables specific transport of a protein of choice into the <it>P. falciparum </it>nucleus, and thus provides a tool for labeling nuclei without using DNA-staining dyes. The finding also indicates similarities between the nuclear transport mechanisms of yeast and <it>P. falciparum</it>. Since the nuclear transport system has been thoroughly studied in yeast, this could give clues to research on the same mechanism in <it>P. falciparum</it>.</p

    Biochemical and functional characterization of Plasmodium falciparum GTP cyclohydrolase I

    Get PDF
    BACKGROUND: Antifolates are currently in clinical use for malaria preventive therapy and treatment. The drugs kill the parasites by targeting the enzymes in the de novo folate pathway. The use of antifolates has now been limited by the spread of drug-resistant mutations. GTP cyclohydrolase I (GCH1) is the first and the rate-limiting enzyme in the folate pathway. The amplification of the gch1 gene found in certain Plasmodium falciparum isolates can cause antifolate resistance and influence the course of antifolate resistance evolution. These findings showed the importance of P. falciparum GCH1 in drug resistance intervention. However, little is known about P. falciparum GCH1 in terms of kinetic parameters and functional assays, precluding the opportunity to obtain the key information on its catalytic reaction and to eventually develop this enzyme as a drug target. METHODS: Plasmodium falciparum GCH1 was cloned and expressed in bacteria. Enzymatic activity was determined by the measurement of fluorescent converted neopterin with assay validation by using mutant and GTP analogue. The genetic complementation study was performed in ∆folE bacteria to functionally identify the residues and domains of P. falciparum GCH1 required for its enzymatic activity. Plasmodial GCH1 sequences were aligned and structurally modeled to reveal conserved catalytic residues. RESULTS: Kinetic parameters and optimal conditions for enzymatic reactions were determined by the fluorescence-based assay. The inhibitor test against P. falciparum GCH1 is now possible as indicated by the inhibitory effect by 8-oxo-GTP. Genetic complementation was proven to be a convenient method to study the function of P. falciparum GCH1. A series of domain truncations revealed that the conserved core domain of GCH1 is responsible for its enzymatic activity. Homology modelling fits P. falciparum GCH1 into the classic Tunnelling-fold structure with well-conserved catalytic residues at the active site. CONCLUSIONS: Functional assays for P. falciparum GCH1 based on enzymatic activity and genetic complementation were successfully developed. The assays in combination with a homology model characterized the enzymatic activity of P. falciparum GCH1 and the importance of its key amino acid residues. The potential to use the assay for inhibitor screening was validated by 8-oxo-GTP, a known GTP analogue inhibitor

    Comparative genome analysis between Southeast Asian and South American Zika viruses

    Get PDF
    Objective: To understand the cause for the differences between potentially mild Southeast Asian and the more pathogenic ZIKV in South America. Methods: A comparative genomic analysis was performed to determine putative causations stemming from ZIKV. Results: Phylogenetic analyses integrating geographical and time factors revealed that Southeast Asian ZIKV might not be the direct source of South American outbreaks as previously speculated. Amino acid residues unique to South American ZIKV isolates at the envelope, pr and NS1 proteins are listed and shown in the structural context. These unique residues on external viral proteins are not found in Southeast Asian ZIKV and could be responsible for the ongoing outbreak either via an intrinsic property of the virus or interactions with human immunity. Only a selected few primer/probe sets currently in clinical use were identified of being capable of detecting ZIKV strains worldwide. The envelope proteins of dengue virus (DENV) and ZIKV also showed a remarkable degree of similarity especially at the surface residues. Conclusions: These findings may help explain the cross-reactivity of DENV antibodies to ZIKV. Thus, major caveats must be exercised in using existing diagnostic tools for ZIKV

    COVID-19 transmission among healthcare workers at a quarantine facility in Thailand: genomic and outbreak investigations

    Get PDF
    During the COVID-19 pandemic, Thailand implemented a quarantine program at approved quarantine facilities for every international traveler. Here, we report an epidemiological and genomic investigation of a COVID-19 cluster consisting of seven healthcare workers (HCWs) at a quarantine facility and its partnered hospital in Thailand. Outbreak investigations were implemented to obtain contact tracing data and to establish chains of transmission. Genomic sequencing of SARS-CoV-2 with samples within the cohort was performed. Investigations of 951 HCWs and staff with quarantined travelers were implemented to determine the chain of transmission. Genomic and outbreak investigations identified the international travelers infected with the B.1.1.31 SARS-CoV-2 lineage as the source of this outbreak. The genomic data and the investigated timeline revealed a putative transmission chain among HCWs, pointing toward the transmission via the use of common living quarters at the investigated quarantine site. The evaluation of this cohort has led to a policy recommendation on quarantine facility management. International travel quarantine is an important strategy to contain importation of COVID-19 cases. However, a quarantine facility is likely to become a potential hotspot, requiring thorough preventive measures. Reducing the exposure risk by providing private living quarters and scheduling clinical duties at a quarantine site separated from the conventional healthcare workforce have been implemented

    Generation of a mutator parasite to drive resistome discovery in Plasmodium falciparum

    Get PDF
    In vitro evolution of drug resistance is a powerful approach for identifying antimalarial targets, however, key obstacles to eliciting resistance are the parasite inoculum size and mutation rate. Here we sought to increase parasite genetic diversity to potentiate resistance selections by editing catalytic residues of Plasmodium falciparum DNA polymerase δ. Mutation accumulation assays reveal a ~5–8 fold elevation in the mutation rate, with an increase of 13–28 fold in drug-pressured lines. Upon challenge with the spiroindolone PfATP4-inhibitor KAE609, high-level resistance is obtained more rapidly and at lower inocula than wild-type parasites. Selections also yield mutants with resistance to an “irresistible” compound, MMV665794 that failed to yield resistance with other strains. We validate mutations in a previously uncharacterised gene, PF3D7_1359900, which we term quinoxaline resistance protein (QRP1), as causal for resistance to MMV665794 and a panel of quinoxaline analogues. The increased genetic repertoire available to this “mutator” parasite can be leveraged to drive P. falciparum resistome discovery

    An open dataset of Plasmodium falciparum genome variation in 7,000 worldwide samples.

    Get PDF
    MalariaGEN is a data-sharing network that enables groups around the world to work together on the genomic epidemiology of malaria. Here we describe a new release of curated genome variation data on 7,000 Plasmodium falciparum samples from MalariaGEN partner studies in 28 malaria-endemic countries. High-quality genotype calls on 3 million single nucleotide polymorphisms (SNPs) and short indels were produced using a standardised analysis pipeline. Copy number variants associated with drug resistance and structural variants that cause failure of rapid diagnostic tests were also analysed.  Almost all samples showed genetic evidence of resistance to at least one antimalarial drug, and some samples from Southeast Asia carried markers of resistance to six commonly-used drugs. Genes expressed during the mosquito stage of the parasite life-cycle are prominent among loci that show strong geographic differentiation. By continuing to enlarge this open data resource we aim to facilitate research into the evolutionary processes affecting malaria control and to accelerate development of the surveillance toolkit required for malaria elimination

    Pf7: an open dataset of Plasmodium falciparum genome variation in 20,000 worldwide samples

    Get PDF
    We describe the MalariaGEN Pf7 data resource, the seventh release of Plasmodium falciparum genome variation data from the MalariaGEN network.  It comprises over 20,000 samples from 82 partner studies in 33 countries, including several malaria endemic regions that were previously underrepresented.  For the first time we include dried blood spot samples that were sequenced after selective whole genome amplification, necessitating new methods to genotype copy number variations.  We identify a large number of newly emerging crt mutations in parts of Southeast Asia, and show examples of heterogeneities in patterns of drug resistance within Africa and within the Indian subcontinent.  We describe the profile of variations in the C-terminal of the csp gene and relate this to the sequence used in the RTS,S and R21 malaria vaccines.  Pf7 provides high-quality data on genotype calls for 6 million SNPs and short indels, analysis of large deletions that cause failure of rapid diagnostic tests, and systematic characterisation of six major drug resistance loci, all of which can be freely downloaded from the MalariaGEN website
    corecore