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ARTICLE INFO ABSTRACT

Objective: To understand the cause for the differences between potentially mild
Southeast Asian and the more pathogenic ZIKV in South America.

Methods: A comparative genomic analysis was performed to determine putative cau-
sations stemming from ZIKV.

Results: Phylogenetic analyses integrating geographical and time factors revealed that
Southeast Asian ZIKV might not be the direct source of South American outbreaks as
previously speculated. Amino acid residues unique to South American ZIKV isolates at
the envelope, pr and NS1 proteins are listed and shown in the structural context. These
unique residues on external viral proteins are not found in Southeast Asian ZIKV and
could be responsible for the ongoing outbreak either via an intrinsic property of the virus
or interactions with human immunity. Only a selected few primer/probe sets currently in
clinical use were identified of being capable of detecting ZIKV strains worldwide. The
envelope proteins of dengue virus (DENV) and ZIKV also showed a remarkable degree
of similarity especially at the surface residues.

Conclusions: These findings may help explain the cross-reactivity of DENV antibodies
to ZIKV. Thus, major caveats must be exercised in using existing diagnostic tools for
ZIKV.
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rash, conjunctivitis and arthralgia, which can often lead to
misdiagnosis as the more common dengue virus (DENV)
infection [2]. The spread of ZIKV now has become a critical
and urgent issue because the 2015 ZIKV outbreak in northern

1. Introduction

Zika virus (ZIKV), a member of the vector-borne Flavivir-
idae family, has emerged as a new public health threat due to a

series of recent outbreaks and links to systemic neurological
pathologies [11. Symptoms of ZIKV infections include fever,
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Brazil coincided with a spike in the incidence of microcephaly
in newborns [3]. The infection was also linked to systemic
neurological and morphological
neuronal organs [11. ZIKV has been identified in brain tissue
and amniotic fluid from microcephaly cases [4.5]. ZIKV
neurotropism and direct causation were shown both at the
cellular level and in an animal model [6-8].

Despite its discovery in Africa, ZIKV has been found in
different parts of the world [9]. In Southeast Asia, cases of ZIKV
infection have been reported intermittently during the past ten
years [10-13]. In Thailand alone, ZIKV infections have been
identified throughout the country [14]. However, the infection
often is misdiagnosed as DENV infection due to their similar

disorders alterations of
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symptoms and cross-reactive immunological antigens, which
currently limits our understanding of ZIKV pathology [14].
Interestingly, despite the long period of ZIKV circulation in
Thailand and Southeast Asia, there is no direct evidence
linking this virus in the region to any neurological disorder.
The difference in neurotropism might be the result of ZIKV
genetic variations between the two continents. Nevertheless, it
is not possible to disregard the possibility that the neurological
damage might be the result of host—virus interactions specific
to South America. In addition, the number of ZIKV cases per
area in Southeast Asia might not be sufficiently high to
manifest ZIKV-related neurological symptoms. In order to
introduce a well-informed strategy to combat ZIKV infection, it
is important to urgently address the aforementioned issues.
Thorough comparative analyses of available ZIKV genomes
from various geographical origins will be highly informative in
providing clues towards determining and containing the threat of
ZIKV infection.

In this study, genetic compositions of ZIKV protein motifs
were analyzed to identify possible unique features from viruses
responsible for the South America outbreak and not found in
those circulating in Southeast Asia and Africa. Comparative
genomic analyses also allowed us to determine the quality of
ZIKV diagnostic methods employed to detect ZIKV isolates
from different countries. Comparative analysis with four DENV
subtypes revealed the underlying causes for the cross-reactivity
of anti-DENV antibodies to ZIKV, which could compromise
immunological detection approaches.

2. Materials and methods
2.1. Genomic sequence analysis

Thirty-three ZIKV genomic sequences were retrieved from
NCBI Nucleotide database [4.5.11.15-22]. The entries were named

according to their geographical origins and periods of collection
as follows: BrazilAmniotic2015 (KU497555), BrazilBrain2015

(KU527068), Brazil2015_1 (KU365777), Brazil2015_2
(KU365778), Brazil2015_3 (KU365779), Brazil2015_4
(KU365780), Brazil2015_5 (KU707826), Cambodia2010
(JN860885), CAR1968 (KF383115), CAR1976 (KF268950),
CAR1979 (KF268948), CAR1980 (KF268949),
FrenchPolynesia2013 (KJ776791), Guatemala2015_1
(KU501216), Guatemala2015_2 (KU501217), Haiti2014
(KU509998), Malaysial966 (HQ234499), Martinique2015
(KU647676), Nigerial968 (HQ234500), Philippines2012
(KU681082), PuertoRico2015 (KU501215), SaoPaulo2015
(KU321639),  Senegall968  (KF383116), Senegall984
(HQ234501),  Senegall997  (KF383117), Senegal2001
(KF383119), Suriname2015 (KU312312), Thailand2013
(KF993678), Thailand2014 (KU681081), Ugandal947_1
(AY632535), Ugandal947_2 (HQ234498), Ugandal947_3
(LC002520) and Yap2007 (EU545988). Alignment of
genomic sequences was performed with MAFFT and

visualized using Jalview version 2.8 [23.24]. Neighbor-joining
(NJ) tree and 1000 bootstrap replicates were calculated using
ClustalX version 2.0 [25]. Maximum likelihood (ML) tree and
1000 bootstrap replicates were estimated using GTR+I'+]
substitution model and RAXML version 8.2.8 [26]. Bayesian
analysis was performed with BEAST version 1.8.3, using a
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strict molecular clock in the GTR+I'+I substitution model [27].
Diagrams of phylogenetic were constructed using
Dendroscope version 3.5.7 [28]. Polyprotein sequences were
decoded from genomes by EMBOSS Transeq with amino acid
variations listed by Jalview. Gene annotation was based on
Ugandal947_1, and transmembrane helices were predicted
using TMHMM Server v. 2.0 [16,29].

trees

2.2. Homology model construction

SWISS-MODEL server was employed for template search
and initial model building [30]. Models were refined by
KoBaMIN and checked for Ramachandran outlier by
RAMPAGE [31.32]. Templates used for model constructions
are described in the text below. Protein structures with root-
mean-square deviation (RMSD) were visualized and calculated
using PyMOL version 1.3.

In order to compare ZIKV envelope protein with that of
DENV, MAFFT was used to align the envelope protein
sequence from ZIKV BrazilBrain2015 isolate with the se-
quences of envelope protein from DENV type 1 (NCBI acces-
sion number NC_001477), type 2 (TB16i strain, NCBI
accession number AY858036.2), type 3 (TBS5S5i strain, NCBI
accession number AY858048.2), and type 4 (DENV-4/KH/BID-
V205572002 isolate, NCBI accession number KF955510.1). The
conservation score was calculated based on blocks substitution
matrix BLOSUMG62.

3. Results

3.1. Phylogenetic branching of Southeast Asian—South
American ZIKV descents

Of the 33 ZIKV genomes from various sources employed in
this study, five originated in Southeast Asia. Structures of
phylogenetic trees of the whole genome constructed using ML,
NJ and Bayesian methods are not significantly different, with
ZIKV isolates from Africa grouping together apart from ZIKV
from Asia, Pacific Islands
(Figure 1A). A large portion of the genomic sequences was from
Africa samples collected several decades ago, and they clustered
together as a separate branch. The first available Southeast Asia
ZIKV data was from the Malaysian sample collected in 1966.
This strain appears as an outgroup in the phylogenetic tree.
When focus was placed on comparing Southeast Asian with
South America ZIKV isolates, the latter viruses were more
closely related to ZIKV from French Polynesia of 2013 than to
Southeast Asian isolates (Figure 1A and B). South American
ZIKV might share ancestors with Southeast Asian ZIKV, but
they appear not to be a direct descendent. Even though ‘recent’
ZIKV has circulated in the Southeast Asia region since 2010,
there were no reports on ZIKV outbreaks or ZIKV-related
microcephaly cases as in South America. It is not yet known
whether the recent large-scale outbreaks and microcephaly were
caused by a specific functional gain caused by novel mutations.
Understanding the significance of the specific changes in the
ZIKV proteins should provide the first set of clues toward an
understanding of the genetics underlying the difference between
potentially mild Southeast Asian and more virulent South
American ZIKV strains.

isolates and South America
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Figure 1. Phylogenetic analysis of Southeast Asian and South American ZIKV branches.

A) Bayesian phylogenetic tree of ZIKV open reading frames from 33 isolates are shown with samples from Africa (yellow), Southeast Asia (green), Pacific
Islands (cyan) and South America (orange). The horizontal gray bars at each node represent 95% Bayesian confidence intervals for divergence periods.
Numbers at the nodes represent posterior probabilities. To separate new and old samples, isolates collected within ten years are labeled with white diamonds.
The ones collected earlier than that are marked with black diamonds. B) Bayesian phylogenetic tree of with the focus on the isolates collected during the last
ten years. When the old samples were removed, the separation between the South American and Southeast Asian groups becomes more noticeable. The color
codes and labels are similar to those in Figure. 1A. Numbers at the nodes represent posterior probabilities. C) Diagram of ZIKV genome and putative
organization were constructed in comparison to those of DENV. The long ZIKV polypeptide chain is likely to be inserted into membrane, allowing further
processing in the ER-golgi complex. The upper panel represents putative RNA secondary structures predicted by Mfold and a putative protein diagram. The

lower panel shows the arrangement of proteins with matching colors.

3.2. Potential selective signatures of ZIKV genomes and
proteins

Comparison of ZIKV genomes ought to expose any genetic
footprints left by evolutionary pressure in the form of positive
selection or reshuffled tree structures. Analysis of ZIKV genome
organization revealed an overall genome structure similar to that
of DENV. The 10.7 kb ZIKV single-stranded RNA genome
encodes a single polypeptide chain of 3419 amino acid residues
with non-coding 5'- and 3’-UTRs (Figure 1C). This ZIKV
polypeptide chain is likely to be inserted into the endoplasmic
reticulum membrane via a translational/translocation-coupled
process and be cleaved into twelve individual polypeptide
fragments consisting of three structural proteins that form the
viral particle (C, prM and E) and seven nonstructural proteins
that are involved in viral propagation (NS1, NS2A, NS2B, NS3,
NS4A, NS4B and NS5). Analysis of the phylogenetic pattern of
each individual ZIKV protein showed similar tree structures
consistent with analysis performed using the whole genome [33].
The dN/dS ratio of ZIKV is relatively low for every ZIKV
proteins, indicating that the proteins are not under positive
selection, even for the surface proteins [33].

In order to explore the presence of possible selective signa-
tures, comparative analysis was conducted using protein struc-
tures, which could reveal selections at specific residues,
functional domains or catalytic sites. Differences between ZIKV
isolates in Southeast Asia circulation and those from South
American outbreaks were analyzed by noting amino acid sub-
stitutions that are uniquely found in South American and not
Southeast Asian and African ZIKV isolates, with particular
focus on virus proteins that are externally exposed, namely,
envelope, pr and NS1 since, as they are likely to interact with

host factors mediating host immune responses. Because infor-
mation on ZIKV protein structures is available only for envelope
protein, membrane protein and NS1 B-ladder, models of other
ZIKV proteins were generated based on the closest available
structures from flavivirus proteins [34-391.

In the case of ZIKV NS1, we have generated a homology
model of the full length protein. The model has Cae RMSD of
0.742 A from the Ca atoms of ZIKV NSI1 B-ladder domain
(PDB ID: 51Y3) [36]. In DENV, NS1 protein is required for virus
propagation and also acts as a virulent factor [40l. DENV NS1
protein is secreted from infected cells in the form of a
hexameric complex with a central hydrophobic channel
[38.41,42]. Five amino acid residues specific to South American
ZIKV isolates are on the surface of this protein (Figure 2A).
The planar side facing outward from the South American NS1
hexamer has A100, A233 and V349 compared with Southeast
Asian and African isolates (G100, T233 and M349). A233 and
V349 were found in Brazilian ZIKV isolate from the brain of a
microcephalic fetus [4]. There are also two South American
specific substitutions at the inner lining of ZIKV NS1 hexamer
center, namely, H122 and W324 (compared with Y122 and
R324 in Southeast Asian and African isolates).

The mature ZIKV particle has 180 copies of envelope pro-
tein in the form of homodimers [34.35]. This protein mediates
host cell receptor binding and is recognized by host
antibodies [43-45]. During host cell invasion, the envelope
protein forms a homotrimer that functions to facilitate fusion
of virus envelope with the host endosome membrane [46].
There are three amino acid substitutions in the envelope
ectodomain that are unique to South America ZIKV: T260,
exposed in both dimer and trimer, and present exclusively in
Brazilian ZIKV isolated from amniotic fluid of fetus with
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Figure 2. Amino acid residues of the envelope, pr peptide and NS1 proteins that are unique in the South American ZIKV isolates.

A) Dimer of ZIKV NS1 homology model is shown as a ribbon diagram. Each monomer is colored in cyan or green. Mutations that are found only in
South American ZIKV are labeled as red and pink space-filled residues. Pink space-filled residues are the residues from microcephaly-related cases. The
model was built using West Nile Virus NS1 (406C). B) Dimer of ZIKV envelope protein ectodomain is shown as a ribbon diagram. Each monomer is
composed of three domains, colored as red (DI), yellow (DII) and blue (DIII). Cyan and pale blue space-filled residues are specific to the South America
ZIKYV isolates. Pale blue space-filled residues are from microcephaly-related cases. The envelope protein structure is from ZIKV cryo-EM (5IRE). C)
Fusogenic trimer of ZIKV envelope model is shown as a ribbon diagram. The domains and space-filled residues are colored as in B. The model was
generated based on St. Louis Encephalitis Virus envelope protein (4FG0). D) ZIKV pr peptide homology model shown in green ribbon diagram is
superimposed onto DII of the envelope protein. Residues found only in South American ZIKV are labeled as red space-filled atoms. The model was
generated based on DENV pr peptide (3C5X).

Table 1
Recommended probe/primer sets for ZIKV detection by RT-PCR.

Primer/probe set Target gene Sequence (5'-3") Potential mismatch References

ZIKVNSS NS5 F: AARTACACATACCARAACAAAGTGGT None except for two Central Faye er al. [51]
R: TCCRCTCCCYCTYTGGTCTTG African Republic isolates
P: CTYAGACCAGCTGAAR

Zika 4507¢ NS2B F: CTGTGGCATGAACCCAATAG African isolates Pan American
R: ATCCCATAGAGCACCACTCC Health Organization
P: CCACGCTCCAGCTGCAAAGG

ZIKV 860 prtM F: TTGGTCATGATACTGCTGATTGC African isolates Lanciotti et al. [15]
R: CCTTCCACAAAGTCCCTATTGC
P: CGGCATACAGCATCAGGTGCATAGGAG

ZIKV 1107 E F: CCGCTGCCCAACACAAG African/Philippines isolates ~ Lanciotti ef al. [15]
R: CCACTAACGTTCTTTTGCAGACAT
P: AGCCTACCTTGACAAGCAGTCAGACACTCAA

Zika E E F: AAGTTTGCATGCTCCAAGAAAAT African isolates Pyke et al. [55]
R: CAGCATTATCCGGTACTCCAGAT
P: ACCGGGAAGAGCATCCAGCCAGA

Zika NS1 NS1 F: GCACAATGCCCCCACTGT African isolates Pyke et al. [55]
R: TGGGCCTTATCTCCATTCCA
P: TTCCGGGCTAAAGATGGCTGTTGGT

The forward (F), reverse (R) and probe (P) sequences are listed with their target genes. These sets are recommended because they can recognize ZIKV
from various geographical regions.
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microcephaly; 123 and 156, located at the hydrophobic domain
(Figure 2B and C).

The prM protein functions as a protector against premature
ZIKV fusion with host cell membrane by binding to the fusion
loop domain of the envelope protein [47-49]. PrM on the
immature virus particle is cleaved to pr peptide and membrane
protein within the trans-Golgi [48.49]. Two substitutions located
on the opposite side to the fusion loop are present in South
American ZIKV: N17, found in all South American ZIKV but
also in an isolate from French Polynesia collected in 2013;
and T44, identified in Suriname (Figure 2D). These two resi-
dues are on the pr peptide and present on the surface of
immature virus particles within the trans-Golgi.

3.3. Genome data analysis and implications for current
diagnostic tools

In Thailand, DENV is endemic with more than a hundred
thousand cases every year [50]. ZIKV is overlooked in the
country as its clinical presentations and managements are the
same as DENV cases. In addition, the commonly used
serological methods for DENV diagnosis falsely detect ZIKV
as DENV [14]. Molecular diagnostics of ZIKV relies on
reverse-transcriptase polymerase chain reaction (RT-PCR) and
TagMan probes [2]. However, the probes employed in such
studies tend to rely on sequence information available at the
time. It was not possible then to determine whether the probe
and primer sets can universally identify ZIKV. Comparative
genomic data of ZIKV could provide data regarding the
quality of each ZIKV detection primer and probe sets.

When the probe and primer sets commonly used in ZIKV
diagnosis worldwide were matched with genome data, it be-
comes alarmingly clear that some of them would fail to detect a
significant portion of ZIKV strains. To address this pressing
issue, a collection of primer sets is recommended here for their
versatility in detecting all or almost all ZIKV strains (Table 1).
The best design uses a degenerate primer/probe set targeting
NSS that perfectly matches every strain with only two excep-
tions of ZIKV from the Central African Republic [51]. The
TagMan probe set designed by the Pan American Health
Organization also recognizes strains currently in circulation
with a few mismatches of African ZIKV strains collected
some decades back [2]. Information regarding published
primer/probe sets for ZIKV detection can be found at http://
www.tm.mahidol.ac.th/gem/sites/default/files/pictures/
ZikaPrimersAlignment.pdf [2.15,51-55].

An alternative method for detecting ZIKV is the use of
immuno-based methods. The key epitopes for antibody detection
are likely to be located on the ectodomain of the envelope protein.
Comparisons between the envelope proteins of ZIKV and DENV
to identify epitope regions unique to each virus species showed
that the ZIKV envelope protein shares a high degree of similarity
with those of the four DENV subtypes (Figure 3A). Remarkably,
structural comparison identified matching residues that are
located at the external surface (Figure 3B). Matching residues
occupy a large portion of the protein surface, and only a region
near the glycosylation site in the DI domain (residues 157-
168,178-179 and 181-182), a small loop in the DII domain
(residues 277-283) and a small loop in the DIII domain (residues
364-370) present potential epitope sites sufficiently dissimilar to
distinguish between the two virus groups.
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Figure 3. Similarity between the envelope proteins of DENV and ZIKV.
(A) Alignment of the ZIKV envelope ectodomain in comparison with the
same proteins from four DENV subtypes is shown with red boxes rep-
resenting the exact matches. The conserved residues with BLOSUMG62
score >0 are labeled in pink (see Methods). The red, yellow and blue color
bars above the sequences refer to different domains as shown in
Figure 2B. The green bars show regions correspond to green circle with
lower-case letters in (B). The degree of similarity at the primary sequence
level is high, but the conservation is more distinct at the structural level
(B) which shows the surface of the ZIKV envelope protein colored by
similarity between ZIKV and DENV4. The bright red residues showing
the exact match cover most of the protein surface, leaving little exposed
surface to distinguish ZIKV and DENV. The regions which might be used
to distinguish between ZIKV and DENV are labeled as green circles. The
envelope protein structure was taken from ZIKV cryo-EM (SIRE). The
conservation score was calculated based on BLOSUMG62 matrix.

4. Discussion

Here we present a comparative analysis of ZIKV focusing on
the differences between Southeast Asian and South American
ZIKV populations. The incentive for the study was the research
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question as to why ZIKV populations in Southeast Asia do not
cause outbreaks and microcephaly on a large scale. The issue is
pressing because the upcoming 2016 Summer Olympics in
Brazil might globally cause population admixtures of ZIKV. We
compared ZIKV from Southeast Asia and South America in the
context of available structural information. The amino acid
residues externally exposed that are unique to South American
ZIKYV are identified to highlight their potential as candidates that
might be involved in pathogenesis and virus reproductive suc-
cess. They may also represent sites that can be exploited to
differentiate viruses from specific geographical regions. How-
ever, functional testing is definitely required to test the signifi-
cance of each geographic-specific residue. Considering the
urgent threat of ZIKV outbreaks, we present here primary data
analysis, which we hope will be of immediate benefit to the
research and medical communities.

Comparative genomic data also demonstrated the potential
and limitation of the primer/probe sets currently in clinical use.
Certain sets would fail to detect a large portion of the ZIKV
populations. We hope that public health authorities take our
observations into consideration and develop ZIKV detection
protocols suitable for each geographical region. In addition, the
strong degree of similarity between DENV and ZIKV envelope
proteins suggests a potential of using dengue antibodies against
ZIKV. Antibodies targeting shared epitopes could thwart
neurological damages in infected pregnant women. Several
dengue vaccines are already in clinical trials with existing safety
data [56]. Immunological cross-reactivity between ZIKV and
DENYV could rapidly be exploited from being a problem into
becoming a solution in treating vulnerable populations. The
similarity between the two viruses also poses another challenge
regarding DENV and ZIKV co-infection. Co-infection cases
have already been reported, and it might be just a tip of the
iceberg considering their shared geographical areas of ende-
micity [57]. Differences in degree of severity of DENV infections
have been proposed to be the outcome of sequential subtype
infections [58.59]. With the spread of ZIKV, it is necessary
now to determine how co-infection and/or sequential infection
of ZIKV and DENYV influence clinical outcomes.

At present, the number of available ZIKV genomes is still
limited. Analysis presented here was conducted to provide the
first set of evidence on the strengths and weaknesses of the
ZIKV genomic analysis. It is crucial to obtain more genome
sequences from diverse geographical areas with accompanying
clinical data. A common nomenclature system has been pro-
posed in order to encourage data sharing [60]. Cooperation on
ZIKV research is inevitable given that the virus can be found
in different parts of the world, each with unique population
structures and clinical manifestations. Potential devastating
effects of ZIKV pandemics will require the global community
to work together to prevent such a scenario.
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