2,470 research outputs found

    Black Holes at LHC?

    Get PDF
    Strategies for identifying speculative mini black hole events (due to large extra dimensions) at future colliders are reviewed. Estimates for production cross sections, Hawking radiation, di-jet suppression and multi- mono-jet emission are surveyed. We further report on a class of effective entropy formulas that could lead to the formation of a final black hole remnant state, BHR. Such BHRs could be both electrically charged and uncharged. Charged BHRs should be observable by single stiff charged tracks in the detectors. Collinear hadronic jets with a large missing transverse momentum are presented as new observable signal for electrically neutral black holes.Comment: added references to old version, 9 pages, accepted at J. Phys.

    Two-phase flow equations with a dynamic capillary pressure

    Get PDF
    We investigate the motion of two immiscible fluids in a porous medium described by the two-phase flow system. In the capillary pressure relation, we include static and dynamic hysteresis. The model is wellestablished in the context of the Richards equation, which is obtained by assuming a constant pressure for one of the two phases. We derive an existence result for this hysteresis-two-phase model for non-degenerate permeability and capillary pressure curves. A discretization scheme is introduced and numerical results for fingering experiments are obtained. The main analytical tool is a compactness result for two variables that are couled by an hysteresis relation

    Early black hole signals at the LHC

    Get PDF

    Enhancement of singly and multiply strangeness in p-Pb and Pb-Pb collisions at 158A GeV/c

    Get PDF
    The idea that the reduction of the strange quark suppression in string fragmentation leads to the enhancement of strange particle yield in nucleus-nucleus collisions is applied to study the singly and multiply strange particle production in p-Pb and Pb-Pb collisions at 158A GeV/c. In this mechanism the strange quark suppression factor is related to the effective string tension, which increases in turn with the increase of the energy, of the centrality and of the mass of colliding system. The WA97 observation that the strange particle enhancement increases with the increasing of centrality and of strange quark content in multiply strange particles in Pb-Pb collisions with respect to p-Pb collisions was accounted reasonably.Comment: 8 pages, 3 PostScript figures, in Latex form. submitted to PR

    Efficient one- and two-qubit pulsed gates for an oscillator stabilized Josephson qubit

    Full text link
    We present theoretical schemes for performing high-fidelity one- and two-qubit pulsed gates for a superconducting flux qubit. The "IBM qubit" consists of three Josephson junctions, three loops, and a superconducting transmission line. Assuming a fixed inductive qubit-qubit coupling, we show that the effective qubit-qubit interaction is tunable by changing the applied fluxes, and can be made negligible, allowing one to perform high fidelity single qubit gates. Our schemes are tailored to alleviate errors due to 1/f noise; we find gates with only 1% loss of fidelity due to this source, for pulse times in the range of 20-30ns for one-qubit gates (Z rotations, Hadamard), and 60ns for a two-qubit gate (controlled-Z). Our relaxation and dephasing time estimates indicate a comparable loss of fidelity from this source. The control of leakage plays an important role in the design of our shaped pulses, preventing shorter pulse times. However, we have found that imprecision in the control of the quantum phase plays the major role in the limitation of the fidelity of our gates.Comment: Published version. Added references. Corrected minor typos. Added discussion on how the influence of 1/f noise is modeled. 36 pages, 11 figure

    Virulence of newcastle disease virus: what is known so far?

    Get PDF
    In the last decade many studies have been performed on the virulence of Newcastle disease virus (NDV). This is mainly due to the development of reverse genetics systems which made it possible to genetically modify NDV and to investigate the contribution of individual genes and genome regions to its virulence. However, the available information is scattered and a comprehensive overview of the factors and conditions determining NDV virulence is lacking. This review summarises, compares and discusses the available literature and shows that virulence of NDV is a complex trait determined by multiple genetic factors

    3D Traction Forces in Cancer Cell Invasion

    Get PDF
    Cell invasion through a dense three-dimensional (3D) matrix is believed to depend on the ability of cells to generate traction forces. To quantify the role of cell tractions during invasion in 3D, we present a technique to measure the elastic strain energy stored in the matrix due to traction-induced deformations. The matrix deformations around a cell were measured by tracking the 3D positions of fluorescent beads tightly embedded in the matrix. The bead positions served as nodes for a finite element tessellation. From the strain in each element and the known matrix elasticity, we computed the local strain energy in the matrix surrounding the cell. We applied the technique to measure the strain energy of highly invasive MDA-MB-231 breast carcinoma and A-125 lung carcinoma cells in collagen gels. The results were compared to the strain energy generated by non-invasive MCF-7 breast and A-549 lung carcinoma cells. In all cases, cells locally contracted the matrix. Invasive breast and lung carcinoma cells showed a significantly higher contractility compared to non-invasive cells. Higher contractility, however, was not universally associated with higher invasiveness. For instance, non-invasive A-431 vulva carcinoma cells were the most contractile cells among all cell lines tested. As a universal feature, however, we found that invasive cells assumed an elongated spindle-like morphology as opposed to a more spherical shape of non-invasive cells. Accordingly, the distribution of strain energy density around invasive cells followed patterns of increased complexity and anisotropy. These results suggest that not so much the magnitude of traction generation but their directionality is important for cancer cell invasion
    • …
    corecore