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Two-phase flow equations with a dynamic

capillary pressure

Jan Koch, Andreas Rätz & Ben Schweizer 1

November 15, 2011

Abstract: We investigate the motion of two immiscible fluids in a porous
medium described by the two-phase flow system. In the capillary pres-
sure relation, we include static and dynamic hysteresis. The model is well-
established in the context of the Richards equation, which is obtained by
assuming a constant pressure for one of the two phases. We derive an ex-
istence result for this hysteresis-two-phase model for non-degenerate perme-
ability and capillary pressure curves. A discretization scheme is introduced
and numerical results for fingering experiments are obtained. The main an-
alytical tool is a compactness result for two variables that are couled by an
hysteresis relation.
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1 Introduction

The two-phase flow system describes the motion of two incompressible, immiscible
phases in a porous medium. We consider a bounded Lipschitz domain Ω ⊂ Rn,
occupied by the porous material, and a time interval [0, T ). We denote the pressures
of the two fluids by p1, p2 : Ω × [0, T ) → R and the saturation of the first fluid by
s : Ω × [0, T ) → R. The saturation s = s1 is defined as the volume fraction of pore
space that is filled with fluid 1, we think of the non-wetting phase. The saturation of
the second fluid is s2 = 1−s1 = 1−s. Darcy’s law for both velocities and conservation
of mass can be combined into the system

∂ts = ∇ · (k1(s)[∇p1 + g1]) , (1.1)

−∂ts = ∇ · (k2(s)[∇p2 + g2]) . (1.2)

We have performed a normalization of porosity and density, the gravity vectors
g1, g2 ∈ Rn point in direction −en = (0, . . . , 0,−1) ∈ Rn. The permeabilities
k1(s) = k1(s(x, t), x) and k2(s) = k2(s(x, t), x) are described by given functions
k1, k2 : [0, 1] × Ω → [0,∞). The interesting modelling problem regards the relation

1Technische Universität Dortmund, Fakultät für Mathematik, Vogelpothsweg 87, D-44227 Dort-
mund, Germany.



2 Two-phase flow in porous media with dynamic capillary pressure

between the capillary pressure p1 − p2 and the saturation s. The simplest possibility
is to assume the functional dependence p1 − p2 = pc(s), where pc : R → R is the
capillary pressure function.

In order to take hysteresis and dynamic effects into account, the model with an
algebraic relation between p1 − p2 and s is replaced by

p1 − p2 ∈ pc(s) + γ sign(∂ts) + τ∂ts, (1.3)

where τ, γ ≥ 0 are two parameters and sign denotes the multi-valued function defined
by sign(±ξ) = {±1} for ξ > 0 and sign(0) := [−1, 1]. The model (1.3) was suggested
in [8] and receives considerable attention.

For τ > 0, the multi-valued function Φ : ξ 7→ τξ + γsign(ξ) can be inverted, the
inverse Ψ := Φ−1 : R → R is a Lipschitz continuous function. With this notation,
equation (1.3) transforms into

∂ts = Ψ(p1 − p2 − pc(s)). (1.4)

Our main result is an existence theorem for system (1.1)–(1.3) of partial differ-
ential equations in the case τ > 0. The proof is based on a compactness result that
was derived in [17] for the treatment of the Richards equation. Loosely speaking, the
compactness result provides the following: for every family of pressure and saturation
functions that satisfies the evolution law (1.4) and the natural energy estimates, the
saturation functions converge strongly along a subsequence.

Numerical results. We include a numerical treatment of the two-phase flow equa-
tions with hysteresis, (1.1)–(1.3). In agreement with the theoretical results, the finite-
element scheme turns out to be stable; this holds true even though we include spatial
and temporal adaptivity. We calculate solutions in a case that corresponds to the
experimental set-up which is used to observe fingering effects in porous media. The
presented model and the suggested discretization scheme provide numerical solutions
that show gravity fingering in porous media. A description of the scheme and the
investigated parameters is presented together with numerical results in Section 3.

1.1 Further literature on two-phase flow equations

Unfortunately, the name “two-phase flow” is slightly ambiguous, it is used for the
above system, but also for the Richards equation. The Richards equation is the
simplification of the above model that is obtained by assuming that the pressure of
the second phase is constant, e.g. p2 = 0, and by using only (1.1) instead of the set
of equations (1.1)–(1.2). Even though also this simplified model describes the motion
of two fluid phases, we will use the term two-phase flow equations only when we refer
to system (1.1)–(1.2).

Results on the Richards equation. Even in the case without hysteresis, i.e.
with an algebraic relation p = pc(s) instead of (1.3), the Richards equation is an
interesting mathematical object due to the possible degeneracies k(s) = 0 for some
s and pc(s) → ±∞ for s tending to critical saturation values. Existence results are
obtained e.g. in [2] and [3], uniqueness is treated e.g. in [20] and [12], the physical



J. Koch, A. Rätz, and B. Schweizer 3

outflow boundary conditions are treated e.g. in [1] and [23]. Regarding the numerical
treatment of the Richards equation without hysteresis we mention [4, 21].

We want to highlight at this point the close connection between hysteresis effects
and fingering in porous media; we refer to [25] and the references therein for exper-
imental results on fingering. The analytical contributions of [20, 26] imply, loosely
speaking, that fingering is not possible in the Richards equation without hysteresis.
On the other hand, it was shown theoretically in [24] and with numerical experiments
in [17] that fingering can occur in the Richards equation if hysteresis is included.

The hysteresis relation (1.3), without the coupling to a partial differential equa-
tion, poses already interesting questions regarding a functional analytic description,
we refer to [28] for the corresponding discussion. In both cases, τ = 0 (rate-
independent) and τ > 0 (rate-dependent), the hysteresis relation may be considered
as a functional relation s(t) = B(t, p|[0,t]), where B maps the history of p to a value
s(t), given initial values s0. We emphasize that, even in the equilibrium situation
∂ts = 0, we cannot determine p(t) from s|[0,t]. In this sense, the hysteresis relation
cannot be inverted.

An existence result for the Richards equation with hysteresis was provided in
[22] in the case that the partial differential equation is linear, i.e. in the case that
k(.) is not depending on s and that pc(.) is an affine function. In this situation, it
was possible to treat the case τ = 0. Existence results for the nonlinear Richards
equation with other hysteresis relations were obtained in [5] and [6] under very general
assumptions, but not covering our model.

If the hysteresis model (1.3) is considered without the static part introduced
by the sign function, the model can be re-written as a pseudo-parabolic equation.
Using this point of view, existence results are derived in [10] and [19], including some
degeneracies of the coefficients. Closest to the contribution at hand is [17], where the
nonlinear Richards equation with hysteresis was studied and an existence result was
derived. The compactness result of Lemma 3.3 in [17] was crucial for the Richards
equations and will be used again in the work at hand.

Results on the two-phase flow equation. The two-phase flow equations without
hysteresis have been studied under the aspect of existence results in [13] and [16],
uniqueness and regularity issues are treated in [13] and [14], outflow conditions in
[18], maximum principles appear in [16] and [18]. Physical conditions across interior
interfaces are investigated in [9] and [11]. We are not aware of any contribution that
derives an existence result for the two-phase flow system with hysteresis. Regarding
the numerical treatment of two-phase flow without hysteresis we refer to [7].

1.2 Assumptions and main result

In this subsection we fix the assumptions on the coefficient functions and formulate
our main result. We consider non-linear, but non-degenerate permeabilities kj, j =
1, 2, and a strictly increasing, non-degenerate capillary pressure curve pc. On the
relaxation constant we assume positivity, τ > 0. We will construct solutions of the
two-phase system with the specific hysteresis relation of (1.3), but the compactness
result will exploit only the more general relation (1.4).
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Initial and boundary conditions. The unknowns in the porous media model
(1.1)–(1.3) are p1, p2, and s. Let Ω ⊂ Rn such that

Ω is a Lipschitz domain and ∂Ω is decomposed as ∂Ω = Γ̄1 ∪ Σ̄1 = Γ̄2 ∪ Σ̄2 (1.5)

with Γj∩Σj = ∅ two relatively open subsets of ∂Ω for j = 1, 2. We impose a Dirichlet
condition for pj on Σj and a Neumann condition for fluid j on Γj, for notational
convenience we impose only no-flux conditions on Γj. We assume positivity of the
Hausdorff measures, Hn−1(Σj) > 0 for j = 1, 2. The Dirichlet conditions are given
by two functions p0,1, p0,2 ∈ L2(0, T ;H1(Ω)). We prescribe initial values for the
saturation by a function s0 ∈ L2(Ω).

Coefficient functions. Our assumptions on the coefficient functions are as follows.
For six positive numbers Kj, κj, κ

0
j > 0, j = 1, 2, we assume

pc ∈ C0,1(R× Ω,R), γ ∈ C0,1(Ω, [0,∞)), (1.6)

kj ∈ C(R× Ω, [κj, κ
0
j ]), ‖kj(x, .)‖Lip(R,R) ≤ Kj, for j ∈ {1, 2}, x ∈ Ω. (1.7)

We denote the Lipschitz constant of the capillary pressure by ρ := ‖pc‖Lip and em-
phasize that the Lipschitz continuity of pc is assumed in x and s. We will always
assume τ > 0 and use Φ : R × Ω → R, (ξ, x) 7→ τξ + γ(x)sign(ξ). Positivity of
τ implies that Φ(., x) has a Lipschitz continuous inverse, we denote the inverse by
Ψ(., x). This defines Ψ : R × Ω → R with 0 ≤ ∂ζΨ(ζ, x) ≤ 1/τ for all ζ ∈ R. We
finally assume that pc has a positive primitive, i.e.

∃Pc ∈ C(R× Ω,R) with Pc(s, x) ≥ 0, ∂sPc(s, x) = pc(s, x) for all s ∈ R, x ∈ Ω.
(1.8)

The gravity vectors g1, g2 ∈ Rn are constant vectors.

Weak form of equations (1.1) and (1.2). The first two evolution equations are
expressed in the usual weak form. We say that s, p1, p2 ∈ L2(0, T ;L2(Ω)) with
∂ts ∈ L2(0, T ;L2(Ω)) and ∇p1,∇p2 ∈ L2(0, T ;L2(Ω)) solve (1.1)–(1.2) and the no-
flux condition on Γj in the weak form if, for all test-functions ϕj ∈ L2(0, T ;H1(Ω))
with ϕj = 0 on Σj, there holds∫

ΩT

k1(s)[∇p1 + g1]∇ϕ1 +

∫
ΩT

k2(s)[∇p2 + g2]∇ϕ2 = −
∫

ΩT

(ϕ1 − ϕ2) ∂ts. (1.9)

Main Theorem. Our main result concerns the existence of solutions to the non-
degenerate two-phase flow equations.

Theorem 1.1 (Existence for the two-phase flow problem with hysteresis). Let the
Lipschitz domain Ω ⊂ Rn with boundary parts Γj and Σj be as in (1.5). Let initial
and boundary conditions be given by s0 ∈ L2(Ω) and p0,1, p0,2 ∈ L2(0, T ;H1(Ω)). Let
the coefficients satisfy τ > 0 and (1.6)–(1.8).

Then there exists a solution p1, p2 ∈ L2(0, T ;H1(Ω)) and s ∈ H1(0, T ;L2(Ω)) of
the two-phase hysteresis system (1.1)–(1.3). More precisely, equations (1.1), (1.2),
and the no-flux condition are satisfied in the weak form (1.9), the hysteresis relation
(1.3) holds pointwise almost everywhere, initial and Dirichlet boundary conditions are
satisfied in the sense of traces.
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1.3 A priori estimates and solution concept

We start our analysis of system (1.1)–(1.3) by presenting the formal a priori estimates.
These indicate the natural norms and function spaces. At the same time, we will
observe a lack of spatial regularity for the saturation variable s. It is this lack of
compactness that makes the existence proof interesting.

We multiply (1.1) with p1 − p0,1 and (1.2) with p2 − p0,2 and integrate over Ω.
Adding the equations, we obtain (1.9) with ϕj = pj − p0,j. Inserting (1.3) gives∫

Ω

k1(s)[∇p1 + g1]∇[p1 − p0,1] +

∫
Ω

k2(s)[∇p2 + g2]∇[p2 − p0,2]

= −
∫

Ω

[(p1 − p2)− p0,1 + p0,2] ∂ts

∈ −
∫

Ω

(pc(s) + γ sign(∂ts) + τ∂ts) ∂ts+

∫
Ω

(p0,1 − p0,2) ∂ts.

By assumption (1.8), the monotone function pc has a convex, positive primitive Pc.
Integration over t ∈ [0, T ] and application of the Cauchy-Schwarz and the Poincaré
inequality yields in the standard fashion the estimate∫

Ω

Pc(s)

∣∣∣∣
t=T

+

∫
ΩT

{
k1(s)|∇p1|2 + k2(s)|∇p2|2 + γ|∂ts|+ τ |∂ts|2

}
≤ C0, (1.10)

where the constant C0 depends on the data gj, p0,j, s0, on τ and on the other sys-
tem constants introduced before (1.6). We exploited that pc is Lipschitz continuous
and that, as a consequence, Pc has at most quadratic growth in s. The domain of
integration is ΩT = Ω× (0, T ).

Variational weak solutions

In the solution concept of Theorem 1.1 we demand that relation (1.3) holds for almost
all (x, t) ∈ ΩT . In order to verify this condition, it is convenient to use additionally
the notion of variational weak solutions.

Definition 1.2 (Variational weak solution). Let (s, p1, p2) be a triple of functions
with

s ∈ L∞(0, T ;L2(Ω)), ∂ts ∈ L2(0, T ;L2(Ω)), p1, p2 ∈ L2(0, T ;H1(Ω)), (1.11)

satisfying, in the sense of traces, the initial condition s = s0 on Ω × {0} and the
boundary conditions pj = p0,j on Σj × (0, T ). The triple is called a variational weak
solution of the two-phase equation if the following three conditions are satisfied.

1. The evolution equations (1.1)–(1.2) and the no-flux conditions are satisfied in
the weak sense of (1.9).

2. The relation p1(x, t)− p2(x, t)− pc(s(x, t), x)− τ∂ts(x, t) ∈ [−γ(x), γ(x)] holds
for almost every (x, t) ∈ ΩT .
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3. The variational inequality

0 ≥
∫

ΩT

(pc(s)− p0,1 + p0,2) ∂ts+

∫
ΩT

{
τ |∂ts|2 + γ |∂ts|

}
+

∫
ΩT

k1(s)[∇p1 + g1]∇[p1 − p0,1] +

∫
ΩT

k2(s)[∇p2 + g2]∇[p2 − p0,2]

(1.12)

is satisfied.

Lemma 1.3. Let (s, p1, p2) be a variational weak solution as in Definition 1.2. Then
(1.3) is satisfied almost everywhere. In particular, (s, p1, p2) is a solution of (1.1)–
(1.3) as described in Theorem 1.1.

Proof. We only have to show that (1.3) holds almost everywhere. For weak solutions,
the two distributions∇·(kj(s)[∇pj+gj]) = ±∂ts are actually L2(ΩT )-functions, hence
we can perform an integration by parts in the last two integrals of (1.12). Then the
inequality (1.12) simplifies to

0 ≥
∫

ΩT

(pc(s)− p1 + p2) ∂ts+

∫
ΩT

{
τ |∂ts|2 + γ |∂ts|

}
.

We write this as ∫
ΩT

γ |∂ts| ≤
∫

ΩT

[p1 − p2 − pc(s)− τ∂ts]∂ts.

By property 2 of variational weak solutions, the integrand on the right hand side
satisfies [p1−p2−pc(., s)−τ∂ts]∂ts ≤ γ|∂ts| almost everywhere, and is therefore smaller
or equal to the integrand on the left hand side. Since the integral inequality is in the
opposite direction, the integrands must coincide, [p1−p2−pc(., s)−τ∂ts]∂ts = γ |∂ts|
holds almost everywhere. This, together with property 2 of variational weak solutions,
implies the pointwise inclusion (1.3).

We see that Theorem 1.1 is shown once that we prove the existence of a variational
weak solution as in Definition 1.2.

2 Discrete system and proof of the main theorem

2.1 The discrete system

Our next aim is to define a Galerkin scheme such that the original equations (1.1)–
(1.3) are approximated by a system of ordinary differential equations. With this
aim we introduce a space-discretization with parameter h > 0. We recall that three
positive (and possibly small) physical parameters appear in the equations: the num-
bers κ1, κ2 > 0 are lower bounds for the permeabilities and τ > 0 is the time delay
parameter.

In the case of a vanishing time delay, τ = 0, the play-type relation (1.3) can be
written with the multi-valued function Φ0(σ) := γ sign(σ) as p1−p2 ∈ pc(s)+Φ0(∂ts).
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In the general case τ ≥ 0 and with γ = γ(x) we use Φτ := Φ0+τ id, or, more precisely,

Φτ (σ, x) :=


[−γ(x), γ(x)] for σ = 0

γ(x) + τσ for σ > 0

−γ(x) + τσ for σ < 0.

(2.1)

With this choice, (1.3) can be written as p1 − p2 ∈ pc(s) + Φτ (∂ts); we suppress the
dependence on x whenever possible. We denote the inverse by Ψτ (., x) := (Φτ (., x))−1.
The inverse Ψτ : R × Ω → R is multivalued only in the case τ = 0. For positive τ ,
the function Ψτ is single-valued with maximal slope τ−1. In this sense, τ > 0 can be
regarded as a regularization of the system.

Spatial discretization. We next discretize the spatial domain Ω. In order to
simplify notation, we describe the method for the case that the domain Ω is polygonal;
in the case of a general Lipschitz domain, it poses no problem to use boundary
elements that are not simplices.

Let Th be a triangulation of Ω, decomposing Ω into finitely many simplices A ∈ Th.
Let h > 0 be an upper bound for the diameter of all elements of Th. We denote by
Ωh = {x1, . . . , xN} a suitable subset of N points, such that we can associate to every
triangle A ∈ Th a uniquely determined point x ∈ Ωh ∩ A. The set of points (xk)k≤N
defines a projection Xh : Ω → Ωh. The map Xh can also be used to define an
invertible map that identifies RN with piecewise constant functions (defined almost
everywhere),

J : RN ≡ {f : Ωh → R} −→ {f̂ : Ω→ R piecewise constant} =: P0(Ω, Th), (2.2)

by (Jf)(x) = f(Xh(x)) for almost every x ∈ Ω. We will furthermore use the L2(Ω)-
orthogonal projection P := Ph : L2(Ω) → L2(Ω) to the space of piecewise con-
stant functions P0(Ω, Th). A continuous function on Ω can be discretized with the
help of Xh : Ω → Ωh. To give an example, given γ = γ(x), we can restrict to
the relevant corners and consider γ|Ωh

, and correspondingly the piecewise constant
parameter function γh(x) := J(γ|Ωh

)(x) = γ(Xh(x)). Accordingly, we define the
piecewise constant (in x) coefficient function phc (s, x) := pc(s,X

h(x)) and its prim-
itive P h

c (s, x) = Pc(s,X
h(x)) with ∂sP

h
c (s, x) = phc (s, x). Analogously, the function

Φτ (σ, x) of (2.1) is discretized in space to Φτ
h(σ, x) := Φτ

h(σ,X
h(x)) and its inverse

(in the variable σ) is Ψτ
h(., x) = (Φτ

h(., x))−1. With this notation, we can now define
the Galerkin scheme.

Definition 2.1 (Galerkin scheme). Our unknowns are piecewise constant functions
phj : Ω× [0, T ]→ R, j = 1, 2 and sh : Ω× [0, T ]→ R, identified with maps ph1 , p

h
2 , s

h :
[0, T ]→ P0(Ω, Th). We demand, for almost every x ∈ Ω and almost every t ∈ (0, T ),

∂ts
h(x, t) =Ψτ

h(p
h
1(x, t)− ph2(x, t)− phc (sh, x)) ,

sh(x, 0) =(Phs0)(x) ,
(2.3)

where we suppressed the explicit dependence of Ψτ
h on x. The pressures ph1 and ph2

are reconstructed from sh as follows. We solve with two functions p̃hj ∈ H1(Ω,R),
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j = 1, 2, in a weak sense the elliptic system

−∇ ·
(
k1(sh, x)(∇p̃h1 + g1)

)
= Ψτ

h

(
pc(s

h, x)− Ph[p̃h1 − p̃h2 ]
)

in Ω (2.4)

−∇ ·
(
k2(sh, x)(∇p̃h2 + g2)

)
= −Ψτ

h

(
pc(s

h, x)− Ph[p̃h1 − p̃h2 ]
)

in Ω (2.5)

p̃hj (·, t) = p0,j(·, t) on Σj for j = 1, 2, (2.6)

for all t ∈ [0, T ], with no-flux conditions on Γj. The discrete pressures are recovered
by a projection, phj = Php̃

h
j for j = 1, 2.

For later use we note that the evolution equation in (2.3) can also be written as

Φτ
h(∂ts

h) = Φ0
h(∂ts

h(x, t)) + τ∂ts
h 3 ph1 − ph2 − phc (sh). (2.7)

We note that Φτ
h and Φ0

h depend via γh(x) also in a direct way on x ∈ Ω.

2.2 Well-posedness of the Galerkin scheme

Our aim is to prove that (2.3) is an ordinary differential equation for sh : [0, T ] →
P0(Ω, Th). With this perspective, we want to show that the system (2.4)–(2.6) defines
a Lipschitz-continuous map sh 7→ (ph1 , p

h
2) = (Php̃

h
1 , Php̃

h
2). Once this is shown, we

have verified that the Galerkin scheme consists of the ordinary differential equation
(2.3) (the image space P0(Ω, Th) is finite dimensional) with an intricate, but Lipschitz
continuous right hand side.

The aim of the next lemma is precisely this analysis of the stationary system
(2.4)–(2.6). We write p̃hj = p0,j + uj for j = 1, 2, such that (2.4) and (2.5) read,
omitting the h-dependence of the function s,

−∇ · (k1(s)∇u1) =Ψτ
h (pc(s)− Ph(u1 − u2)− Ph(p0,1 − p0,2))

+∇ · (k1(s)(∇p0,1 + g1)) ,

−∇ · (k2(s)∇u2) =−Ψτ
h (pc(s)− Ph(u1 − u2)− Ph(p0,1 − p0,2))

+∇ · (k2(s)(∇p0,2 + g2)) .

We introduce some abbreviations. Let f : R× R× Ω→ R be the function

f(s, z, x) := −Ψτ
h(pc(s, x)− z − Ph(p0,1 − p0,2)(x), x). (2.8)

Then s 7→ f(s, z, x) is Lipschitz continuous with Lipschitz constant ρτ−1. The map
z 7→ f(s, z, x) is monotonically non-decreasing and Lipschitz continuous with Lips-
chitz constant τ−1. In the following, we suppress the explicit x-dependece of Ψτ

h. We
use F : L2(Ω)× L2(Ω)→ L2(Ω),

F (s, z)(x) := f(s(x), z(x), x). (2.9)

Later on, we will insert Ph(u1−u2) for the variable z. With this choice, the expression
f(s, z, x) coincides, up to signs, with the first part in the right hand sides of (2.4)
and (2.5). To abbreviate also the other lower order terms, we use, for j = 1, 2, the
map Ḡj : L2(Ω)→ L2(Ω),

Ḡj(s)(x) := kj(s(x), x)(∇p0,j(x) + gj). (2.10)

We intend to use piecewise constant functions s, z ∈ P0(Ω, Th) and note that functions
such as pc(s, x), F (s, z), or Ḡj(s) are not piecewise constant functions in general.
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Lemma 2.2 (Local existence result for the discrete stationary system). Let the data
Ω, pc, kj, gj, p0,j and τ > 0 satisfy (1.5)–(1.8). Let the hysteresis function Ψτ

h and the
projection Ph be as described before Definition 2.1. Let F and Ḡj be as in (2.8)–
(2.10). Then there exists a positive number h0 > 0 such that the following statements
hold.

Existence. Let h ∈ (0, h0) and S ∈ L∞(Ω) be arbitrary. We consider the spaces
H0,j(Ω) := {uj ∈ H1(Ω) : uj = 0 on Σj} and search for solutions u = (u1, u2) in the
product space u ∈ H0,1(Ω) × H0,2(Ω). For arbitrary right hand sides Gj ∈ H0,j(Ω)′,
j = 1, 2, there exist a unique weak solution u = (u1, u2) of

−∇ · (k1(S)∇u1) = −F (S, Ph(u1 − u2)) +G1

−∇ · (k2(S)∇u2) = F (S, (Ph(u1 − u2)) +G2

(2.11)

in Ω, with a weak no-flux condition n · [∇(p0,j + uj) + gj] = 0 on Γj.

Lipschitz continuity. For every R > 0 there exists a positive constant C = C(R)
such that the following holds. Let s, s̃ ∈ L∞(Ω) with ‖s‖∞, ‖s̃‖∞ ≤ R. Let u = (u1, u2)
be a solution of (2.11) for S = s and Gj : ϕ 7→ −

∫
Ω
Ḡj(s)∇ϕ. Let ũ = (ũ1, ũ2) be a

solution of (2.11) for S = s̃ and Gj : ϕ 7→ −
∫

Ω
Ḡj(s̃)∇ϕ. Then

‖u− ũ‖H1(Ω,R2) ≤ C‖s− s̃‖L∞(Ω). (2.12)

Proof. We search for solutions in the product space H := H0,1(Ω) × H0,2(Ω). The
space H is a Hilbert space with the norm of H1(Ω) × H1(Ω) and the dual space is
H ′ = H0,1(Ω)′ ×H0,2(Ω)′.

Step 1: Re-formulation of the system. In a later step, we want to perform
a continuity method. We therefore generalize the system slightly and consider, for
λ ∈ [0, 1], the following system for u = (u1, u2) ∈ H,

−∇ · (k1(S, x)∇u1) = −λF (S, Ph(u1 − u2)) +G1

−∇ · (k2(S, x)∇u2) = λF (S, Ph(u1 − u2)) +G2

(Eλ)

in the weak form and with the same no-flux condition. With this choice of (Eλ),
problem (E1) for λ = 1 coincides with the original problem (2.11). On the space H
we define a bilinear form BS : H ×H → R as

BS[u, ϕ] :=

∫
Ω

k1(S, x)∇u1(x)∇ϕ1(x) + k2(S, x)∇u2(x)∇ϕ2(x) dx

for u = (u1, u2), ϕ = (ϕ1, ϕ2) ∈ H. The pair G := (G1, G2) satisfies G ∈ H ′. Equation
(Eλ) now reads

BS[u, ϕ] = −λ
∫

Ω

F (S, Ph(u1 − u2))(ϕ1 − ϕ2) + 〈G,ϕ〉 (2.13)

for all ϕ ∈ H; here 〈·, ·〉 denotes the duality pairing between H ′ and H.

Step 2: A priori estimates. We use ϕ = u in (2.13). Poincaré’s inequality and
the positiviy of k1, k2 imply the coercivity of BS and we obtain with c > 0

c‖u‖2
H ≤

∫
Ω

k1(S) |∇u1|2 + k2(S) |∇u2|2 = BS[u, u]

= −λ
∫

Ω

F (S, Ph(u1 − u2))(u1 − u2) + 〈G, u〉.
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The second term on the right hand side can be estimated directly and treated with
Young’s inequality as 〈G, u〉 ≤ ‖G‖H′‖u‖H ≤ δ‖u‖2

H + δ−1‖G‖2
H′ , for arbitrary δ > 0.

Concerning the integral containing F we exploit the monotonicity of f in z, fur-
thermore the triangle inequality and Cauchy-Schwarz’s inequality.

−
∫

Ω

F (S, Ph(u1 − u2))(u1 − u2)

= −
∫

Ω

F (S, Ph(u1 − u2))Ph(u1 − u2) + F (S, Ph(u1 − u2))(u1 − u2 − Ph(u1 − u2))

≤ −
∫

Ω

F (S, 0)Ph(u1 − u2) + |F (S, Ph(u1 − u2))| |u1 − u2 − Ph(u1 − u2)|

≤ ‖F (S, 0)‖L2(Ω)‖Ph(u1 − u2)‖L2(Ω)

+ ‖F (S, Ph(u1 − u2)‖L2(Ω)‖u1 − u2 − Ph(u1 − u2)‖L2(Ω).

We exploit the following properties of Ph. For w ∈ H1(Ω) we have ‖Phw‖L2(Ω) ≤
‖w‖L2(Ω) by Hölder’s inequality, and ‖Phw − w‖L2(Ω) ≤ CT h‖w‖H1(Ω) by Poincaré’s
inequality for some CT > 0. We use the Lipschitz continuity of f in z with constant
τ−1, Young’s and Poincaré’s inequality to calculate

‖F (S, 0)‖L2(Ω)‖Ph(u1 − u2)‖L2(Ω)

+ ‖F (S, Ph(u1 − u2)‖L2(Ω)‖u1 − u2 − Ph(u1 − u2)‖L2(Ω)

≤ ‖F (S, 0)‖L2(Ω)‖u1 − u2‖L2(Ω) +
1

τ
‖u1 − u2‖L2(Ω)CT h‖u1 − u2‖H1(Ω)

+ ‖F (S, 0)‖L2(Ω)CT h‖u1 − u2‖H1(Ω)

≤ CT h

τ
‖u1 − u2‖2

H1(Ω) + (1 + CT h)‖F (S, 0)‖L2(Ω)‖u1 − u2‖H1(Ω)

≤ 2

(
CT h

τ
+ δ(1 + CT h)2

)
‖u‖2

H +
1

δ
‖F (S, 0)‖2

L2(Ω),

for arbitrary δ > 0. Choosing δ and h0 sufficiently small, we can absorb the first term
and find the a priori estimate

‖u‖2
H ≤

2

cδ
‖F (S, 0)‖2

L2(Ω) + CG = C(‖S‖L∞(Ω), ‖G‖H′). (2.14)

Estimate (2.14) holds for every h ∈ (0, h0) and we emphasize that the number h0 is
independent of the data S and Gj.

Step 3: The continuity method. We define the set

Λ := {λ ∈ [0, 1]| ∀(G1, G2) ∈ H ′ there exists a unique solution u ∈ H of (Eλ)} ,

with the aim to show that Λ contains λ = 1. It is an immediate observation that
Λ contains λ = 0. Indeed, equation (Eλ) for λ = 0 consists of two decoupled linear
elliptic equations that can be solved uniquely with the Lax-Milgram theorem.

We will show the following Claim: For every λ0 ∈ Λ, there exists ε > 0 indepen-
dent of λ0, such that (Eλ) has a unique solution for all λ ∈ (λ0, λ0 + ε). Once that
the claim is verified, we can apply it a finite number of times and obtain 1 ∈ Λ and
thus the existence and uniqueness result.
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In order to prove the claim we use a fixed point method. We define an iteration
by considering, for given ũ = (ũ1, ũ2) ∈ H, the following equation for u = (u1, u2),

BS[u, ϕ] = −λ0

∫
Ω

F (S, Ph(u1 − u2))(ϕ1 − ϕ2)

− ε
∫

Ω

F (S, Ph(ũ1 − ũ2))(ϕ1 − ϕ2) + 〈G,ϕ〉
(2.15)

for all ϕ = (ϕ1, ϕ2) ∈ H. Since λ0 is an element of Λ, by definition of Λ, we find a
unique solution (u1, u2) of (2.15). We exploit here that the vectorG−ε(−F (S, Ph(ũ1−
ũ2)), F (S, Ph(ũ1 − ũ2))) is an element of H ′. The unique solvability property defines
an operator T : H → H, T (ũ) = u. We note that a fixed-point (u1, u2) = (ũ1, ũ2)
provides a solution of (Eλ) for λ = λ0 + ε.

It therefore suffices to show that the map T as above is contractive for ε >
0 sufficiently small (the smallness must be independent of λ0). Let ũ = (ũ1, ũ2),
ṽ = (ṽ1, ṽ2) ∈ H be different data, we consider solutions T (ũ) = u = (u1, u2) and
T (ṽ) = v = (v1, v2). We investigate (2.15) for u and v, subtract both equations and
set ϕ = u− v ∈ H, i.e. ϕ1 = u1 − v1 and ϕ2 = u2 − v2. We find, for some c > 0,

c‖u− v‖2
H ≤ BS[u− v, u− v]

= −λ0

∫
Ω

[F (S, Ph(u1 − u2))− F (S, Ph(v1 − v2))]((u1 − v1)− (u2 − v2))

− ε
∫

Ω

[F (S, Ph(ũ1 − ũ2))− F (S, Ph(ṽ1 − ṽ2))]((u1 − v1)− (u2 − v2)).

In the first integral we apply the monotonicity and Lipschitz continuity of f in z,
Cauchy-Schwarz and the properties of the projection Ph. We obtain

− λ0

∫
Ω

[F (S, Ph(u1 − u2))− F (S, Ph(v1 − v2))]((u1 − v1)− (u2 − v2))

≤
∫

Ω

|F (S, Ph(u1 − u2))− F (S, Ph(v1 − v2))| ·

· |u1 − u2 − (v1 − v2)− Ph((u1 − u2)− (v1 − v2))|

≤ 2

τ
‖Ph(u− v)‖L2(Ω,R2)‖u− v − Ph(u− v)‖L2(Ω,R2) ≤

2

τ
CT h‖u− v‖2

H .

The second integral is treated with the Lipschitz continuity of f in z,

− ε
∫

Ω

[F (S, Ph(ũ1 − ũ2))− F (S, Ph(ṽ1 − ṽ2))]((u1 − v1)− (u2 − v2))

≤ ε
2

τ
‖ũ− ṽ‖H‖u− v‖H ≤

( ε
τ

)2 1

δ
‖ũ− ṽ‖2

H + δ‖u− v‖2
H ,

for arbitrary δ > 0. Summarizing, we obtained

c‖u− v‖2
H ≤

2

τ
CT h‖u− v‖2

H +
( ε
τ

)2 1

δ
‖ũ− ṽ‖2

H + δ‖u− v‖2
H .

We choose h0 > 0 and δ > 0 small to absorb the first and the third term. These choices
depend on τ and the lower bounds for the permeabilities, but they are independent of
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S and λ0. For sufficiently small ε we obtain the contraction property of T . Using the
special argument ũ = 0 and the solution T (0) we find that T maps a sufficiently large
ball into itself. The Banach fixed point theorem yields the existence of a solution
in this ball. The fixed point is globally unique, since the T is contractive on any
ball. This provides that for such ε > 0 the equation (Eλ) has a unique solution for
λ < λ0 + ε and hence the claim.

Step 4: Proof of the Lipschitz estimate (2.12). In contrast to the previous
steps, we now investigate how variations of the parameter function S effect solutions.
With this aim, let u be a solution of (2.11) for S = s ∈ L∞(Ω) with Gj = ∇ · Ḡj(s)
in the sense of Gj(s) : ϕ 7→ −

∫
Ω
Ḡj(s)∇ϕ for ϕ ∈ H0,j(Ω), where Ḡj is as in (2.10).

For other saturation data s̃ ∈ L∞(Ω), let ũ be the solution of (2.11) for S = s̃ with
Gj = ∇ · Ḡj(s̃).

In order to compare u with ũ, we choose ϕ = u − ũ as a test-function in both
variants of equation (2.11). We calculate

c‖u− ũ‖2
H ≤ Bs[u− ũ, u− ũ] =

∫
Ω

k1(s) |∇(u1 − ũ1)|2 + k2(s) |∇(u2 − ũ2)|2

=
2∑
j=1

∫
Ω

(kj(s̃)− kj(s))∇ũj · ∇(uj − ũj)

−
∫

Ω

[F (s, Ph(u1 − u2))− F (s̃, Ph(ũ1 − ũ2))] ((u1 − ũ1)− (u2 − ũ2))

+
2∑
j=1

∫
Ω

(Ḡj(s)− Ḡj(s̃))∇(uj − ũj).

(2.16)

We next use the a priori estimate (2.14), providing ‖ũ‖H ≤ Cap(R) for some constant
Cap(R) > 0. Hence the first sum on the right hand side can be estimated exploiting
the Lipschitz continuity of k1 and k2, Poincaré’s and Young’s inequality.

2∑
j=1

∫
Ω

(kj(s̃)− kj(s))∇ũj · ∇(uj − ũj)

≤ Lk‖s− s̃‖L∞(Ω)‖ũ‖H‖u− ũ‖H ≤ L2
k

Cap(R)2

δ
‖s− s̃‖2

L∞(Ω) + δ‖u− ũ‖2
H

for Lk > 0, which depends on the Lipschitz constants of k1 and k2. We can choose
δ > 0 sufficiently small to absorb the last term into the left hand side.

The second integral on the right hand side of (2.16) is treated with the mono-
tonicity of f in z. We furthermore use the Lipschitz continuity of f in s and z and
the properties of the L2-orthogonal projection Ph.

−
∫

Ω

[F (s, Ph(u1 − u2))− F (s̃, Ph(ũ1 − ũ2))] ((u1 − ũ1)− (u2 − ũ2))

= −
∫

Ω

[F (s, Ph(u1 − u2))− F (s̃, Ph(u1 − u2))] ((u1 − ũ1)− (u2 − ũ2))

−
∫

Ω

[F (s̃, Ph(u1 − u2))− F (s̃, Ph(ũ1 − ũ2))] ((u1 − ũ1)− (u2 − ũ2))
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≤ Lf‖s− s̃‖L∞(Ω)Cap(R)‖u− ũ‖H

+

∫
Ω

|F (s̃, Ph(u1 − u2))− F (s̃, Ph(ũ1 − ũ2))| ·

· |(u1 − ũ1)− (u2 − ũ2)− Ph((u1 − ũ1)− (u2 − ũ2))|

≤
L2
f

δ
Cap(R)2‖s− s̃‖2

L∞(Ω) + δ‖u− ũ‖2
H +

1

τ
CT h‖u− ũ‖2

H ,

for arbitrary δ > 0, where Lf > 0 depends on the Lipschitz constant of f in s.
Choosing h0, δ > 0 sufficiently small, we can absorb the last two terms into the left
hand side. Once more, the choice of h0 and δ is independent of s, s̃, and R.

The estimate of the last integral on the right hand side of (2.16) exploits the
Lipschitz continuity of kj,

2∑
j=1

∫
Ω

(Ḡj(s)− Ḡj(s̃))∇(uj − ũj)

≤
2∑
j=1

∫
Ω

|kj(s)− kj(s̃)| |∇p0,j + gj| |∇(uj − ũj)|

≤ C Lk‖s− s̃‖L∞(Ω)‖u− ũ‖H ≤ δ‖u− ũ‖2
H + C2L

2
k

δ
‖s− s̃‖2

L∞(Ω),

where C depends only on the data p0,j and gj for j = 1, 2. Once more, we can choose
δ > 0 sufficiently small to absorb the first term.

We conclude as follows. We insert the three intermediate estimates into (2.16),
choose δ, h0 > 0 sufficiently small, and absorb terms containing ‖u − ũ‖2

H into the
left hand side. As result, we obtain (2.12).

Remark 2.3. The Lipschitz continuity of kj in s was not used in the existence part
of the above lemma. Furthermore, the above proof is not restricted to our special
choice of the non-linearity Ψτ

h. The essential properties are the Lipschitz continuity
of Ψτ

h and the fact that Ψτ
h(·, x) is monotonically nondecreasing for every x ∈ Ω. The

special choice of Ψτ
h is used later in the compactness Lemma 2.5 and it was used in

Lemma 1.3.

With Lemma 2.2, we have shown that (2.3) is an ordinary differential equations
with Lipschitz continuous right hand side in P0(Ω, Th) for every t. Hence a local so-
lution of the Galerkin scheme of Definition 2.1 exists. Additionally, as a consequence
of the general theory of ordinary differential equations, we know the following: if
we can show that the norm ‖s(t)‖∞ is bounded for every solution s on an arbitrary
time interval (0, T ), with a bound that is independent of T , then the solution can be
extended and exists for all times.

In the next subsection we will derive such a uniform bound and thus obtain, in
particular, the global existence of solutions to the Galerkin scheme.

2.3 A priori estimates for the time-dependent system

We intend to perform the limit h → 0 for the solutions sh, p̃h1 , p̃
h
2 of the Galerkin

scheme of Definition 2.1. In a first step, we derive h-independent estimates for such
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solutions of the time-dependent system. The two lemmas 2.4 and 2.7 below are
very similar to results of [17], they are essentially adaptations to the two-phase flow
system. The two proofs follow a standard scheme.

Lemma 2.4 (Energy estimates). Let the coefficient functions, initial and boundary
data be given as in Lemma 2.2 and s0 ∈ L2(Ω). Then there exists a number C > 0,
independent of h > 0 and T > 0, such that every solution p̃h1 , p̃

h
2 , s

h to the Galerkin
scheme of Definition 2.1 satisfies the uniform bound

‖p̃h1‖2
L2(0,T ;H1(Ω)) + ‖p̃h2‖2

L2(0,T ;H1(Ω)) + ‖∂tsh‖2
L2(0,T ;L2(Ω)) ≤ C. (2.17)

Proof. We abbreviate the pressure differences as p̃h := p̃h1 − p̃h2 and ph := ph1 − ph2 =
Php̃

h. Concerning the boundary data, we use p0 := p0,1 − p0,2.
We start by writing the Galerkin evolution equation in a form that is similar to

the continuous formulation (1.1)–(1.2). We write (2.3) and (2.4) as

∂ts
h −∇ ·

(
k1(sh, x)(∇p̃h1 + g1)

)
= −Ψτ

h(p
h
c (s

h, x)− ph1 + ph2) + Ψτ
h(pc(s

h, x)− ph1 + ph2),
(2.18)

and write (2.3) and (2.5) as

− ∂tsh −∇ ·
(
k2(sh, x)(∇p̃h2 + g2)

)
= Ψτ

h(p
h
c (s

h, x)− ph1 + ph2)−Ψτ
h(pc(s

h, x)− ph1 + ph2).
(2.19)

We multiply (2.18) with p̃h1 − p0,1 and (2.19) with p̃h2 − p0,2 and integrate over Ω.
Summing up the resulting equations yields∫

Ω

∂ts
h(p̃h − p0) dx+

2∑
j=1

∫
Ω

kj(s
h, x)(∇p̃hj + gj)(∇p̃hj −∇p0,j) dx

= −
∫

Ω

[
Ψτ
h(p

h
c (s

h, x)− ph)−Ψτ
h(pc(s

h, x)− ph)
]

(p̃h − p0) dx.

(2.20)

The space derivatives on the left hand side provide a positive term,∫
Ω

kj(s
h, x)(∇p̃hj + gj)∇p̃hj ≥

κj
2
‖∇p̃hj ‖2

L2(Ω) − C1
j ,

where C1
j , j = 1, 2, depend on the bounds κj and κ0

j of the permeabilities and on the
gravity vectors gj.

The time derivative on the left hand side of (2.20) is treated with the hysteresis
differential equation (2.7), which reads

Φ0
h(∂ts

h(x, t)) + τ∂ts
h(x, t) + phc (s

h, x) 3 ph(x, t).

Using the monotonicity Φ0
h(ξ)ξ ≥ 0 for all ξ ∈ R, we can calculate with the primitive

P h
c (·, x) of phc (·, x), exploiting that Ph is an L2(Ω)-orthogonal projection,∫

Ω

∂ts
hp̃h =

∫
Ω

∂ts
hph ≥

∫
Ω

τ |∂tsh|2 + phc (s
h)∂ts

h = τ‖∂tsh‖2
L2(Ω) + ∂t

∫
Ω

P h
c (sh, x) .
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We have assumed that Pc and thus P h
c can be chosen as positive functions. We have

therefore recognized three relevant positive terms on the left hand side of (2.20).
Concerning the remaining integrals on the left hand side of (2.20) we calculate∣∣∣∣∫

Ω

∂ts
hp0

∣∣∣∣+
2∑
j=1

∣∣∣∣∫
Ω

kj(s
h)(∇p̃hj + gj)∇p0,j

∣∣∣∣
≤ τ

2
‖∂tsh‖2

L2(Ω) +
κ1

4
‖∇p̃h1‖2

L2(Ω) +
κ2

4
‖∇p̃h2‖2

L2(Ω) + C2
1 + C2

2 ,

where the constants C2
j , j = 1, 2, depend on κj and κ0

j , on the data p0,j (directly and
through p0 = p0,1 − p0,2), and on the gravity vectors gj.

It remains to treat the term on the right hand side of (2.20). Exploiting the
Lipschitz continuity of pc in x with constant ρ we find∣∣[Ψτ

h(p
h
c (x, s

h)− ph)−Ψτ
h(pc(x, s

h)− ph)
]∣∣ ≤ ρ

τ
h,

and the corresponding product is treated with the Cauchy-Schwarz inequality.
Summarizing, we find

κ1

4
‖∇p̃h1‖2

L2(Ω) +
κ2

4
‖∇p̃h2‖2

L2(Ω) +
τ

2
‖∂tsh‖2

L2(Ω) + ∂t

∫
Ω

P h
c (sh, x) dx

≤ C1
1 + C1

2 + C2
1 + C2

2 +
ρh

τ
(‖p̃h‖2

L2(Ω) + ‖p0‖2
L2(Ω)).

For sufficiently small h, depending only on coefficient and boundary data, we can ab-
sorb the term containing ‖p̃h‖2

L2(Ω). An integration over (0, T ) provides the estimate

(2.17). The constant C depends on the coefficient and boundary data and, addi-
tionally, on the L2-norm of the initial data, ‖s0‖L2(Ω), since the integral

∫
Ω
P h
c (Phs0)

enters the estimate.

2.4 Compactness

We are now in a position to apply a compactness result that has been developed
in the context of the Richards equation. Lemma 3.3 of [17] concludes from uniform
estimates for the family p̃h and the hysteresis relation for sh an L2(ΩT )-compactness
result for the sequence sh. The precise statement is as follows.

Lemma 2.5 ([17, Lemma 3.3], Regularity and compactness from the hysteresis rela-
tion). Let sh and p̃h satisfy the ordinary differential equation of the hysteresis relation

∂ts
h(xk, t) = −Ψτ

δ,h(pc(xk, s
h)− ph(xk, t)) ∀xk ∈ Ωh

sh(xk, 0) = Phs0(xk)

for ph = Php̃
h. Let q ∈ [1,∞] be a number and let s0 ∈ Lq(Ω) define initial values.

Then there holds an estimate

‖∂tsh‖L2(0,T ;Lq(Ω)) + ‖sh‖L2(0,T ;Lq(Ω)) ≤ C‖p̃h‖L2(0,T ;Lq(Ω)), (2.21)

where the constant C does not depend on h and δ.
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Let additionally the following estimate hold with C independent of h and δ,

‖p̃h‖L2(0,T ;H1(Ω)) ≤ C. (2.22)

Then the family sh is pre-compact in the space L2(Ω× (0, T )).

Regarding our application of the lemma we remark the following. (i) We use
Lemma 2.5 with δ = 0. The nonlinear function Ψτ

δ,h = Ψτ
0,h of Lemma 2.5 then co-

incides with our function Ψτ
h. (ii) Our non-linear function pc satisfies the conditions

that have been imposed for Lemma 2.5. (iii) The projection Ph is as in the present
contribution. (iv) We apply Lemma 2.5 to ph := ph1 − ph2 and p̃h := p̃h1 − p̃h2 , empha-
sizing that, by linearity, also Php̃

h = ph is satisfied. With this setting, the hysteresis
equation of the lemma is identical to our equation (2.3).

Lemma 2.6 (Compactness of the family of saturations). Let the coefficient functions,
initial and boundary data be as in Lemma 2.2 and s0 ∈ L2(Ω). Let p̃h1 , p̃

h
2 , s

h be a
family of solutions to the Galerkin scheme of Definition 2.1 for a sequence h → 0.
Then

the sequence sh is pre-compact in L2(Ω× (0, T )). (2.23)

Proof. By the above remarks, we can apply Lemma 2.5, to the pressure difference
p̃h := p̃h1 − p̃h2 . We use the integrability exponent q = 2. The a priori estimates of
Lemma 2.4 provide the boundedness

‖p̃h‖2
L2(0,T ;H1(Ω)) ≤ 2(‖p̃h1‖2

L2(0,T ;H1(Ω)) + ‖p̃h2‖2
L2(0,T ;H1(Ω))) ≤ C

with C independent of h. This shows that (2.22) is satisfied. We can apply the second
part of Lemma 2.5 and conclude (2.23).

2.5 Limit procedure h→ 0

We consider now limit functions to the solution sequence (sh, p̃h1 , p̃
h
2) for h→ 0. Due

to the uniform estimates of Lemma 2.4 we find a subsequence h → 0 and limit
functions s, p1, p2 such that

p̃hj ⇀ pj in L2(0, T ;H1(Ω)) for j = 1, 2, (2.24)

sh ⇀ s, ∂ts
h ⇀ ∂ts in L2(0, T ;L2(Ω)). (2.25)

Furthermore, by the compactness result of (2.23) we find the strong convergence

sh → s in L2(0, T ;L2(Ω)). (2.26)

The following lemma concludes the proof of Theorem 1.1.

Lemma 2.7. Let the data be as in Lemma 2.2 and s0 ∈ L2(Ω). Let p̃h1 , p̃
h
2 , s

h be a
family of solutions to the Galerkin scheme of Definition 2.1 for a sequence h → 0.
For a subsequence, let p1, p2, and s be limit functions as in (2.24)–(2.26). Then the
limit triple (s, p1, p2) ∈ L2(0, T ;L2(Ω)) × L2(0, T ;H1(Ω,R2)) is a variational weak
solution according to Definition 1.2.
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Proof. The limit functions are contained in the function spaces as described in (1.11).
The weak convergence allows to take limits in the initial and boundary conditions,
hence they are satisfied by the limit functions. We have to check the three items of
Definition 1.2. In the calculations below we use once more ph = ph1−ph2 , p̃h = p̃h1− p̃h2 ,
and p0 = p0,1 − p0,2.

Item 1. We have to show (1.1)–(1.2), i.e. that ∂ts = ∇ · (k1(s)[∇p + g1]) and
∂ts = −∇ · (k2(s)[∇p + g2]) is satisfied in the weak sense with the no-flux boundary
conditions. To verify these equations, it suffices to consider test-functions ϕj ∈
C∞c ((0, T )× (Ω ∪ Γj)). We start from the ordinary differential equation (2.3) of the
Galerkin scheme and the elliptic equations (2.4) to write∫ T

0

∫
Ω

∂ts
hϕ1 dx dt+

∫ T

0

∫
Ω

k1(sh, x)(∇p̃h1 + g1)∇ϕ1 dx dt

= −
∫ T

0

∫
Ω

[
Ψτ
h(p

h
c (s

h, x)− ph)−Ψτ
h(pc(s

h, x)− ph)
]
ϕ1 dx dt.

As seen already in the proof of Lemma 2.4, the Lipschitz continuity of pc guarantees
that the right hand side tends to zero as h→ 0. On the left hand side we can pass to
the limit functions thanks to (2.24)–(2.26). This shows that the evolution equation
(1.1) holds with the no-flux condition.

Equation (2.3) of the Galerkin scheme can also be combined with (2.5), tested
with ϕ2. The result is a relation similar to the above, but expressing ∂ts

h in terms
of k2 and p̃2. The limit can be performed in the same way and provides the second
evolution equation, (1.2).

Item 2. We want to show the pointwise inclusion for ph = ph1 − ph2 as demanded
in item 2 of Definition 1.2. The discrete hysteresis system (2.7) provides, pointwise
in Ω× (0, T ),

[−γh(x), γh(x)] 3 ph(x, t)− phc (sh(x, t), x)− τ∂tsh(x, t) (2.27)

for almost every x ∈ Ω and t ∈ (0, T ). Introducing small error terms, we write this
relation as

[−γ(x), γ(x)] 3 p̃h(x, t)− pc(sh(x, t), x)− τ∂tsh(x, t) (2.28)

+
(
ph − p̃h

)
(x, t) +

(
pc(s

h(x, t), x)− phc (sh(x, t), x)
)

+ rh(x, t),

where the error term rh(x, t) concerns the replacement of γ by γh and satisfies
|rh(x, t)| ≤ |γh(x) − γ(x)| ≤ Ch due to the Lipschitz continuity of γ in x. Simi-
larly, the error introduced by pc(s

h)− phc (sh) is uniformly bounded by h.

Since [−γ(x), γ(x)] ⊂ R is a convex set, the set of functions f : ΩT → R with
f(x, t) ∈ [−γ(x), γ(x)] is convex. As a convex and closed subset of L2(ΩT ), it is
also weakly closed. The right hand side of (2.28) converges weakly in L2(ΩT ) to
p− pc(s)− τ∂ts, therefore this limit satisfies again the pointwise inclusion.

Item 3. We have to prove the variational inequality (1.12) for (s, p1, p2). To this
end we multiply equation (2.4) with p̃h1 − p0,1 and equation (2.5) with p̃h2 − p0,2 and
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integrate over (0, T )× Ω. We find

0 =

∫ T

0

∫
Ω

k1(sh, x)(∇p̃h1 + g1)(∇p̃h1 −∇p0,1) dx dt

−
∫ T

0

∫
Ω

Ψτ
h(pc(s

h, x)− ph1 + ph2)(p̃h1 − p0,1) dx dt

and

0 =

∫ T

0

∫
Ω

k2(sh, x)(∇p̃h2 + g2)(∇p̃h2 −∇p0,2) dx dt

+

∫ T

0

∫
Ω

Ψτ
h(pc(s

h, x)− ph1 + ph2)(p̃h2 − p0,2) dx dt.

Adding these two equations yields

0 =
2∑
j=1

[∫ T

0

∫
Ω

kj(s
h, x)(∇p̃hj + gj)(∇p̃hj −∇p0,j)

]
dx dt

−
∫ T

0

∫
Ω

Ψτ
h(pc(s

h, x)− ph)(p̃h − p0) dx dt.

(2.29)

The rest of this proof consists in performing the limit h→ 0 in (2.29). The limiting
relation will be the variational inequality (1.12).

We start with some lower order terms. The weak convergences (2.24)–(2.25) and
the strong convergence (2.26) together with the continuity of kj allow to take the
limits

−
∫ T

0

∫
Ω

kj(s
h, x)

(
∇p̃jh + gj

)
∇p0,j dx dt→ −

∫ T

0

∫
Ω

kj(s, x) (∇pj + gj)∇p0,j dx dt,∫ T

0

∫
Ω

kj(s
h, x)gj∇p̃jh dx dt→

∫ T

0

∫
Ω

kj(s, x)gj∇pj dx dt.

Concerning the quadratic term, we can use lower semi-continuity of the norm. Strong
convergence of sh together with the continuity of kj, using an argument based on
Egorov’s Theorem, provides

lim inf
h→0

∫ T

0

∫
Ω

kj(s
h, x)

∣∣∇p̃hj ∣∣2 dx dt ≥ ∫ T

0

∫
Ω

kj(s, x) |∇pj|2 dx dt.

We finally consider the terms in (2.29) containing Ψτ
h. We exploit the Galerkin

relation (2.3) in order to re-write the remaining term as

−
∫ T

0

∫
Ω

Ψτ
h

(
pc(s

h)− ph
)
(p̃h − p0) dx dt =

∫ T

0

∫
Ω

∂ts
h(p̃h − p0) dx dt

+

∫ T

0

∫
Ω

[
Ψτ
h(p

h
c (s

h)− ph)−Ψτ
h

(
pc(s

h)− ph
)]

(p̃h − p0) dx dt.

(2.30)
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As noted before, the last integral of (2.30) tends to zero by the Lipschitz continuity
of pc in x. In the other integral, the convergence

−
∫ T

0

∫
Ω

∂ts
h p0 dx dt→ −

∫ T

0

∫
Ω

∂ts p0 dx dt

is an immediate consequence of the weak convergence of ∂ts
h.

In the remaining integral on the right hand side of (2.30) we use the hysteresis
relation (2.7), ∫ T

0

∫
Ω

∂ts
h p̃h dx dt =

∫ T

0

∫
Ω

∂ts
h ph dx dt

∈
∫ T

0

∫
Ω

∂ts
h
(
Φ0
h(∂ts

h) + τ∂ts
h + phc (s

h, x)
)
dx dt

=

∫ T

0

∫
Ω

γh(x) |∂tsh|+ τ |∂tsh|2 + ∂ts
h phc (s

h) dx dt.

In the first two terms, the limit can be estimated by the weak lower semicontinuity
of the L2-norm,

lim inf
h→0

∫ T

0

∫
Ω

γh(x) |∂tsh|+ τ
∣∣∂tsh∣∣2 dx dt ≥ ∫ T

0

∫
Ω

γ(x) |∂ts|+ τ |∂ts|2 dx dt.

We exploited here the uniform convergence γh → γ on Ω, which is a consequence of
the Lipschitz continuity of γ.

The remaining integral over ∂ts
hphc (s

h, x) is a total time derivative, but this fact
is not needed here. We use the weak convergence of the first factor and the strong
convergence of the second factor (note that phc is Lipschitz continuous in s) in order
to conclude ∫ T

0

∫
Ω

∂ts
hphc (x, s

h) dx dt→
∫ T

0

∫
Ω

∂ts pc(x, s) dx dt

as h tends to 0. With this, we have analyzed all limits of integrals on the right hand
side of (2.30), and thus of all integrals in (2.29). The variational inequality (1.12) is
derived.

Lemma 2.7 provides the existence of a variational weak solution. By Lemma 1.3,
this variational weak solution is a solution of the original problem as described in
Theorem 1.1. Therefore the existence of a solution to the two-phase problem with
hysteresis is shown.

3 Numerical treatment

We propose a straightforward generalization of the numerical scheme presented in
[17]. We introduce Φτ

δ as a regularization of Φτ in (2.1) with a positive regularizing
parameter δ, see (3.4), the inverse is denoted by Ψτ

δ : R → R, see (3.5). We assume
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here that γ > 0 and τ > 0 are constant. The two-phase system we consider then
reads

∂ts = ∇ · (k1(s)(∇p1 + %1en)), (x, t) ∈ Ω× (t0, T ), (3.1)

−∂ts = ∇ · (k2(s)(∇p2 + %2en)), (x, t) ∈ Ω× (t0, T ), (3.2)

∂ts = Ψτ
δ (p1 − p2 − pc(s)), (x, t) ∈ Ω× (t0, T ). (3.3)

The functions Φτ
δ and Ψτ

δ read

Φτ
δ = Φτ

δ (σ) =


γ + τσ for σ > δ,

(γ
δ

+ τ)σ for σ ∈ [−δ, δ],
−γ + τσ for σ < −δ,

(3.4)

and

Ψτ
δ = Ψτ

δ (z) =


z−γ
τ

for z > γ + τδ,

(γ
δ

+ τ)−1z for z ∈ [−(γ + τδ), γ + τδ],
z+γ
τ

for z < −(γ + τδ).

(3.5)

In all numerical experiments, we use the permeabilities

k1(s) =

{
κ1 for s < a1,

κ1 + k0,1(s− a1)2 for s ≥ a1

and

k2(s) =

{
κ2 for s > 1− a2,

κ2 + k0,2((1− a2)− s)2 for s ≤ 1− a2

with a1, a2 ∈ [0, 1] and κ1, κ2, k0,1, k0,2 > 0. For pc we assume a van Genuchten type
relation

pc(s) =

{
α+

(
1

1−a2−s+εp −
1

1−a2−a1+εp

)
for s > a1,

α−(s− a1) for s ≤ a1

with α± ∈ R and a small regularizing parameter εp > 0. For plots of the previously
defined functions see Fig. 1.
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Figure 1: Plots of the functions Ψτ
δ , pc, k1, k2 for parameters γ = 4, τ = 0.1,

δ = 10−7, κ1 = 10−4, κ2 = 10−2, k0,1 = 1, k0,2 = 0.1, a1 = 0.32, a2 = 0, α+ = 0.1,
α− = 50, εp = 10−10.

For the numerical results presented here, we consider domains Ω := (−L,L)n ⊂
Rn with L > 0. With the definition Γ± := {x ∈ Ω : xn = ±L} ⊂ ∂Ω and given
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functions p1,−, j2,− : Γ− × (t0, T ] → R and j1,+, p2,+ : Γ+ × (t0, T ] → R, we assume
Dirichlet boundary conditions p1 = p1,− for x ∈ Γ− and p2 = p2,+ for x ∈ Γ+ and
Neumann boundary conditions

j1 := −k1(s)(∇p1 + %1en) · ν+ = j1,+ for x ∈ Γ+, (3.6)

j2 := −k2(s)(∇p2 + %2en) · ν− = j2,− for x ∈ Γ−, (3.7)

ν± = ±en denoting the outer normals to Γ±. In the lateral directions, i.e. for
xi ∈ {−L,L}, i ∈ {1, . . . , n− 1}, we assume periodic pressures p1 and p2.

3.1 Discretization

The numerical approach is to discretize the Galerkin scheme of Definition 2.1 and to
regard the corresponding set of equations (for every time step) as one large system
for saturation and pressures. All nonlinear terms are linearized in the same way as
proposed in [17].

In space, we apply linear finite elements to discretize the above system. We apply
adaptivity in space with an L2–like error indicator for the discrete saturation based
on the jump residual as discussed in [17]. Furthermore, we use a simple adaptive
strategy in time, where the time step ∆tm is inversely proportional to the maximum
of the discrete time derivative of the saturation [17]. We present numerical examples
which show the validity of the algorithm implemented in the FEM toolbox AMDiS
[27]. The resulting linear system of equations is solved by a direct solver (UMFPACK,
[15]).

3.2 Numerical Results

For the numerical results presented in the following, we have used a time dependent
boundary flux

j1,+ =

{
j0

1,+ for t < ts,

js1,+ for t ≥ ts

with ts > t0 and j0
1,+, j

s
1,+ ∈ R. The change in the upper boundary condition at a

switching time ts is important in the modelling of fingering experiments, see [24]. On
the lower boundary, we assume the constant flux

j2,− ≡ j0
2,−

for a given value j0
2,− ∈ R. The Dirichlet boundary conditions are

p1,− ≡ γ − α−a1, p2,+ ≡ p0
2,+

with a constant pressure p0
2,+. We study perturbations of the initial condition s = 0

of the form

s0(x) =
10∑
i=1

Ai(1− tanh(3(|x− x0,i| − 1/2))), (3.8)

where x0,i = (−L + (2i−1)
10

L, 23.5), i = 1, . . . , 10 and amplitudes A1 = 0.6, A2 = 0.4,
A3 = 0.2, A4 = 0.5, A5 = 0.2, A6 = 0.3, A7 = 0.1, A8 = 0.7, A9 = 0.5, A10 = 0.1. We
provide a list of all other parameters in Table 1.
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parameter γ κ1 κ2 k0,1 k0,2 δ τ a1 a2

value 4 10−4 10−2 1 0.1 10−7 0.1; 0.5 0.32 0

parameter %1 %2 εp α+ α− j0
1,+ js1,+ p0

2,+ j0
2,− L

value 1 0 10−10 0.1 50 0.524 0.01 0 0 24

Table 1: Parameters used for numerical results.

In the following, we will compare numerical results for the two-phase system with
results for the hysteresis Richards system which is solved by the numerical method
described in [17]. In order to be able to compare the solutions at similar times t, we
have chosen a time-dependent parameter

κ2 = κ2(t) =

{
105 for t < ts,

10−2 for t ≥ ts.

Formally, in the limit κ2 → ∞, the two-phase system reduces to the hysteresis
Richards model treated in [17]. The above choice of κ2 has the effect that the discrete
saturation fields for the two models are almost identical at time t = ts. We emphasize
that, also after the switching time ts, in regions of low saturation, the permeability
of the second fluid is much larger than the permeability of the first fluid, see Figure
1.

3.2.1 First results for two-phase flow evolution

Numerical results for the evolution of fingers in the two-phase flow model are pre-
sented in Fig. 2. The gray-scale picture indicates the saturation sh for the parameter
τ = 0.5 and the initial condition (3.8). From the perturbations, fingers start to grow
and evolve basically into the direction of gravity.

Figure 2: Discrete saturation for τ = 0.5 at times t = −2, t ≈ 106, t ≈ 205, t ≈ 421.

We observe that fingers can develop in the two-phase flow system with hysteresis.
Some fingers seize to grow after some time, the surviving fingers have a comparable
length, but there are differences in width and length. We also observe that fingers
can repel each other, we refer to the last two long fingers in Figure 2.

We recall that the hysteresis terms contribute only in an indirect way to the
evolution of fingers. Below the highly wetted top layer of the domain, the system is
in an imbibition process, hence the static hysteresis is not of relevance in that region.
In contrast, in the top layer of the domain, the effect of the hysteresis terms is that
the variations of the saturation distribution cannot be removed during the evolution.
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3.2.2 Comparison with the Richards equation

Our aim is to compare numerically the two-phase flow equations with the Richards
equation. More precisely, we investigate if the presence of a second fluid has an effect
that can be compared to the effect of variations in the time-delay parameter τ . For
this study, we compare four different solutions as indicated in Table 2.

two-phase flow, τ = 0.5 Richards equation, τ = 0.5
Fig. 3, left Fig. 3, middle

two-phase flow, τ = 0.1 Richards equation, τ = 0.1
Fig. 4, left Fig. 4, middle

Table 2: Description of the data set generating four different solutions.

Three qualitative observations can be made. First, the deviations of the growth
directions from the direction of gravity are present for several fingers in the case of
two-phase flow, but not for the Richards equation. Second, for the two-phase flow
system, fingers tend to be thicker. Third, long fingers are shorter and short fingers
are longer, if compared to the results for the Richards equation. These differences are
further illustrated in the right part of Fig. 3, where level sets {sh = 1

2
} are displayed

in one plot for both cases.

-24

-16

-8

 0

 8

 16

 24

-24 -16 -8  0  8  16  24

two-phase

Richards

Figure 3: Discrete saturation for two-phase flow (left) and Richards equation (middle)
at time t ≈ 421, plot of level sets {sh = 1

2
} (right, black: two-phase; red/gray:

Richards equation). In both cases τ = 0.5 has been used.

A similar comparison is shown in Fig. 4 for τ = 0.1. Basically, the same qualitative
differences between two-phase flow and Richards equation are visible. In addition, in
both cases, reduction of τ corresponds to reduction of the thickness of the fingers.

We conclude with the observation that in the parameter setup investigated here,
the influence of including a second phase in the model is not comparable with the
influence of reducing the parameter τ .
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Figure 4: Discrete saturation for two-phase flow (left) and Richards equation (middle)
at times t ≈ 529 and t ≈ 528, respectively, plot of level sets {sh = 1

2
} (right, black:

two-phase; red/gray: Richards equation). In both cases τ = 0.1 has been used.
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