4 research outputs found
Low-power nuclear power plants in the context of electric power systems transformation
Increasing economic importance of the Arctic, further intensification of northern sea routes, and exceptional sensitivity of the arctic natural environment to anthropogenic impacts are fundamental factors for a comprehensive study of environmental aspects in the application of innovative technologies for the development of infrastructure in the Arctic. Despite the growing interest in low-power nuclear power plants as a distributed generation facility, their possible application in technologically isolated power systems does not lose relevance. The development of both the Arctic and Far Eastern regions of the Russian Federation presents great opportunities and demand for the use of nuclear power sources. Also, development programs for the Russian arctic zone imply a significant increase in the role and number of nuclear power facilities, in other words of potential radiation-hazardous facilities. Large-scale use of nuclear-powered installations in the Arctic necessitates advanced development of a scientifically grounded and modern forecasting system as well as assessments of threats and risks in case of possible radiation emergencies at nuclear- and radiation-hazardous facilities. Also, the development of proposals for necessary measures to minimize negative consequences of such emergencies is required. This is especially true for the case of compact placement of industrial, infrastructure and residential facilities in the Arctic in the immediate vicinity of nuclear facilities. The paper demonstrates that the demand for low-power nuclear power plants and their competitiveness will grow steadily in the conditions of electric-power industry decentralization, further spread of distributed generation and the development of technologically isolated power systems. Approaches to the generation of a low nuclear-power system based on the philosophy of industrialization of production and centralized management are presented. Special features of the environmental impact assessment of low-power nuclear power plants for the development of a methodology to study the radio-ecological hazard related problems are provided
Safe development of nuclear power technologies in the Arctic: prospects and approaches
The demands for nuclear power technologies in the Arctic for solving social and economic problems of the state can only be satisfied if adequate strategies of their safe handling at all stages from design to decommissioning are defined, methodological approaches and mathematical models for predicting and minimizing adverse environmental impacts of potential emergency situations at such facilities are developed, and scientifically-based results yielded within a decision-making support system for the elimination of such emergencies are applied. Special relevance of these requirements is determined by unique features of the Arctic nature and its role in the generation of climatic and hydrological processes in the World Ocean.
Main results and generalized conclusions based on the analysis of radiological consequences of the large-scale application of nuclear power industry for the benefit of economic development of the Arctic region are provided in the present paper. The analysis was performed within the framework of the complex research project âDevelopment of the methodological approaches and mathematical models to access the environmental impact of the possible accidents at the floating nuclear power objects, model calculations of the radiation propagation in the Arctic aquatic territories in case of emergency situationsâ. The increasing demand for the low-power nuclear power plants for the benefit of development of remote areas, the technological and economic advantages of such power plants as well as minimal possible environmental consequences of the hypothetic accidents resulted in the qualitative changes in the attitude towards their usage. Estimation was made of the scale of application of nuclear power and results were obtained of numerical modeling of distribution of reactivity in case of accidents. The conclusion was drawn on the necessity to adhere to the low-power nuclear energy generation development strategy based on the modular design concept