876 research outputs found

    The Role of Anti-Money Laundering Law in Mobile Money Systems in Developing Countries

    Get PDF
    This Article explains that the application of anti-money laundering (AML) regulation, supervision, and enforcement is relevant to financial inclusion, but is not, in itself, necessarily determinative of the success or failure of financial inclusion initiatives or their impact on economic growth. Successful payments system innovation, particularly payment tools targeting underserved markets, requires effective entrepreneurship operating in an environment of good governance and rational economic policies. AML safeguards help to deter corruption and other forms of financial crime, which helps to establish and maintain economic stability and preserve the rule of law, creating a supportive environment for innovation and financial inclusion. This Article explains that the revised Financial Action Task Force (FATF) Recommendations, the international standard for AML practices, promote a risk-based approach to implementation, allowing countries flexibility in order to encourage the widest possible participation in the regulated and supervised financial system

    Children's biobehavioral reactivity to challenge predicts DNA methylation in adolescence and emerging adulthood.

    Get PDF
    A growing body of research has documented associations between adverse childhood environments and DNA methylation, highlighting epigenetic processes as potential mechanisms through which early external contexts influence health across the life course. The present study tested a complementary hypothesis: indicators of children's early internal, biological, and behavioral responses to stressful challenges may also be linked to stable patterns of DNA methylation later in life. Children's autonomic nervous system reactivity, temperament, and mental health symptoms were prospectively assessed from infancy through early childhood, and principal components analysis (PCA) was applied to derive composites of biological and behavioral reactivity. Buccal epithelial cells were collected from participants at 15 and 18 years of age. Findings revealed an association between early life biobehavioral inhibition/disinhibition and DNA methylation across many genes. Notably, reactive, inhibited children were found to have decreased DNA methylation of the DLX5 and IGF2 genes at both time points, as compared to non-reactive, disinhibited children. Results of the present study are provisional but suggest that the gene's profile of DNA methylation may constitute a biomarker of normative or potentially pathological differences in reactivity. Overall, findings provide a foundation for future research to explore relations among epigenetic processes and differences in both individual-level biobehavioral risk and qualities of the early, external childhood environment

    Use of novel DNA methylation signatures to distinguish between human airway structural cell types

    Get PDF
    INTRODUCTION: Chronic inflammatory and fibrotic lung diseases like asthma, COPD and pulmonary fibrosis are characterised by modified phenotype of the airway structural cells. Airway walls are comprised of a robust epithelial layer that lines the lumen followed by the basement membrane, submucosa predominantly composed of fibroblasts and finally enveloped by a bulk of smooth muscle cells that determine the relaxation and constriction of the airways. The phenotype of airway structural cells is determined by epigenetic alterations such as DNA methylation, which alters the activation status of a range of important inflammatory and remodelling genes. Here we determined if airway structural cells (Epithelial cells, fibroblasts and smooth muscle cells) have different DNA methylome signatures that can be used to distinguish between them. This will offer a reference standard for identifying cell type specific DNA methylation changes induced by various inflammatory stimuli. EXPERIMENTAL METHODS: Illumina Human Methylation 450K Beadchip (HM450K) was used to perform genome-wide methylome screening on 17 bronchial fibroblast (BrF), 23 lung parenchymal fibroblast (LgF), 17 airway epithelial cell (Ep) and 6 airway smooth muscle cell (ASM) samples isolated from healthy individuals. The data was normalised using funtoonorm, a specialised algorithm in R developed for multiple tissue types. R packages minfi, limma and DMRcate was used for CpG site exclusion and identification of significant differentially methylated regions (DMR) specific to each of the four cell types. RESULTS AND DISCUSSION: Epithelial cells distinctly separated from other lung cells (791 DMR). LgF, BrF and ASM had 13, 10 and 1 signature DMR respectively. Despite close anatomical proximity, ASM and BrF displayed 2 DMR when compared to each other. Interestingly, fibroblasts obtained from airway showed 6 DMR in comparison to those obtained from lung parenchyma, suggesting that the same cell type obtained from different parts of the lung can have significantly different methylation patterns that might lead to phenotypic differences. CONCLUSION: We have identified cell and tissue specific methylation signatures which can be used to differentiate between different types of airway structural cells. The airway epithelial cells showed the greatest separation from other airway structural cells. The Bronchial fibroblasts varied minimally from airway smooth muscle cells despite its significant separation from airway epithelial cells and parenchymal fibroblasts

    Optimized CRISPR-mediated gene knockin reveals FOXP3-independent maintenance of human Treg identity

    Get PDF
    Regulatory T cell (Treg) therapy is a promising curative approach for a variety of immune-mediated conditions. CRISPR-based genome editing allows precise insertion of transgenes through homology-directed repair, but its use in human Tregs has been limited. We report an optimized protocol for CRISPR-mediated gene knockin in human Tregs with high-yield expansion. To establish a benchmark of human Treg dysfunction, we target the master transcription factor FOXP3 in naive and memory Tregs. Although FOXP3-ablated Tregs upregulate cytokine expression, effects on suppressive capacity in vitro manifest slowly and primarily in memory Tregs. Moreover, FOXP3-ablated Tregs retain their characteristic protein, transcriptional, and DNA methylation profile. Instead, FOXP3 maintains DNA methylation at regions enriched for AP-1 binding sites. Thus, although FOXP3 is important for human Treg development, it has a limited role in maintaining mature Treg identity. Optimized gene knockin with human Tregs will enable mechanistic studies and the development of tailored, next-generation Treg cell therapies
    • …
    corecore