11 research outputs found

    The first record of a potential pest Orientus ishidae (Matsumura, 1902) (Hemiptera: Cicadellidae) in Poland

    Get PDF
    This study provides the first data on the occurrence of the mosaic leafhopper Orientus ishidae (Matsumura, 1902) (Hemiptera: Cicadellidae) in Poland. This species is native to Southeast Asia, adventive in Europe and feeds on cultivated plants. Orientus ishidae is a well-known carrier of Grapevine flavescence doree phytoplasma which causes the grapevine yellows disease. Symptoms of phytoplasma diseases of grapevine include deformations, leaf chlorosis and withering of plants. The appearance of this species in Poland might be caused by observed climate variations and insufficient plant health controls in the international trade of plants

    "Sulcia" symbiont of the leafhopper "Macrosteles laevis" (Ribaut, 1927) (Insecta, Hemiptera, Cicadellidae : Deltocephalinae) harbors "Arsenophonus" bacteria

    Get PDF
    The leafhopper Macrosteles laevis, like other plant sap-feeding hemipterans, lives in obligate symbiotic association with microorganisms. The symbionts are harbored in the cytoplasm of large cells termed bacteriocytes, which are integrated into huge organs termed bacteriomes. Morphological and molecular investigations have revealed that in the bacteriomes of M. laevis, two types of bacteriocytes are present which are as follows: bacteriocytes with bacterium Sulcia and bacteriocytes with Nasuia symbiont. We observed that in bacteriocytes with Sulcia, some cells of this bacterium contain numerous cells of the bacterium Arsenophonus. All types of symbionts are transmitted transovarially between generations. In the mature female, the bacteria Nasuia, bacteria Sulcia, and Sulcia with Arsenophonus inside are released from the bacteriocytes and start to assemble around the terminal oocytes. Next, the bacteria enter the cytoplasm of follicular cells surrounding the posterior pole of the oocyte. After passing through the follicular cells, the symbionts enter the space between the oocyte and follicular epithelium, forming a characteristic “symbiont ball.

    Symbiotic microorganisms of the leafhopper Deltocephalus pulicaris (Fallén, 1806) (Insecta, Hemiptera, Cicadellidae : Deltocephalinae) : molecular characterization, ultrastructure and transovarial transmission

    Get PDF
    The ovaries of the leafhopper Deltocephalus pulicaris are accompanied by large organs termed bacteriomes, which are composed of numerous polyploid cells called bacteriocytes. The cytoplasm of bacteriocytes is tightly packed with symbiotic microorganisms. Ultrastructural and molecular analyses have revealed that bacteriocytes of D. pulicaris contain two types of symbionts: the bacterium "Candidatus Sulcia muelleri" and the bacterium "Candidatus Nasuia deltocephalinicola". Both symbionts are transovarially transmitted from the mother to the next generation

    Dual "bacterial-fungal" symbiosis in deltocephalinae leafhoppers (Insecta, Hemiptera, Cicadomorpha : Cicadellidae)

    Get PDF
    The symbiotic systems (types of symbionts, their distribution in the host insect body, and their transovarial transmission between generations) of four Deltocephalinae leafhoppers: Fieberiella septentrionalis, Graphocraerus ventralis, Orientus ishidae, and Cicadula quadrinotata have been examined by means of histological, ultrastructural, and molecular techniques. In all four species, two types of symbionts are present: bacterium Sulcia (phylum Bacteroidetes) and yeast-like symbionts closely related to the entomopathogenic fungi (phylum Ascomycota, class Sordariomycetes). Sulcia bacteria are always harbored in giant bacteriocytes, which are grouped into large organs termed “bacteriomes.” In F. septentrionalis, G. ventralis, and O. ishidae, numerous yeast-like microorganisms are localized in cells of the fat body, whereas in C. quadrinotata, they occupy the cells of midgut epithelium in large number. Additionally, in C. quadrinotata, a small amount of yeast-like microorganisms occurs intracellularly in the fat body cells and, extracellularly, in the hemolymph. Sulcia bacteria in F. septentrionalis, G. ventralis, O. ishidae, and C. quadrinotata, and the yeast-like symbionts residing in the fat body of F. septentrionalis, G. ventralis, and O. ishidae are transovarially transmitted; i.e., they infect the ovarioles which constitute the ovaries

    Particulate guanylyl cyclases: multiple mechanisms of activation.

    No full text
    Cyclic GMP (cGMP), a key messenger in several signal transduction pathways, is synthesized from GTP by a family of enzymes termed guanylyl cyclases, which are found in two forms: cytosolic (soluble) and membrane-bound (particulate). The past decade has brought significant progress in understanding the molecular mechanisms that underlie the regulation of particulate guanylyl cyclases and new members of their family have been identified. It has become more evident that the basic mechanism of catalysis of guanylyl cyclases is analogous to that recognized in adenylyl cyclases. Here we review the known basic mechanisms that contribute to the regulation of particulate guanylyl cyclases

    Metabolism of cyclic GMP in peritoneal macrophages of rat and guinea pig.

    No full text
    The aim of our studies was to establish which enzymes constitute the "cGMP pathway" in rat and guinea pig peritoneal macrophages (PM). We found that in guinea pig PM synthesis of the nucleotide was significantly enhanced in response to activators of soluble guanylyl cyclase (sGC) and it was only slightly stimulated by specific activators of particulate guanylyl cyclases (pGC). In contrast, rat PM responded strongly to atrial natriuretic peptide (ANP), the activator of pGC type A. The rat cells synthesized about three-fold more cGMP than an equal number of the guinea pig cells. The activity of phosphodiesterases (PDE) hydrolyzing cGMP was apparently regulated by cGMP itself in PM of both species and again it was higher in the rat cells than in those isolated from guinea pig. However, guinea pig PM revealed an activity of Ca2+/calmodulin-dependent PDE1, which was absent in the rat cells. Using Western blotting analysis we were unable to detect the presence of cGMP-dependent protein kinase 1 (PKG1) in PM isolated from either species. In summary, our findings indicate that particulate GC-A is the main active form of GC in the rat PM, while in guinea pig macrophages the sGC activity dominates. Since the profiles of the PDE activities in rat and guinea pig PM are also different, we conclude that the mechanisms regulating cGMP metabolism in PM are species-specific. Moreover, our results suggest that targets for cGMP other than PKG1 should be present in PM of both species

    Ca2+differently affects hydrophobic properties of guanylyl cyclase-activating proteins (GCAPs) and recoverin.

    No full text
    Guanylyl cyclase-activating proteins (GCAPs) and recoverin are retina-specific Ca2+-binding proteins involved in phototransduction. We provide here evidence that in spite of structural similarities GCAPs and recoverin differently change their overall hydrophobic properties in response to Ca2+. Using native bovine GCAP1, GCAP2 and recoverin we show that: i) the Ca2+-dependent binding of recoverin to Phenyl-Sepharose is distinct from such interactions of GCAPs; ii) fluorescence intensity of 1-anilinonaphthalene-8-sulfonate (ANS) is markedly higher at high [Ca2+]gfree (10 μM) than at low [Ca2+]free (10 nM) in the presence of recoverin, while an opposing effect is observed in the presence of GCAPs; iii) fluorescence resonance energy transfer from tryptophane residues to ANS is more efficient at high [Ca2+]free in recoverin and at low [Ca2+]free in GCAP2. Such different changes of hydrophobicity evoked by Ca2+ appear to be the precondition for possible mechanisms by which GCAPs and recoverin control the activities of their target enzymes
    corecore