146 research outputs found

    Boundary Bound States in Affine Toda Field Theory

    Get PDF
    We demonstrate that the generalization of the Coleman-Thun mechanism may be applied to the situation, when considering scattering processes in 1+1-dimensions in the presence of reflecting boundaries. For affine Toda field theories we find that the binding energies of the bound states are always half the sum over a set of masses having the same colour with respect to the bicolouration of the Dynkin diagram. For the case of E6E_6-affine Toda field theory we compute explicitly the spectrum of all higher boundary bound states. The complete set of states constitutes a closed bootstrap.Comment: 16 p., Late

    Dynamical correlations and quantum phase transition in the quantum Potts model

    Get PDF
    We present a detailed study of the finite temperature dynamical properties of the quantum Potts model in one dimension.Quasiparticle excitations in this model have internal quantum numbers, and their scattering matrix {\gf deep} in the gapped phases is shown to take a simple {\gf exchange} form in the perturbative regimes. The finite temperature correlation functions in the quantum critical regime are determined using conformal invariance, while {\gf far from the quantum critical point} we compute the decay functions analytically within a semiclassical approach of Sachdev and Damle [K. Damle and S. Sachdev, Phys. Rev. B \textbf{57}, 8307 (1998)]. As a consequence, decay functions exhibit a {\em diffusive character}. {\gf We also provide robust arguments that our semiclassical analysis carries over to very low temperatures even in the vicinity of the quantum phase transition.} Our results are also relevant for quantum rotor models, antiferromagnetic chains, and some spin ladder systems.Comment: 18 PRB pages added correction

    Bethe ansatz solution of the anisotropic correlated electron model associated with the Temperley-Lieb algebra

    Full text link
    A recently proposed strongly correlated electron system associated with the Temperley-Lieb algebra is solved by means of the coordinate Bethe ansatz for periodic and closed boundary conditions.Comment: 21 page

    Field theory of scaling lattice models. The Potts antiferromagnet

    Full text link
    In contrast to what happens for ferromagnets, the lattice structure participates in a crucial way to determine existence and type of critical behaviour in antiferromagnetic systems. It is an interesting question to investigate how the memory of the lattice survives in the field theory describing a scaling antiferromagnet. We discuss this issue for the square lattice three-state Potts model, whose scaling limit as T->0 is argued to be described exactly by the sine-Gordon field theory at a specific value of the coupling. The solution of the scaling ferromagnetic case is recalled for comparison. The field theory describing the crossover from antiferromagnetic to ferromagnetic behaviour is also introduced.Comment: 11 pages, to appear in the proceedings of the NATO Advanced Research Workshop on Statistical Field Theories, Como 18-23 June 200

    Renormalization group trajectories from resonance factorized S-matrices

    Full text link
    We propose and investigate a large class of models possessing resonance factorized S-matrices. The associated Casimir energy describes a rich pattern of renormalization group trajectories related to flows in the coset models based on the simply laced Lie Algebras. From a simplest resonance S-matrix, satisfying the ``ϕ3\phi^3-property'', we predict new flows in non-unitary minimal models.Comment: (7 pages) (no figures included

    Jorge A. Swieca's contributions to quantum field theory in the 60s and 70s and their relevance in present research

    Full text link
    After revisiting some high points of particle physics and QFT of the two decades from 1960 to 1980, I comment on the work by Jorge Andre Swieca. I explain how it fits into the quantum field theory during these two decades and draw attention to its relevance to the ongoing particle physics research. A particular aim of this article is to direct thr readers mindfulness to the relevance of what at the time of Swieca was called "the Schwinger Higgs screening mechanism". which, together with recent ideas which generalize the concept of gauge theories, has all the ingredients to revolutionize the issue of gauge theories and the standard model.Comment: 49 pages, expansion and actualization of text, improvement of formulations and addition of many references to be published in EPJH - Historical Perspectives on Contemporary Physic

    On scaling fields in ZNZ_N Ising models

    Full text link
    We study the space of scaling fields in the ZNZ_N symmetric models with the factorized scattering and propose simplest algebraic relations between form factors induced by the action of deformed parafermionic currents. The construction gives a new free field representation for form factors of perturbed Virasoro algebra primary fields, which are parafermionic algebra descendants. We find exact vacuum expectation values of physically important fields and study correlation functions of order and disorder fields in the form factor and CFT perturbation approaches.Comment: 2 Figures, jetpl.cl
    • 

    corecore