54 research outputs found

    Diffusion and interface effects during preparation of all-solid microstructured fibers

    Get PDF
    All-solid microstructured optical fibers (MOF) allow the realization of very flexible optical waveguide designs. They are prepared by stacking of doped silica rods or canes in complex arrangements. Typical dopants in silica matrices are germanium and phosphorus to increase the refractive index (RI), or boron and fluorine to decrease the RI. However, the direct interface contact of stacking elements often causes interrelated chemical reactions or evaporation during thermal processing. The obtained fiber structures after the final drawing step thus tend to deviate from the targeted structure risking degrading their favored optical functionality. Dopant profiles and design parameters(e.g., the RI homogeneity of the cladding) are controlled by the combination of diffusion and equilibrium conditions of evaporation reactions. We show simulation results of diffusion and thermal dissociation in germanium and fluorine doped silica rod arrangements according to the monitored geometrical disturbances in stretched canes or drawn fibers. The paper indicates geometrical limits of dopant structures in sub-Ī¼m-level depending on the dopant concentration and the thermal conditions during the drawing process. The presented results thus enable an optimized planning of the preform parameters avoiding unwanted alterations in dopant concentration profiles or in design parameters encountered during the drawing process

    Bending insensitivity of fiber Bragg gratings in suspended-core optical fibers

    Get PDF
    This Letter presents simulation and experimental results that explore bending insensitivity of fiber Bragg gratings in suspended-core optical fibers. The implementation of thin silica bridge in the fibers enhances index contrast of the fiber core and reduces bending-induced strain transfer to the fiber core. This fiber design lead to a reduction of over 7 times in strain-induced fiber Bragg grating resonant peak shifts in the suspended-core fiber compared with that in standard telecommunication fiber, and an 0:14dB bending loss at a bending radius of 6:35mm. Ā© 2011 Optical Society of America

    Suspended-core fiber Bragg grating sensor for directional- dependenttransverse stress monitoring

    Get PDF
    This Letter presents simulation and experimental results of orientation-dependent transverse stress fiber sensors using fiber Bragg gratings (FBGs) inscribed in four-hole suspended-core fibers. Resonant peak shifts and splitting of FBGs were studied as functions of the applied transverse load and fiber orientation. Both simulation and experimental results revealed that the response of FBGs in suspended-core fibers is sensitive to both the orientation and magnitude of an applied transverse stress. Ā© 2011 Optical Society of America

    UV-laser-inscribed fiber Bragg gratings in photonic crystal fibers and sensing applications

    No full text
    We report about fiber Bragg gratings (FBGs) inscribed in two different types of small-core Ge-doped photonic crystal fibers with a UV laser. Sensing applications of the FBGs were systematically investigated by means of demonstrating the responses of Bragg wavelengths to temperature, strain, bending, and transverse-loading. The Bragg wavelength of the FBGs shifts toward longer wavelengths with increasing temperature, tensile strain, and transverse-loading. Moreover, the bending and transverse-loading properties of the FBGs are sensitive to the fiber orientations. The reasonable analyses for these sensing properties also are presented
    • ā€¦
    corecore