16,949 research outputs found

    The locally covariant Dirac field

    Full text link
    We describe the free Dirac field in a four dimensional spacetime as a locally covariant quantum field theory in the sense of Brunetti, Fredenhagen and Verch, using a representation independent construction. The freedom in the geometric constructions involved can be encoded in terms of the cohomology of the category of spin spacetimes. If we restrict ourselves to the observable algebra the cohomological obstructions vanish and the theory is unique. We establish some basic properties of the theory and discuss the class of Hadamard states, filling some technical gaps in the literature. Finally we show that the relative Cauchy evolution yields commutators with the stress-energy-momentum tensor, as in the scalar field case.Comment: 36 pages; v2 minor changes, typos corrected, updated references and acknowledgement

    PCV30 PERCEPTION OF PATIENTS ON WARFARIN THERAPY TOWARD PHARMACIST-MANAGED ANTICOAGULATION SERVICE IN AMBULATORY CARE SETTINGS IN SINGAPORE

    Get PDF

    Phase Response Curves of Coupled Oscillators

    Full text link
    Many real oscillators are coupled to other oscillators and the coupling can affect the response of the oscillators to stimuli. We investigate phase response curves (PRCs) of coupled oscillators. The PRCs for two weakly coupled phase-locked oscillators are analytically obtained in terms of the PRC for uncoupled oscillators and the coupling function of the system. Through simulation and analytic methods, the PRCs for globally coupled oscillators are also discussed.Comment: 5 pages 4 figur

    The role of ABCG-type ABC transporters in phytohormone transport

    Get PDF
    Plant hormones (phytohormones) integrate endogenous and exogenous signals thus synchronizing plant growth with environmental and developmental changes. Similar to animals, phytohormones have distinct source and target tissues, hence controlled transport and focused targeting are required for their functions. Many evidences accumulated in the last years about the regulation of long-distance and directional transport of phytohormones. ATP-binding cassette (ABC) transporters turned out to play major roles in routing phytohormones not only in the plant body but also towards the outer environment. The ABCG-type proteins ABCG25 and ABCG40 are high affinity abscisic acid (ABA) transporters. ABCG14 is highly co-expressed with cytokinin biosynthesis and is the major root-to-shoot cytokinin transporter. Pleiotropic drug resistance1 (PDR1) from Petunia hybrida transports strigolactones (SLs) from the root tip to the plant shoot but also outside to the rhizosphere, where SLs are the main attractants to mycorrhizal fungi. Last but not least, ABCG36 and ABCG37 possibly play a dual role in coumarine and IBA transport.112819Ysciescopu

    Electronically highly cubic conditions for Ru in alpha-RuCl3

    Full text link
    We studied the local Ru 4d electronic structure of alpha-RuCl3 by means of polarization dependent x-ray absorption spectroscopy at the Ru-L2,3 edges. We observed a vanishingly small linear dichroism indicating that electronically the Ru 4d local symmetry is highly cubic. Using full multiplet cluster calculations we were able to reproduce the spectra excellently and to extract that the trigonal splitting of the t2g orbitals is -12 ±10\pm10 meV, i.e. negligible as compared to the Ru 4d spin-orbit coupling constant. Consistent with our magnetic circular dichroism measurements, we found that the ratio of the orbital and spin moments is 2.0, the value expected for a Jeff = 1/2 ground state. We have thus shown that as far as the Ru 4d local properties are concerned, alpha-RuCl3 is an ideal candidate for the realization of Kitaev physics

    Phi Mesons from a Hadronic Fireball

    Get PDF
    Production of ϕ\phi mesons is considered in the course of heavy-ion collisions at SPS energies. We investigate the possible difference in momentum distributions of ϕ\phi mesons measured via their leptonic (μ+μ\mu^+\mu^-) and hadronic (K+KK^+K^-) decays. Rescattering of secondary kaons in the dense hadron gas together with the influence of in-medium kaon potential can lead to a relative decrease of a ϕ\phi yield observed in the hadronic channel. We analyze how the in-medium modifications of meson properties affect apparent - reconstructed momentum distributions of ϕ\phi mesons. Quantitative results are presented for central Pb+Pb collisions at Ebeam=158GeV/AE_{beam}=158 GeV/A.Comment: style Revtex4,9 pages, 5 figures. submitted to Phys. Rev.

    Pattern Formation in a Two-Dimensional Array of Oscillators with Phase-Shifted Coupling

    Full text link
    We investigate the dynamics of a two-dimensional array of oscillators with phase-shifted coupling. Each oscillator is allowed to interact with its neighbors within a finite radius. The system exhibits various patterns including squarelike pinwheels, (anti)spirals with phase-randomized cores, and antiferro patterns embedded in (anti)spirals. We consider the symmetry properties of the system to explain the observed behaviors, and estimate the wavelengths of the patterns by linear analysis. Finally, we point out the implications of our work for biological neural networks

    Application and comparison of feature-based classification models for multistable impact motions of percussive drilling

    Get PDF
    This is the author accepted manuscript. The final version is available from Elsevier via the DOI in this recordData accessibility: The data sets generated and analysed during the current study are available from the corresponding author on reasonable request.Dynamics of the bit-rock interaction under percussive drilling often encounter multistability that produces coexisting impact motions for a wide range of drilling conditions. Some of them may be detrimental to its performance as it cuts through the inhomogeneous rock layers. A necessary mitigation is the ability to distinguish between coexisting impact motions in order to maintain a high-performance drilling. For this purpose, dynamical responses of a vibro-impact system mimicking the bit-rock interaction of percussive drilling were explored in this study by using machine learning techniques. As a fundamental approach of improving machine learning, hand-crafted and automatic feature extractions were carried out. Simulation results show that extracting appropriate features and using a suitable network are essential for characterising the vibro-impact motions. Extracting statistical, histogram of gradient, continuous wavelet transform and pre-trained convolutional network features are effective and less computationally intensive. With their high accuracies, they become the first point of consideration when designing the classification model for multistable vibro-impact motions of percussive drilling.Engineering and Physical Sciences Research Council (EPSRC)Petroleum Technology Development Fund (PTDF) of Nigeri
    corecore