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Highlights 

 Prediction of coexisting impact motions of a percussive drilling system is studied. 

 Various feature extractions are used to learn system’s complex non-linearity. 

 Appropriate feature extraction and suitable network selection are essential. 

 Effective features and networks are obtained via simulation study and comparison. 

 The work provides a means of designing a vibro-impact motion classification model. 

                  



 

 

 

                  



Application and comparison of feature-based classification models for
multistable impact motions of percussive drilling

Kenneth Omokhagbo Afebu, Yang Liu∗, Evangelos Papatheou

College of Engineering, Mathematics and Physical Sciences, University of Exeter, North Park Rd, Exeter, EX4 4QF, UK

Abstract

Dynamics of the bit-rock interaction under percussive drilling often encounter multistability that produces

coexisting impact motions for a wide range of drilling conditions. Some of them may be detrimental

to its performance as it cuts through the inhomogeneous rock layers. A necessary mitigation is the

ability to distinguish between coexisting impact motions in order to maintain a high-performance drilling.

For this purpose, dynamical responses of a vibro-impact system mimicking the bit-rock interaction of

percussive drilling were explored in this study by using machine learning techniques. As a fundamental

approach of improving machine learning, hand-crafted and automatic feature extractions were carried out.

Simulation results show that extracting appropriate features and using a suitable network are essential

for characterising the vibro-impact motions. Extracting statistical, histogram of gradient, continuous

wavelet transform and pre-trained convolutional network features are effective and less computationally

intensive. With their high accuracies, they become the first point of consideration when designing the

classification model for multistable vibro-impact motions of percussive drilling.

Keywords: Percussive drilling; Bit-rock interaction; Vibro-impact dynamics; Multistability; Machine

learning.

1. Introduction

Vibrating machinery, such as milling [1], downhole drilling [2–4], produce signals that are often anal-

ysed not only to ascertain their health condition, but also their performance and productivity, e.g. gears

[5] and cutting [6], especially when such vibrations are normal to the machine operation [7–10]. As illus-

trated in Fig. 1(a), the vibro-impact drilling systems introduced in [11, 12] use adjustable high frequency

oscillations to generate high amplitude axial vibrations at the bit-rock contact interface. These are used

alongside the drill-string’s rotation to propagate fractures within the drilled rock layer. Previous studies

on the resulting bit-rock impact motions have shown that some periodic motions are more efficient for

the drill-bit in cutting through the rock layers compared to others [12–15]. This finding initiated the

work carried out by Afebu et al. [10] in which an attempt was made at developing a neural network-

based optimisation strategy for percussive drilling via multistable motion classification. A bi-directional

Long-Short Term Memory (LSTM) network was used as a deep learning model to differentiate between

two coexisting periodic motions. However, due to the inhomogeneity that often characterise downhole

rock layers, wider categories of impact motions are often encountered. This, thus makes it necessary to
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extend the introduced classification model [10] to include more categories of coexisting motions. In this

present study, five categories of impact motions which were simulated from three basins of attraction

using an impacting system shown in Fig. 1(b) and categorised using machine learning techniques.

k1
c

m

A tsin( )W

g

k2

y

Rotation
(a) (b)

Rock

Drill bit

Impact initiated
radial fractures

Freshly exposed
rock surface

High frequency
axial vibration

Rotation
fragmented
weak zones

Figure 1: (a) Rock fragmentation mechanism of a rotary-percussive drilling system and (b) physical model of the bit-rock
interaction during percussion.

Developing a robust and less erroneous data-driven pattern recognition algorithm for classifying dif-

ferent impact motions of percussive drilling requires several pre-processing techniques, one of which is

data reduction [16]. Data reduction approaches are usually applied to obtain a reduced representation of

the original data while still retaining their temporal information. In neural network-based models, data

reduction helps to create a more manageable representation of the original data. This often reduces the

complexities and storage space of the data, and also minimises the computational cost in terms of the

simplicity of the network architecture, its training time and accuracy. Feature selection and feature ex-

traction are two main strategies for data reduction [17, 18]. Given an original data set X with dimension

D, during feature selection, a subset Xs with dimension Ds is selected such that Xs⊂X and |Ds| � |D|
while the remaining redundant D −Ds dimensions are discarded. Feature extraction on the other hand

uses functional mapping to produce a new set of data Y of dimension De from the original data X,

Y = f(X) : X → Y. (1)

Unlike feature selection, the extracted data set is not a subset of the original data (Y*X). Hence, the

semantics of the original data are not preserved, and the dimensionality of the extracted new data De

can either be higher or lower depending on the mapping function of the extraction technique. However,

for the purpose of machine learning, the selected or extracted features should have better discriminating

power compared to the original data set.

In view of the above, this study embarks on different feature extraction tactics for data reductions.

The feature extraction techniques were first used to extract and select features from the measured impact

motion signals which were later used as input data into pattern recognition models. However, due to

the nonlinear dynamics and the similarities exhibited by the multistable impacting motions, designing a

robust feature-based classification model is far from being an easy task, hence various feature harvesting

tactics were investigated. These include (a) supervised extraction of hand-crafted features from the raw

data, time-amplitude and time-frequency representation, and (b) unsupervised extraction of gradient-
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based and neural network-based features from image representation of the signals. The vibration images

were generated as 2D colour images using continuous wavelet transform (CWT) while the unsupervised

feature extraction was carried out using the histogram of oriented gradients (HOG), a pre-trained con-

volutional neural networks (CNN) and stacked autoencoders. The performance self-supervised learning

networks, such as stacked autoencoders (SAE), convolutional autoencoders (CAE) and LSTM on the

images was also explored.

The remainder of this paper is structured as follows. Section 2 presents the preliminaries and theories

of the feature extraction methods and the network classifiers used in this study. The generation of vibro-

impact motions and extraction of vibro-impact features are described in Section 3 while the results of

the feature-based learning and classification models are presented in Section 4. The paper is rounded-off

with some discussions and conclusions in Section 5.

2. Preliminaries and theories

2.1. Feature extraction models

The analysis of data for feature selection and extraction, most especially time series data, can be done

either in time domain, frequency domain or time-frequency domain [19, 20]. Features are distinctive

characteristic representations or structural measurements extracted from segments of data. Desirable

features are usually those that capture the overall trend of the data while minimising loss of information.

Such features can be manually crafted or automatically derived from the original data representation.

Manual crafting of features can be time consuming and cumbersome, but to get around this limitation,

the use of unsupervised automatic feature extraction methods have been proposed and utilised for feature

extraction. Sections 2.1.1 and 2.1.2 illustrate manually extracted features and Sections 2.1.3-2.1.6 describe

automatically extracted features.

2.1.1. Morphological time-interval features

In the time domain, intrinsic temporal information in the form of features can be hand-crafted from

structural components of a signal waveform. Peaks and troughs are readily observable structural compo-

nents of most waveforms which have been used in studies involving chromatographic signal [21], proteomic

data [22], electrocardiogram [23], electroencephalography [24], electrophysiology [25] and X-ray diffrac-

tion signal analysis [26]. The attributes defining the analysed feature can be represented both in value

and position within the time series. Peaks can be described based on their amplitude, locations, width

and distance apart. These properties are useful for describing the magnitude and time of occurrence of

specific events within time series. For example, Inan et al. [27] used morphological features as an input

of a neural network classifier for classifying heart beats.

2.1.2. Statistical features

Statistical features, especially the descriptive categories, seek to create a compact representation of

raw data in a summarised way that may allow for pattern recognition. The compact representations

contain sets of statistical measures calculated from raw data that often describe the central tendency

and spread of time series data. Previous usage include audio signal classification [28], critical drilling

conditions recognition from drilling time series [29], drilling time series classification [30] and human

activity recognition [31]. Table 1 describes the statistical measures explored in this study which have

been crafted with respect to previous works listed in [31]. No further feature selection was carried out
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on the chosen statistical measures as doing that may annul the contribution of the feature interaction

within and between each of the classes [32].

Table 1: Statistical measures used as statistical features.

S/N Statistical Feature S/N Statistical Feature

1 Mean 13 Root-mean-square level
2 Minimum 14 Absolute maximum value to rms ratio
3 Maximum 15 Root-sum-of-squares level
4 Standard deviation 16 Crest factor
5 Range 17 Absolute mean
6 Kurtosis 18 Form factor
7 Variance 19 Impulse factor
8 Skewness 20 Mean square root of absolute data
9 Sum 21 Kurtosis factor
10 Mean frequency of signal power-spectrum 22 Margin factor
11 Average cumulative maximum element 23 Skewness factor
12 Average cumulative minimum element

2.1.3. Continuous wavelet transform

Time-frequency representation of data has proved useful in isolating temporal and localised infor-

mation embedded in the data. Aside short time Fourier transform [33], Cohen’s class [34], WignerVille

transform [35], ChoiWilliams distribution [36] and empirical mode decomposition [37], CWT, a form of

wavelet transform [38], is common method used in decomposing univariate non-stationary time series

into a two-dimensional timefrequency space, thus enabling the frequency component of the signal to be

observed as a function of time. CWT uses finer discretisation to produce more redundant representation

where a 1-by-N samples of data gets transformed to M-by-N matrix of coefficients with “M” representing

the number of scales. The main idea of CWT is to apply a selected mother wavelet as a bandpass filter

to the time series. The Morlet wavelet was selected in this study being the most used mother wavelet

for CWT decomposition [39]. The mother wavelet is shifted at small intervals on the signal along its

x-axis, and the correlation coefficient is calculated for each shift. The procedure is repeated at different

dilation or scaling factors on the y-axis to capture the frequency-based variation. The Morlet wavelet

can be expressed as

ψ(τ) =
1
4
√
π

(
eiωoτ − e−ω

2
o

2

)
e−
τ2

2
, (2)

where ωo and τ are nondimensional frequency and time, respectively, and e− ω
2
o

2 is the correctional term

that corrects for the non-zero mean of the complex sinusoidal function. It becomes negligible for ωo ≥ 5,

thus giving

ψ(τ) =
1
4
√
π
eiωoτe−

τ2

2
, ωo ≥ 5. (3)

The CWT of an N-sampled time series, (xi, i = 1, 2, 3, , N), with a uniform time-step δt is given as

T (a, b) =
1√
π

∫ +∞

−∞
x(τ)ψ ∗

(
t− b
a

)
δt, (4)

where ψ ∗ (τ) is the complex conjugate of the mother wavelet function ψ(τ), a and b are the dilation and

location parameters of the wavelet. The signal energy at a specific a scale and b location is given as a
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two-dimensional wavelet energy density function given as

E(a, b) = |T (a, b)|2, (5)

which is referred as the scalogram. By integrating the scalogram at a specific scale a and across the b

location, the total energy contained in the signal can be recovered as

E(a) =
1

Cg

∫ +∞

−∞
|T (a, b)|2δb, (6)

where Cg is the admissibility constant given as:

Cg =

∫ +∞

0

|ψ̂(f)|2
f

δf <∞, (7)

and ψ̂(f) is the Fourier transform of ψ(τ) given as

ψ̂(f) =

∫ +∞

−∞
ψ(τ)e−i(2πf)τδτ. (8)

Generally, CWT computation is carried out over a finely discretised time-frequency grid, where the b

location is discretised at the sampling interval and the a scale at a logarithmic scale. This way the

wavelet transform is approximated for each time step over a range of wavelet scales thus resulting in a

relatively large output of higher dimension and with redundant information. The output often requires

dimension reduction to remove the redundancy and reduce computational cost during classification [40].

Selected band of wavelet coefficients can be saved in their raw vector form or as scalograms representing

vibration images that can be further analysed using image processing techniques.

2.1.4. Histogram of Oriented Gradient

HOG is a principal tool in computer vision and image processing which has been widely adopted for

feature extraction [41]. It relies on the idea that the local textures of an image can be characterised

by series of histograms of local intensity gradients describing the magnitude and direction of change

in intensity of the image. Firstly, a gray-to-scale normalisation is performed on the images to reduce

illumination variances that keeps them with the same intensity range. Secondly, the image is divided into

multiple cells of m-by-m pixels. For each pixel in each of the cells, the spatial gradient information for a

pixel at location (x, y) is given as




Gy = I(x, y + 1)− I(x, y − 1),

Gx = I(x+ 1, y)− I(x− 1, y)t,
(9)

where Gy and Gx represent the vertical and horizontal directions, and the magnitude and orientation are

obtained as

M =
√
G2
y +G2

x, (10)

and

θ = arctan

(
Gy
Gx

)
, (11)
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respectively. Thirdly, the HOG for each cell is constructed by concatenating the magnitudes by their

orientations. The resulting outcome is an assemblage of L1-normalized vectors in a single 1-D vector

array representing the integral HOG descriptors. The length of resulting HOG features is dependent on

the image size and the extraction function parameters.

2.1.5. Convolutional Neural Network

CNN form part of the major deep neural networks that learn both linear and nonlinear transformations

directly from images. CNN architecture can be divided into the input section consisting of an image input

layer, an intermediate feature extraction section consisting of several hidden layers and the classification

section consisting fully connected layer, a softmax layer for classification problems or a regression layer

for regression problems and a final output layer. The hidden layers automatically reconstruct the input

data with the intent of hierarchically extracting deep level features that are specific to the input images.

The intermediate fully connected layers combine the features learnt by the previous layers to identify

general patterns in the images while the last fully connected layer, containing same numbers of neurons

as the number of classes, combines the feature to arrive at a class for the image. The output layer which

also has the same number of neurons as the number of classes and uses loss functions such as mean

square error, softmax cross entropy and sigmoid cross entropy to estimate loss (discrepancy) between the

estimated and the actual. During training, the parameters are tuned towards minimising the loss. The

spatial size of the output volume from a given convolutional layer is given as

O =
W −K + 2P

S
+ 1, (12)

where O := the output volume, W := the input volume size, K := the filter size, P := the padding

and S := the stride. With the availability of robustly pre-trained CNNs, recent procedures of applying

CNNs include (i) training a new CNN from the scratch and (ii) using pre-trained CNNs to extract

features from analysed images. Extracted features are fed as input data into other classifier networks.

Considering the huge data, time and system requirement for training a new CNN, the latter approach of

transfer learning is easier and faster, and also serve as an unsupervised feature extraction procedure [42].

Hierarchical discriminating features are extracted from the images using convolutional operation while

still maintaining the spatial correlation between pixels [43]. The procedures of using newly trained CNN

and that of transfer learning were implemented in this study. Based on the classification accuracy, the

relative prediction time and size on disk reported in [44], pre-trained Resnet18 network with 18 layers

and trained on ImageNet database [45] were utilised here.

2.1.6. Autoencoders

Autoencoders, especially the SAE, are another form of neural network-based methods for unsupervised

feature extraction. First introduced in late 1980s [46], they consist of an encoder and a decoder network.

The output from autoencoders is usually of the same size as the input. In early usage, their application

in data reduction was similar to that of principal component analysis [47] as linear feature extractors,

although much more computationally intensive. The advent of nonlinear activation functions, pushed

their usage to learning more complex nonlinear relationship [48]. The encoder part, f(X), tries to map

an original data X with D dimension into a simpler representation Y given as

Y = f(X) = sf (WX + bX), (13)
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whose dimension is De, such that De � D. The decoder part, g(Y ), on the other hand aims to reconstruct

the original data X from the reduced data Y while minimising the differences between original data X

and reconstructed data X ′ such that

X ′ = g(Y ) = sg(W
′Y + bY ), (14)

where sf and sg are the activation functions for the encoder and the decoder, and W and b represent the

weight matrices and bias vectors, respectively. Here, mean square error is used to measure this difference.

Training an autoencoder entails tuning the model parameters, including W , bX and bY , to a state

denoted as Φ where they yield the least reconstruction errors between Y and X such that

min
Φ

1

N

N∑

i

‖xi − fΦ(xi)‖22, (15)

where xi is the ith data and N is the total numbers of data. The final step in training and using autoen-

coders is the process of fine-tuning to improve the network performance. During this process, the network,

consisting of autoencoders and a softmax or regression layer is re-trained on labelled training data in a

supervised manner. However, compared to other nonlinear feature extraction methods, autoencoders

require higher computer memory and lots of time to train. Autoencoders are also used as unsupervised

feature extractors when the auto-encoded features are used as input data into other networks. Higher

level features can be extracted by stacking up multiple SAE, however, important lower level features may

be omitted in this way. Recent development of autoencoders include the CAE currently used in image

data analysis. Unlike the SAE which forces image features to be global (i.e. spanning through the entire

visual field), the CAE takes into account the 2D structure of the image data. CAE architectures are

similar to the conventional autoencoders only that their weights are shared among all locations in the

input image data, thus preserving spatial locality of the learnt features [49].

2.2. Network classifiers

2.2.1. Multi-layer perceptron

Being universal approximators, Multi-layer perceptron (MLP) networks have been used in modeling

nonlinear problems including classification [50] and regression [51] tasks. Assuming the input data xi

(i = 1, 2, 3, , N), the network output y is defined in terms of a mapping function shown as below [52]

y = foutput




M∑

j=1

Wjfhidden




M∑

j=1

Wjixi,


+Wo


 (16)

where N is the total number of input data, M is the number of hidden neurons, xi is the ith input data,

Wij is the weight parameter between the ith input data and jth hidden neuron and Wj is the weight

parameter between the jth hidden neuron and the output neuron. The activation function foutput is

given as a sigmoid function for classification problems and as a linear activation function for regression

while fhidden is a hyperbolic tangent function. The network weights and biases are iteratively adjusted

during training to maximise the prediction ability of the network on the input data using backpropagation

algorithms. The difference between the networks prediction (y) and the actual target (tt) is defined as a
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cross-entropy error,

Exr = −
P∑

p=1

{ttp ln(yp) + (1− ttp) ln(1− yp)}. (17)

2.2.2. Support Vector Machines

Support vector machines (SVMs) initially developed for binary (two-class) classification problems

analyses input data set alongside their corresponding labels to establish an optimal separating hyperplane

between the two classes. They are adapted for multi-class classification by creating multiple binary-class

SVMs for pair-wise combination of classes. The binary pair-wise classifiers are then combined to create

the final multi-class classifier using any of the existing combination strategies as found in [53]. In this

study, the Error-Correcting Output Code (ECOC) combination technique [54] as presented in MATLAB

software [55] was used in fusing multiple binary SVM decisions. This operation involves a coding and a

decoding process using a matrix of codewords (usually {1, 0, 1}) of size k × l [56], where k is the number

of classes and l is the numbers of SVM binary classifiers or the number of codewords codifying each class

given as

l =
k(k − 1)

2
. (18)

Matrix C shown in Table 2 is a code matrix for a five class problem using ten learners as carried in this

present study. An instance belonging to class ki is positive for a classifier lj if and only if Cij = 1 and it

is negative if and only if Cij = −1. For a classifier, Cij = 0 means that the class was not used in training

the classifier. Table 2 indicates that the multi-class SVM trains its first four binary learners (l1 − l4)

using observations that are classified as class k1 as it returned them as positive class against k2, k3, k4

and k5 which are respectively returned as negative class.

Table 2: Code matrix for a five class problem using ten learners.

l1 l2 l3 l4 l5 l6 l7 l8 l9 l10
k1 1 1 1 1 0 0 0 0 0 0
k2 -1 0 0 0 1 1 1 0 0 0
k3 0 -1 0 0 -1 0 0 1 1 0
k4 0 0 -1 0 0 -1 0 -1 0 1
k5 0 0 0 -1 0 0 -1 0 -1 -1

Earlier studies have shown multi-class SVMs to be very accurate in their performance, however, they

were found to be less effective for online application [57]. A major contributor to this drawback is the

amount of computation needed to done within a very short period of time, especially when it involves input

data that can easily scale-up as found in sequential text pattern recognition and phrase text classification

[58, 59]. To circumvent this problem, recent studies have adopted strategies such as feature extraction to

maximise inter-class margin and also minimise computational time and memory requirement [57, 60, 61].

In line with this, minimal and highly discriminating features were extracted and explored in building

multiclass SVM models in this present study.

2.2.3. Long-Short Term Memory classifier

LSTM networks are improved forms of recurrent neural networks having memory cells and gates in

place of the usual inter-connecting hidden neurons. This improvement makes the networks immune to

the vanishing gradient problem when learning from long time series data [62]. At each time step t in

the time series, the network calculates a hidden vector ht and a memory vector mt which uses to update
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its state and output at that time-step and later carried to the next time-step. The calculations at a

time-step are as follows.

ît = σg(Wix̂t +Riht−1 + bi), (19)

f̂t = σg(Wf x̂t +Rfht−1 + bf ), (20)

ĝt = σg(Wgx̂t +Rght−1 + bg), (21)

ôt = σg(Wox̂t +Roht−1 + bo), (22)

mt = f̂t �mt−1 + ît � ĝt, (23)

ht = ôt � tanh(mt), (24)

where ît, f̂t, ĝt and ôt are state vectors of [0, 1], σg and � represent a sigmoid and an element-wise

multiplication function, respectively. In the present study, three approaches were employed in using

LSTMs for classifying the dynamical responses of the impacting system. These include (i) their direct

application on the measured raw data, thereby exploiting their ability to self-extract temporal information

from the data, (ii) their application on already extracted features from the raw data [10], and (iii) their

application on image representations of the data. For the image data based LSTM model, the images

are fed into the network as sequences of images. A sequence folding and a sequence unfolding layers are

respectively used to convert the incoming sequence of images to image arrays and vice versa, and a flatten

layer is used to convert the images into vector features.

3. Impact data and impact feature generation

Figure 2 illustrates a typical schematic of the stages followed in developing the vibro-impact motion

classification model. This includes vibro-impact data collection, processing into 2D representation, feature

selection and extraction, and finally, the development of raw data-based and feature data-based classifiers.

Figure 2: Schematic of the vibro-impact motion classification model.

3.1. Modelling of the vibro-impact motions

The impacting system shown in Fig. 1(b) is a one-degree-of-freedom system that mimics the bit-rock

interaction for the vibro-impact drilling system. It is made up of a mass m connected to a rigid frame

via a linear spring of stiffness k1 and damping coefficient c, representing the drill-bit. Attached to the

opposite end of the frame is the secondary linear spring with stiffness k2 representing the rock media. k2
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can be varied to imitate the different types of rocks encountered while drilling. The equations of motion

of the impacting system can be written as




x′ = v,

v′ = aω2 sin(ωτ)− 2ζv − x− β(x− e)H(x− e),
(25)

where x′ and v′ are the differentiates of displacement and velocity of the drill-bit with respect to non-

dimensional time τ , respectively, and H(·) stands for the Heaviside step function. The dimensionless

form of the system parameters have been derived as follows.

x =
y

y0
, β =

k2

k1
, ζ =

c

2mωn
, ωn =

√
k1

m
, ω =

Ω

ωn
, a =

A

y0
, e =

g

y0
, τ = ωnt,

where y0 > 0 is an arbitrary reference distance, β is the stiffness ratio, ζ is the damping ratio, ωn is the

natural frequency, ω is the frequency ratio, a is the nondimensional external excitation amplitude, and e

is the nondimensional gap between the mass and the secondary spring.

Basin of attraction is a closure of initial conditions whose long-time behaviour converges to a fixed

position for a single attractor or multiple positions for coexisting attractors or multistable impact motions.

It can be plotted using the corresponding initial displacements and velocities of the system. To generate

multistable impact motions three basins of attraction, MBSN1, MBSN2 and MBSN3 shown in Fig. 3, were

simulated using Eq. (25). It was implemented using the Runge-Kutta fourth-order method in MATLAB,

and the system parameters were listed in Table 3. For simplicity, we use abbreviations P-n-m to describe

periodic motion of the system, e.g. P-1-2 represents a period-one motion with two impacts per period of

external excitation.

Figure 3: (Colour online) Basins of attraction for (a) MBSN1 (b) MBSN2 and (c) MBSN3 showing P-1-1 (Black), P-1-2
(Red), P-3-2 (Green), P-3-3 (Magenta), P-5-4 (Orange), P-2-1 (Blue) and P-5-3 (Cyan). The boundary of impact is denoted
by the solid red line. The impact motions, P-1-1, P-1-2, P-2-1, P-3-2 and P-3-3, were extracted for training and testing the
networks.
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Table 3: Basin parameters for originating coexisting motions.

Parameters MBSN1 MBSN2 MBSN3

ω 0.75 0.935 0.8063
a 5.6 0.7 0.7
β 18.27 29 29
ζ 0.01 0.01 0.01
g 2.1 1.26 1.26

Five categories of the impact motions, including period-one with one impact (P-1-1), period-one with

two impacts (P-1-2), period-two with one impact (P-2-1), period-three with two impacts (P-3-2) and

period-three with three impacts (P-3-3), were generated. In all, 600 samples of each impact category

were generated, out of which 400 were used for training and 200 for testing. These impact motions

can be represented by their measurable dynamic variables including displacement (x), velocity (v) and

acceleration (v′). Among these variables, acceleration was chosen as the representative measurement for

the impact motions, because (i) it is practically feasible to measure in real-life scenarios, and (ii) due to

the abrupt decrease in velocity during an impact, acceleration measurements are more sensitive to impact

actions compared to others.
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Figure 4: Oscillated points (Poincaré sections) on the phase plane for (a) stable, (b) transient, (i) period-one, (ii) period-two
and (iii) period-three responses.

In this study, our aim is to explore the use of limited early but transient system responses for impact

motions classification. By this, possible real life situation was mimicked and the need to wait for the

system to reach stability before collecting data was minimised. To ensure that the used data are within

the early transient periods of operation, a periods-to-stability calculation as suggested in [10] was carried

out for each of the simulated time history data. During the transient periods of oscillation, the system
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erratically orbits around its points of attraction (Poincaré sections) in the x-v phase plane as presented

in Fig. 4(a). But at stability, as shown in Fig. 4(b), the system maintains a relatively constant orbit

of n points for a period-n motion. This implies that at stability, the distance orbited by the system in

the phase plane becomes relatively constant and restricted to the path defined by the n-points. The

number of periods expended before the aforementioned happens is taken as the periods-to-stability (Ti)

of the system. In the present work, the estimated periods-to-stability for the training and testing data is

presented in Fig. 5.
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Figure 5: Estimated periods-to-stability for (a) training and (b) testing data sets.

Table 4: Statistics of the estimated periods-to-stability.

Impact Motion Minimum Maximum Average Number of Data Set (for Ti >115)

P-1-1 74 128 96 2
P-1-2 45 106 77 0
P-2-1 45 182 99 57
P-3-2 45 120 90 0
P-3-3 45 123 89 0

Table 4 shows the statistics of the estimated Ti for all the impact motion categories. The minimum

and maximum Ti values are 45 and 182, and the average values are 96.08, 76.55, 98.55, 89.52 and 89.09

for the P-1-1, P-1-2, P-2-1, P-3-2 and P-3-3, respectively. The P-2-1 motions are characterised with most

of the exceptionally high Ti values, hence they are considered to be the most unstable set of data in

this work. Based on the minimum and average Ti reported in Table 4, the first 40 periods of data were

selected from all the data samples for analysis, thus restricting the study to the use of transient unstable

data. With a sampling rate of 300 data points per period, the length of each unstable acceleration signal
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equal 12,000, and the total number of signals simulated were 3,000. 2,000 of the signals were used for

network training, and the remaining 1,000 were used as out-of-sample data for cross-validation testing.

Fig. 6 shows the representative time series plot and the phase portrait of each of the impact motion

categories in their transient state.

Figure 6: Representative (i) acceleration time histories and (ii) phase portraits for unstable (a) P-1-1, (b) P-1-2, (c) P-2-1,
(d) P-3-2 and (e) P-3-3 impact motions. The boundary of impact is denoted by the solid red line.

3.2. Vibro-impact feature extraction

As stated earlier, the waveforms of the acceleration signals were explored to extract morphological and

time-interval dependent features. The motivation for this approach is based on the fact that the categories

of impact motions are defined based on the numbers of impacts per certain periods of oscillation, and

also that impact actions are associated with intermittent peaks in the acceleration waveform due to

abrupt velocity drop. To describe the signal in terms of the periodicity and numbers of impacts, some

time-interval features were defined while the peaks were analysed for morphological features. Peaks are

basic features of most time series events and picking them can be extremely time consuming and labour-

intensive. It requires locating all the local minima and maxima in the time series signal in order to define

the peak zones. The start (Spk) and end (Epk) of a peak which also marks the loading and unloading
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of individual impact action was delineated using the second derivative of the acceleration signal. In

its second derivative, these two points, Spk and Epk, occur as two neighbouring peaks throughout the

signal illustrated in Fig. 7 and can be easily analysed using appropriate peak finding function. The

function arguments are fixed to capture only the actual peaks while avoiding background noises and re-

bounces. The actual peak location (Lpk) is calculated as the mid-point between Spk and Epk. The peak

amplitude (Apk) is taken as the acceleration data at the actual peak locations (i.e. the Lpkth positions)

while Dpk is calculated as the differences between consecutive Lpk data. In all, three types of sequential

features annotated as MorFeat1, MorFeat2, and MorFeat3 were extracted from the signal waveform as

morphological features. MorFeat1 are row features in which every peak location on the signal waveform

(Lpk) is represented as ‘2’ while every position marking the end of each period of oscillation is marked

as ‘1’, and every other points in the signal is represented as ‘0’s. MorFeat2 and MorFeat3 are similarly

row features like MorFeat1, but only that the peak locations (Lpk) are represented as peak amplitude

(Apk) for MorFeat2, and peak distances apart for MorFeat3. To further simplify the data and remove

redundancy, the ‘0’s within the three sets of features were removed thus leaving MorFeat1 as row vectors

of ‘1’s and ‘2’s, MorFeat2 as row vectors of ‘1’s and amplitude values (Apk), and MorFeat3 as row vectors

of ‘1’s and peak distances apart (Dpk). Typical representation of the three wave-form morphological

features data for the five categories of impact motions are presented in Fig. 8.
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Figure 7: Peak detection and analysis using the second derivation of acceleration signals.

Statistical features which are basically a set of descriptive statistical measures (as shown in Table 1)

were calculated for each of the signals in order to generalise about them in time domain. The average

value of these measures with respect to each impact motion category is presented in Fig 9, and their order

follows P-1-2 > P-1-1 > P-2-1 > P-3-3 > P-3-2. The wide variation of these values as noticed in the

figure necessitated them to be normalised before being used as input data for network training. In terms

of R and R2, a moderate correlation level was found to exist between each of the estimated statistical

features and the targeted impact motion categories as presented in Fig. 10.
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Figure 8: Graphical representation of the wave-form morphological features for the five impact categories.

The CWT time-frequency analysis was carried out using the Morlet mother wavelet and a CWT filter

bank which was designed based on the signal length, sampling frequency and a discretised scale at 12

wavelet bandpass filters per octave. The analysis yielded a 128×12,000 matrix of complex conjugates with

each row corresponding to one scale, and each column to one time-step. Representative two-dimensional

time-frequency plots of the matrices in their absolute value form (scalogram) are shown in Fig. 11(a). The

plots show areas of abrupt discontinuities (i.e. impacts) to be characterised with high coefficients (energy

level) which are mostly concentrated around scale 30102 representing a frequency range of 0.045-3.62.

The procedure of feature selection was implemented by selecting coefficients within these informative

frequency range as shown in Fig. 11(b), thus reducing the data to 73×12,000 matrix.

To further reduce the dimension of the CWT data, two approaches were adopted in utilising the

extracted CWT coefficients. The first approach was to compute the mean of the coefficients (Mean-
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Figure 9: (Colour online) Average variation of the statistical features across the impact motion categories.
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Figure 10: Correlation between each statistical feature and the target impact categories

FreqCWT) along each of the frequency axis for use as input data into the network classifiers. By averaging

the CWT coefficients along the frequency axis, the cumulative concentration of impact actions represented

as high positive or negative coefficients within a low coefficient background was computed. The second

approach was to save the scalograms as images which were later resized and analysed with HOG, CNN

and Autoencoders to extract features that were fed into the network classifiers. Direct classification of the

images using self feature learning networks, like the deep CNN and LSTM, was also carried out. Fig. 12

are typical plots of the mean CWT coefficients along each of the frequency axes for the different impact

motions. P-1-2 with the highest ratio of impacts-to-periods compared to others showed the highest mean

CWT values, while P-2-1 with the least ratio of impacts-to-periods showed the smallest values. P-3-2
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Figure 11: (Colour online) Diagrammatic representation of (a) full and (b) selected portion of (i) P-1-1 (ii) P-2-1 and (iii)
P-3-2 scalograms.

and P-3-3 have almost the same number of periods and impacts, hence their close trend. It is worth

noting that impact constraints of higher stiffness produce impacts of shorter duration compared to the

low stiffness constraints, hence the Mean-FreqCWT values computed for stiff system will be lower than

those from soft system even if they are of the same impact category. This can be demonstrated in the

Mean-FreqCWT values calculated for P-1-1 in Figs. 12(a) and (b) where β = 18.27 and 29, respectively.
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Figure 12: Variation of the mean CWT coefficient along each of the frequency axes for different impact motions with the
P-1-1 impact motion originating from (a) soft and (b) stiff impact constraints.

To retain enough information in the resized images, the images for HOG analysis and auto-encoding

were resized to 227-by-227 while those for the transfer learning were resized to 224-by-224 as required

by the Resnet18 input layer. Prior to the HOG analysis, the true colour CWT images were converted to
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grayscale images and binarized to remove hue and saturation information while still retaining luminance

for efficient feature representation. The binarization helps to set image vectors above a preselected

threshold to ‘1’s and others to ‘0’s, thus minimising intraclass variance and permitting easy boundary

definition in the form of transition from ‘1’s to ‘0’s or vice versa. Fig. 13 shows the levels of shape

information encoded by the HOG descriptor using cell sizes 15 × 15, 30 × 30, 60 × 60 and 120 × 120

produced HOG features of length 86184, 20160, 4212 and 864, respectively, with a 2-by-2 block size and

9 orientation histogram bins. To ensure that sufficient amount of information was encoded about the

images without significantly increasing computational cost, the 60-by-60 cell size was selected and utilised

for the feature extraction. Fig. 14 shows the HOG feature vectors on the coloured image alongside its

concatenated histogram of the cell gradients. To automatically encode the imagery data, two versions of

autoencoders were developed. The first encodes the binarized image vectors from their initial 227× 227

dimension to 1×1000, while the second further encodes the 1×1000 to 1×500 feature space. Each image

vectors were presented to the autoencoders as a matrix in which each column represented a data sample.

The ability autoencoders to extract discriminative features from raw unprocessed acceleration data was

also investigated and this reduced the acceleration data from their initial 1 × 12000 data space through

1 × 1000 to 1 × 500. Typical weights learnt by the autoencoders from individual image vectors at the

1×1000 and 1×500 feature space are presented in Fig. 15, and the features resulting from auto-encoding

the raw data are given in Fig. 16. The auto-encoded image and raw acceleration data are designated as

Autoencoded-GrayImg and Autoencoded-RawAcc, respectively.

Applying an activations function, Fig. 17 shows the feature maps captured by the Resnet18 network at

the maximum pooling layer 1 and global pooling layer 5 located in its 2nd and 17th convolutional layers,

respectively. The shallower layer is seen to capture fewer information in the image at a higher resolution

while the deeper layer tends to capture more detailed but abstract (i.e. higher-level) information about

the image. The latter features are most time difficult to interpret as the network abstracts them into a

more general concept that it can use for classification purpose. A total of 512 feature vectors resulting

from the global pooling layer (pool5) were extracted for each of the vibro-impact image. As earlier

mentioned, the HOG, autoencoders and Resnet18 derived features are intended for use as input data into

the considered network classifiers.

To self-learn discriminating features from the vibro-impact image representations, self-supervised

learning models including the SAE, CAE, LSTM and CNN networks were developed. The two versions

of autoencoder developed for feature extraction were stacked up alongside a softmax layer (see Fig. 18) to

form the SAE. The images were resized to 128-by-128 for the SAE, CAE and CNN networks but 50-by-50

for the LSTM network to reduce computational costs. Image input layers of equivalent size as the images

were used to feed the data into the CAE and CNN, while a sequence input layer of size 50-by-50 was

used to feed the images into the image data based LSTM as sequences.

4. Network training results and discussion

Results of the various network classification are presented in Table 5-9. For all the classifiers, their

performance on raw and unprocessed data was also investigated while following the conventional approach

of using out of sample data which has never been fed into the network for cross-validation.

For the unprocessed data, the LSTM and SVM networks showed appreciable performance ranging

between 70.4% for the LSTM network and 78.2% for the SVM compared to the MLP and the stacked

autoencoders. This is probably due to the great partitioning power of SVMs and the ability of LSTMs to

self-extract temporal and discriminating features from raw time series data. Besides the underperformance
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Figure 13: Encoded HOG information for cell sizes (a) 15-by-15, (b) 30-by-30, (c) 60-by-60 and (d) 120-by-120 on binarized
grayscale image.

Table 5: LSTM Network performance.

Feature Training Accuracy (%) Testing Accuracy (%) Hidden Units Time (mins)

Raw Data 89.0 70.4 200 1766
MorFeat1-2-3 99.8 98.6 300 26.87
MorFeat1 89.0 86.9 300 53.95
MorFeat2 100.0 100.0 300 40.58
MorFeat3 99.8 99.8 300 33.92
Statistical 99.9 99.8 80 12.17
HOG 20.0 20.0 300 1495.85
ResNet18 100.0 98.2 80 27.55
Mean-FreqCWT 99.8 99.8 60 9.85
Autoencoded-RawAcc 39.9 39.1 200 69.1
Autoencoded-GrayImg 20.0 20.0 100 86.63
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Figure 14: (Colour online) (a) Encoded HOG information on RGB image with cell size 60-by-60 alongside (b) concatenated
histogram.
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Figure 15: Learnt mappings for (a) 1 × 1000 and (b) 1 × 500 auto-encodings.

Table 6: MLP Network performance, where Tr, Val and Ts represents training, validation and testing data sets, respectively.

Feature
Training (%)

Testing (%) Hidden Units
Tr Val Ts

Raw Data 100 100 100 48.6 30
MorFeat1 97 98.3 96.7 84.3 30
MorFeat2 99.9 99.7 99.0 62.0 30
MorFeat3 98.7 97.3 97.3 72.7 30
Statistical 99.6 99.0 99.7 98.7 30
HOG 100 100 100 100 10
ResNet18 100 100 100 99.7 10
Mean-FreqCWT 100 100 100 100 20
Autoencoded-RawAcc 50.9 49.7 48.7 36.0 30
Autoencoded-GrayImg 100 100 99.0 76.0 20
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Figure 17: Representative feature maps extracted from (a) shallower maximum pooling layer 1 and (b) the deeper global
pooling layer 5 of the Resnet18 network.

of using unprocessed data compared to some processed data methods, the use of LSTM on the unprocessed

data set was quite time consuming (see Table 5). Fig. 19 shows the performance of the networks on the

out-of-sample raw acceleration data, most of the wrong classifications occurred within the P-2-1 motions
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Figure 18: Stacked-autoencoders layers for classification.

Table 7: SVM Network performance.

Feature Training Accuracy (%) Testing Accuracy (%)

Raw Data 100 78.2
MorFeat1 97.2 79.4
MorFeat2 100.0 65.3
MorFeat3 100 77.2
Statistical 100 97.1
HOG 100 99.8
ResNet18 100.0 99.7
Mean-FreqCWT 100 100
Autoencoded-RawAcc 47.2 46.1
Autoencoded-GrayImg 68.8 52.1

Table 8: Performances of self-supervised learning models on image data.

Network Model Training Accuracy (%) Testing Accuracy (%)

SAE (without fine tuning) 69.9 56.5
SAE (with fine tuning) 100 90.3
CAE 100 100
CNN 100 97.5
LSTM 100 90.3

Table 9: Stacked autoencoder classification of raw acceleration data.

Feature Training Accuracy (%) Testing Accuracy (%)

Raw Data (without fine tuning) 86.2 39.9
Raw Data (with fine tuning) 94.6 40.7

and were completely unclassifiable for the stacked autoencoders. Having been categorised as the most

unstable set of data, the results from the P-2-1 classification further confirms the dependence of network

performances on the periods-to-stability of the impact motions as reported by Kenneth et al. [10].

The hand-crafted periods-peaks features showed better performance with the LSTM compared to

the MLP and SVM as seen in Tables 5-7. This can be related to the fact that (i) the hand-crafted

features came out as repeating sequence of data, thus giving LSTM networks which are known for good

performances on sequential data an advantage (ii) the hand-crafted features were of different lengths due

to the varying numbers of impacts per periods, hence the need to downsize the features into equal sizes

before being fed into the MLP and SVM networks could have contributed to their poor performance.

Aside accepting data of different sample length, LSTMs can also accept co-current multivariate data as

input for a single output.

Extracted statistical features showed accuracy of 99.8%, 98.7% and 97.1% while the frequency-based

mean CWT coefficients features (Mean-FreqCWT) showed accuracy of 99.8%, 100% and 100% for the
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Figure 19: Performance of (a) BiLSTM (b) MLP (c) SVM and (d) Stacked autoencoders on the raw out-of-sample acceler-
ation data.

LSTM, MLP and SVM networks, respectively, when tested on the never seen out-of-sample data. Image

extracted features including HOG, ResNet18-CNN and Autoencoded-GrayImg features showed classifi-

cation accuracy of 20%, 98.2% and 20%, respectively, for the LSTM network (see Table 5); 100%, 99.7%

and 76.0%, respectively, for the MLP network (see Table 6); and 99.8%, 99.7% and 52.1%, respectively,

for the SVM network (see Table 7). Imagery features extracted using the auto-encoders showed the least

performance, while those from HOG descriptor and ResNet18 performed consistently well with the MLP

and SVM classifiers during training and testing. The LSTM network yielded poor performance on the

HOG features. This can be attributed to the fact that unlike the convolutional ResNet18 features, the

HOG harvested image features are non-sequential in nature and are spatially disoriented.

The performances of the self-supervised network models are presented in Table 8 and are all seen to

perform above 90% accuracy except for the yet to be fine-tuned SAE which later attained an accuracy

of 90.3% after fine-tuning. The stacked-autoencoder showed better performance on the processed binary

image data (see Table 8) compared to the unprocessed raw acceleration data (see Table 9), thus revealing

the importance of data pre-processing. A summary of the training and cross-validation performances

of the classifier networks is further presented in Fig. 20, and the confusion matrices resulting from the

testing of the self-supervised models are presented in Fig. 21.

Aside the above analysis, the robustness of some of the networks to noise as would be expected in

real-life scenario was also investigated. Networks with consistent high performances during training and

validation were analysed by infecting their parent signals with noise before extracting their input features.
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Figure 20: (Colour online) Summary of networks performances during (a) training and (b) testing.

An additive white Gaussian noise (AWGN) with a signal-to-noise ratio (SNR) of 10 and a signal power

value measured from the input signal was used in present study. Figure 22 shows the (i) raw signal and

(ii) the scalogram plots for a transient P-1-1 impact motion (a) without noise infection and (b) with noise

infection. As a pre-processing procedure, the noise infected signals were smoothened using the Savitzky-

Golay method with a second degree polynomial over 25 data span. These smoothing parameters were

carefully selected to ensure minimal distortion of the original signal. The resulting smoothened signal

(in red) shows the morphology of the signal to be intact, hence waveform morphological features are

less likely to be affected by the introduced noise. The resulting scalogram plots also showed no visible

difference.The performance results of the networks robustness to noise are presented in Tables 10-12 and

the results showed no major effect of noise on the analysed networks as the obtained results were very
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Figure 21: Confusion matrices originating from the cross-validation of the image data based (a) SAE (b) CAE (c) CNN
and LSTM classifiers.

similar to those from the non-noise infected signals. However, it should be noted that the robustness to

noise has been carried out with an assumption that the same category and level of noise is applicable

to all data sets. This may not often be the case for real life scenarios as there may be multiple sources

and level of noises. It can also be said that the simulated impacts as well as their defining peaks were

prominent enough not to be affected by the signal distortion (i.e. reduced peak height and increased peak

width) arising from the smoothing and also by the remaining low -frequency noises in the signal. Cases

when the signal is dominated with weak impacts may require further data analysis.

Table 10: LSTM Network performance on noise infected data.

Feature Training Accuracy (%) Testing Accuracy (%) Hidden Units Time (mins)

Statisticalnsy 99.9 99.9 80 12.17
HOGnsy 20.0 20.0 80 494.4
ResNet18nsy 100.0 96.9 80 27.55
Mean-FreqCWTnsy 99.6 99.9 80 9.85
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Figure 22: (Colour online) (i)Raw signal and (ii) scalogram plots for a transient P-1-1 impact motion (a) without noise and
(b) with noise.

Table 11: MLP Network performance on noise infected data, where Tr, Val and Ts represents training, validation and
testing data sets, respectively.

Feature
Training (%)

Testing (%) Hidden Units
Tr Val Ts

Statisticalnsy 99.6 100 99.0 99.4 10
HOGnsy 100 100 100 99.3 10
ResNet18nsy 100 100 100 99.8 10
Mean-FreqCWTnsy 99.9 100 100 99.1 10

Table 12: SVM Network performance on noise infected data.

Feature Training Accuracy (%) Testing Accuracy (%)

Statisticalnsy 100 97.2
HOGnsy 100 99.3
ResNet18nsy 100.0 100
Mean-FreqCWTnsy 100 99.9

Table 13: Performances of self-supervised learning models on image data from noise infected data.

Network Model Training Accuracy (%) Testing Accuracy (%)

CAE 100 99.2
CNN 100 94.0

5. Conclusions

In this present study, both supervised and unsupervised feature extractions have been carried out on

acceleration signals of five classes of vibro-impact motions as a means of improving their classification.

For the supervised case, a combination of morphological time-interval features and statistical features

were extracted. The morphological time-interval features describe the basic shape and position (timing)

of the different waveforms occurring along the signal. Amplitudes and widths describe the shape of the

waveforms while peak locations and peak separation describe the position of the waveforms. Present study

26

                  



shows that these features are of relevant importance when carrying out a network based classification

of the signals. The classification accuracy of using the Morfeat1, Morfeat2 and Morfeat3 features with

Long-Short Term Memory (LSTM) network ranged between 86.9%− 100% but between 62.0%− 84.3%

with the multi-layer perceptron (MLP) and support vector machine (SVM) networks. The statistical

features yielded an accuracy of 99.8%, 98.7% and 97.1% for the LSTM, MLP and SVM, respectively.

In the case of unsupervised feature extraction, the raw vibration signals were first pre-processed into a

two-dimensional image representation from which features were selected and automatically extracted for

dimensionality reduction and data simplification. Extracted features were fed into the network classifiers

to make a prediction of the class they belong to. The ResNet18 features and the mean of the coefficients

along each of the frequency axis (Mean-FreqCWT) features performed excellently well with the three

network classifiers (LSTM, MLP and SVM) with accuracies that range between 98.2% and 100%. Due

to their unpreserved spatial orientation, the histogram of oriented gradients (HOG) features did not do

well with LSTM but did well with the MLP and SVM classifiers. Auto-encoded features from both the

raw acceleration data and imagery data showed lower performances with the network classifiers. The

self-supervised feature learning networks including the fine-tuned stacked autoencoders (SAE), the con-

volutional autoencoders (CAE), the convolutional neural networks (CNN) and the LSTM respectively

showed accuracy of 90.3%, 100%, 97.5% and 90.3% on the image vector data. The high performing mod-

els listed above showed consistent high performance during their training and testing, hence they are

well-suited for an online optimisation system. Compared to others, the statistical, ResNet18 and the

Mean-FreqCWT features are less laborious and less computationally intensive. With their performance

being or nearing 100% for all the networks, they become the first point of consideration when designing

the impact motion categorisation model. This study has also showed that extracting appropriate features

and selecting the right network classifier is essential for vibro-impact motions characterisation as some of

the networks showed better performances on certain features compared to other features and compared

to their raw data. The auotoencoder features as automatically extracted features, despite being compu-

tationally intensive showed lesser performance in characterising the impact motions compared to others

like the HOG and the pre-trained Resnet18 features. This may be because important lower level features

were discarded by the autoencoders during feature learning.

In conclusion, the use of CAE, CNN and the extraction of statistical, HOG, Mean-FreqCWT and

pre-trained Resnet18 features proved to be less laborious and less computationally intensive. With their

accuracies reaching 100% or nearly, they become the first point of consideration for designing a vibro-

impact motion classification model. Also, the compliance of their noise infected version (Tables 10-13)

with the uninfected version Tables 5-8 suggests their robustness for real life applications. It should be

noted that the robustness to noise has been carried out with an assumption that the same category

and level of noise is applicable to all data sets. This may not often be the case for real life scenarios

as there may be multiple sources and level of noises. It can also be said that the simulated impacts

as well as their defining peaks were prominent enough not to be affected by the signal distortion (i.e.

reduced peak height and increased peak width) arising from the smoothing and also by the remaining

low-frequency noises in the signal. Cases when the signal is dominated with weak impacts may require

further data analysis, which could be a future work. Future works will also involve using exceptional

network models concluded from this study on experimental data from the physical impact oscillator for

the purpose of impact motion characterisation and system optimisation. Impact motions categories can

be used alongside other extractable features from the impact data to predict the secondary stiffness (k2

in Fig. 1) representing the stiffness of the rock.
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