1,301 research outputs found

    The Ethanol Extract of Fructus trichosanthis Promotes Fetal Hemoglobin Production via p38 MAPK Activation and ERK Inactivation in K562 Cells

    Get PDF
    Pharmacological stimulation of fetal hemoglobin (HbF) expression may be a promising approach for the treatment of beta-thalassemia. In this study, the effects of Fructus trichosanthis (FT) were investigated in human erythroleukemic K562 cells for their gamma-globin mRNA and HbF-induction activities. The role of signaling pathways, including extracellular regulated protein kinase (ERK) and p38 mitogen-activated protein kinase (MAPK), was also investigated. It was found that the ethanol extract of FT significantly increased gamma-globin mRNA and HbF levels, determined by real-time reverse transcription polymerase chain reaction and enzyme linked immunosorbent assay, respectively, in dose- and time-dependent manner. Total Hb (THb) levels were also elevated in the concentrations without cytotoxicity (<80 μg mL−1). Pre-treatment with p38 MAPK inhibitor SB203580 blocked the stimulatory effects of FT extract in total and HbF induction. In contrast, no change in HbF was observed when treated with ERK inhibitor PD98059. Furthermore, FT ethanol extract activated p38 MAPK and inhibited ERK signaling pathways in K562 cells, as revealed in western blotting analysis. In addition, SB203580 significantly abolished p38 MAPK activation when the cells were treated with FT. In summary, the ethanol extract of FT was found to be a potent inducer of HbF synthesis in K562 cells. The present data delineated the role of ERK and p38 MAPK signaling as molecular targets for pharmacologic stimulation of HbF production upon FT treatment

    Recognition of an α-helical hairpin in P22 large terminase by a synthetic antibody fragment.

    Get PDF
    The genome-packaging motor of tailed bacteriophages and herpesviruses is a multisubunit protein complex formed by several copies of a large (TerL) and a small (TerS) terminase subunit. The motor assembles transiently at the portal protein vertex of an empty precursor capsid to power the energy-dependent packaging of viral DNA. Both the ATPase and nuclease activities associated with genome packaging reside in TerL. Structural studies of TerL from bacteriophage P22 have been hindered by the conformational flexibility of this enzyme and its susceptibility to proteolysis. Here, an unbiased, synthetic phage-display Fab library was screened and a panel of high-affinity Fabs against P22 TerL were identified. This led to the discovery of a recombinant antibody fragment, Fab4, that binds a 33-amino-acid α-helical hairpin at the N-terminus of TerL with an equilibrium dissociation constant Kd of 71.5 nM. A 1.51 Å resolution crystal structure of Fab4 bound to the TerL epitope (TLE) together with a 1.15 Å resolution crystal structure of the unliganded Fab4, which is the highest resolution ever achieved for a Fab, elucidate the principles governing the recognition of this novel helical epitope. TLE adopts two different conformations in the asymmetric unit and buries as much as 1250 Å2 of solvent-accessible surface in Fab4. TLE recognition is primarily mediated by conformational changes in the third complementarity-determining region of the Fab4 heavy chain (CDR H3) that take place upon epitope binding. It is demonstrated that TLE can be introduced genetically at the N-terminus of a target protein, where it retains high-affinity binding to Fab4

    TP53-inducible Glycolysis and Apoptosis Regulator (TIGAR) Metabolically Reprograms Carcinoma and Stromal Cells in Breast Cancer.

    Get PDF
    A subgroup of breast cancers has several metabolic compartments. The mechanisms by which metabolic compartmentalization develop in tumors are poorly characterized. TP53 inducible glycolysis and apoptosis regulator (TIGAR) is a bisphosphatase that reduces glycolysis and is highly expressed in carcinoma cells in the majority of human breast cancers. Hence we set out to determine the effects of TIGAR expression on breast carcinoma and fibroblast glycolytic phenotype and tumor growth. The overexpression of this bisphosphatase in carcinoma cells induces expression of enzymes and transporters involved in the catabolism of lactate and glutamine. Carcinoma cells overexpressing TIGAR have higher oxygen consumption rates and ATP levels when exposed to glutamine, lactate, or the combination of glutamine and lactate. Coculture of TIGAR overexpressing carcinoma cells and fibroblasts compared with control cocultures induce more pronounced glycolytic differences between carcinoma and fibroblast cells. Carcinoma cells overexpressing TIGAR have reduced glucose uptake and lactate production. Conversely, fibroblasts in coculture with TIGAR overexpressing carcinoma cells induce HIF (hypoxia-inducible factor) activation with increased glucose uptake, increased 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase-3 (PFKFB3), and lactate dehydrogenase-A expression. We also studied the effect of this enzyme on tumor growth. TIGAR overexpression in carcinoma cells increases tumor growth in vivo with increased proliferation rates. However, a catalytically inactive variant of TIGAR did not induce tumor growth. Therefore, TIGAR expression in breast carcinoma cells promotes metabolic compartmentalization and tumor growth with a mitochondrial metabolic phenotype with lactate and glutamine catabolism. Targeting TIGAR warrants consideration as a potential therapy for breast cancer

    Antidepressant-Like Activity of the Ethanolic Extract from Uncaria lanosa Wallich var. appendiculata Ridsd in the Forced Swimming Test and in the Tail Suspension Test in Mice

    Get PDF
    This study investigated the antidepressant activity of ethanolic extract of U. lanosa Wallich var. appendiculata Ridsd (ULEtOH) for two-weeks administrations by using FST and TST on mice. In order to understand the probable mechanism of antidepressant-like activity of ULEtOH in FST and TST, the researchers measured the levels of monoamines and monoamine oxidase activities in mice brain, and combined the antidepressant drugs (fluoxetine, imipramine, maprotiline, clorgyline, bupropion and ketanserin). Lastly, the researchers analyzed the content of RHY in the ULEtOH. The results showed that ULEtOH exhibited antidepressant-like activity in FST and TST in mice. ULEtOH increased the levels of 5-HT and 5-HIAA in cortex, striatum, hippocampus, and hypothalamus, the levels of NE and MHPG in cortex and hippocampus, the level of NE in striatum, and the level of DOPAC in striatum. Two-week injection of IMI, CLO, FLU and KET enhanced the antidepressant-like activity of ULEtOH. ULEtOH inhibited the activity of MAO-A. The amount of RHY in ULEtOH was 17.12 mg/g extract. Our findings support the view that ULEtOH exerts antidepressant-like activity. The antidepressant-like mechanism of ULEtOH may be related to the increase in monoamines levels in the hippocampus, cortex, striatum, and hypothalamus of mice

    A Longitudinal Historical Population Database in Asia. The Taiwanese Historical Household Registers Database (1906–1945)

    Get PDF
    For the past 35 years, the Taiwan Historical Household Registers Database (THHRD) has been significant for historical demographic research on Asia. In recent years, researchers have continued adding new demographic information to the database. This allows for the expansion of research on the topic of historical households in the region. However, there are still many issues to address in the field of Asian historical demography. This paper provides a brief introduction on the uses of THHRD for future research

    TP53-inducible Glycolysis and Apoptosis Regulator (TIGAR) Metabolically Reprograms Carcinoma and Stromal Cells in Breast Cancer

    Get PDF
    A subgroup of breast cancers has several metabolic compartments. The mechanisms by which metabolic compartmentalization develop in tumors are poorly characterized. TP53 inducible glycolysis and apoptosis regulator (TIGAR) is a bisphosphatase that reduces glycolysis and is highly expressed in carcinoma cells in the majority of human breast cancers. Hence we set out to determine the effects of TIGAR expression on breast carcinoma and fibroblast glycolytic phenotype and tumor growth. The overexpression of this bisphosphatase in carcinoma cells induces expression of enzymes and transporters involved in the catabolism of lactate and glutamine. Carcinoma cells overexpressing TIGAR have higher oxygen consumption rates and ATP levels when exposed to glutamine, lactate, or the combination of glutamine and lactate. Coculture of TIGAR overexpressing carcinoma cells and fibroblasts compared with control cocultures induce more pronounced glycolytic differences between carcinoma and fibroblast cells. Carcinoma cells overexpressing TIGAR have reduced glucose uptake and lactate production. Conversely, fibroblasts in coculture with TIGAR overexpressing carcinoma cells induce HIF (hypoxia-inducible factor) activation with increased glucose uptake, increased 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase-3 (PFKFB3), and lactate dehydrogenase-A expression. We also studied the effect of this enzyme on tumor growth. TIGAR overexpression in carcinoma cells increases tumor growth in vivo with increased proliferation rates. However, a catalytically inactive variant of TIGAR did not induce tumor growth. Therefore, TIGAR expression in breast carcinoma cells promotes metabolic compartmentalization and tumor growth with a mitochondrial metabolic phenotype with lactate and glutamine catabolism. Targeting TIGAR warrants consideration as a potential therapy for breast cancer

    Ultrathin compound semiconductor on insulator layers for high performance nanoscale transistors

    Full text link
    Over the past several years, the inherent scaling limitations of electron devices have fueled the exploration of high carrier mobility semiconductors as a Si replacement to further enhance the device performance. In particular, compound semiconductors heterogeneously integrated on Si substrates have been actively studied, combining the high mobility of III-V semiconductors and the well-established, low cost processing of Si technology. This integration, however, presents significant challenges. Conventionally, heteroepitaxial growth of complex multilayers on Si has been explored. Besides complexity, high defect densities and junction leakage currents present limitations in the approach. Motivated by this challenge, here we utilize an epitaxial transfer method for the integration of ultrathin layers of single-crystalline InAs on Si/SiO2 substrates. As a parallel to silicon-on-insulator (SOI) technology14,we use the abbreviation "XOI" to represent our compound semiconductor-on-insulator platform. Through experiments and simulation, the electrical properties of InAs XOI transistors are explored, elucidating the critical role of quantum confinement in the transport properties of ultrathin XOI layers. Importantly, a high quality InAs/dielectric interface is obtained by the use of a novel thermally grown interfacial InAsOx layer (~1 nm thick). The fabricated FETs exhibit an impressive peak transconductance of ~1.6 mS/{\mu}m at VDS=0.5V with ON/OFF current ratio of greater than 10,000 and a subthreshold swing of 107-150 mV/decade for a channel length of ~0.5 {\mu}m

    Casein Kinase 1 Proteomics Reveal Prohibitin 2 Function in Molecular Clock

    Get PDF
    Throughout the day, clock proteins synchronize changes in animal physiology (e.g., wakefulness and appetite) with external cues (e.g., daylight and food). In vertebrates, both casein kinase 1 delta and epsilon (CK1δ and CK1ε) regulate these circadian changes by phosphorylating other core clock proteins. In addition, CK1 can regulate circadian-dependent transcription in a non-catalytic manner, however, the mechanism is unknown. Furthermore, the extent of functional redundancy between these closely related kinases is debated. To further advance knowledge about CK1δ and CK1ε mechanisms of action in the biological clock, we first carried out proteomic analysis of both kinases in human cells. Next, we tested interesting candidates in a cell-based circadian readout which resulted in the discovery of PROHIBITIN 2 (PHB2) as a modulator of period length. Decreasing the expression of PHB2 increases circadian-driven transcription, thus revealing PHB2 acts as an inhibitor in the molecular clock. While stable binding of PHB2 to either kinase was not detected, knocking down CK1ε expression increases PHB2 protein levels and, unexpectedly, knocking down CK1δ decreases PHB2 transcript levels. Thus, isolating CK1 protein complexes led to the identification of PHB2 as an inhibitor of circadian transcription. Furthermore, we show that CK1δ and CK1ε differentially regulate the expression of PHB2

    All-Trans Retinoic Acid Treatment Is Associated with Prohibitin Expression in Renal Interstitial Fibrosis Rats

    Get PDF
    This study was performed to investigate the association of prohibitin with renal interstitial fibrosis (RIF) lesion and to explore the association of all-trans retinoic acid (ATRA) treatment with prohibitin expression in RIF rats. Rats were divided into three groups: the sham operation group (SHO), the model group subjected to unilateral ureteral obstruction (UUO), and the model group treated with ATRA (GA). Renal tissues were collected at 14 and 28 days after surgery, and the relevant indicators were detected. In comparison with the SHO group, the RIF index in the UUO group was markedly elevated (p < 0.01), and the RIF index in the GA group was alleviated compared with that in the UUO group (p < 0.01). Compared with the SHO group, the expression of prohibitin (protein or mRNA) in the UUO group was significantly reduced (each p < 0.01). Prohibitin expression in the GA group was markedly increased when compared with that in the UUO (p < 0.01). The expression of TGF-β1 (protein and mRNA), protein expressions of Col-IV, fibronectin, α-SMA and cleaved Caspase-3, ROS generation and cell apoptosis index in the UUO group were markedly higher than those in the SHO group (all p < 0.01), and their expressions in the GA group were markedly down-regulated compared to those in the UUO group (all p < 0.01, respectively). The protein expression of prohibitin was negatively correlated with the RIF index, protein expression of TGF-β1, Col-IV, fibronectin, α-SMA or cleaved Caspase-3, ROS generation and the cell apoptosis index (each p < 0.01). In conclusion, lower expression of prohibitin is associated with the RIF, and ATRA treatment is associated with increased prohibitin, which can prevent the progression of RIF
    corecore