91 research outputs found

    Cellular and Tissue Selectivity of AAV Serotypes for Gene Delivery to Chondrocytes and Cartilage

    Get PDF
    Background: Despite several studies on the effect of adeno-associated virus (AAV)-based therapeutics on osteoarthritis (OA), information on the transduction efficiency and applicable profiles of different AAV serotypes to chondrocytes in hard cartilage tissue is still limited. Moreover, the recent discovery of additional AAV serotypes makes it necessary to screen for more suitable AAV serotypes for specific tissues. Here, we compared the transduction efficiencies of 14 conventional AAV serotypes in human chondrocytes, mouse OA models, and human cartilage explants obtained from OA patients. Methods: To compare the transduction efficiency of individual AAV serotypes, green fluorescent protein (GFP) expression was detected by fluorescence microscopy or western blotting. Likewise, to compare the transduction efficiencies of individual AAV serotypes in cartilage tissues, GFP expression was determined using fluorescence microscopy or immunohistochemistry, and GFP-positive cells were counted. Results: Only AAV2, 5, 6, and 6.2 exhibited substantial transduction efficiencies in both normal and OA chondrocytes. All AAV serotypes except AAV6 and rh43 could effectively transduce human bone marrow mesenchymal stem cells. In human and mouse OA cartilage tissues, AAV2, AAV5, AAV6.2, AAV8, and AAV rh39 showed excellent tissue specificity based on transduction efficiency. These results indicate the differences in transduction efficiencies of AAV serotypes between cellular and tissue models. Conclusions: Our findings indicate that AAV2 and AAV6.2 may be the best choices for AAV-mediated gene delivery into intra-articular cartilage tissue. These AAV vectors hold the potential to be of use in clinical applications to prevent OA progression if appropriate therapeutic genes are inserted into the vector

    MRI of the Breast for the Detection and Assessment of the Size of Ductal Carcinoma in Situ

    Get PDF
    OBJECTIVE: The aim of the study was to compare the accuracy of magnetic resonance imaging (MRI) and mammography for the detection and assessment of the size of ductal carcinoma in situ (DCIS). MATERIALS AND METHODS: The preoperative contrast-enhanced MRI and mammography were analyzed in respect of the detection and assessment of the size of DCIS in 72 patients (age range: 30-67 years, mean age: 47 years). The MRI and mammographic measurements were compared with the histopathologic size with using the Pearson's correlation coefficients and the Mann-Whitney u test. We evaluated whether the breast density, the tumor nuclear grade, the presence of comedo necrosis and microinvasion influenced the MRI and mammographic size estimates by using the chi-square test. RESULTS: Of the 72 DCIS lesions, 68 (94%) were detected by MRI and 62 (86%) were detected by mammography. Overall, the Pearson's correlation of the size between MRI and histopathology was 0.786 versus 0.633 between mammography and histopathology (p < 0.001). MRI underestimated the size by more than 1 cm (including false negative examination) in 12 patients (17%), was accurate in 52 patients (72%) and overestimated the size by more than 1 cm in eight patients (11%) whereas mammography underestimated the size in 25 patients (35%), was accurate in 31 patients (43%) and overestimated the size in 16 patients (22%). The MRI, but not the mammography, showed significant correlation for the assessment of the size of tumor in noncomedo DCIS (p < 0.001 vs p = 0.060). The assessment of tumor size by MRI was affected by the nuclear grade (p = 0.008) and the presence of comedo necrosis (p = 0.029), but not by the breast density (p = 0.747) or microinvasion (p = 0.093). CONCLUSION: MRI was more accurate for the detection and assessment of the size of DCIS than mammography

    The Value of Procalcitonin and the SAPS II and APACHE III Scores in the Differentiation of Infectious and Non-infectious Fever in the ICU: A Prospective, Cohort Study

    Get PDF
    Early and accurate differentiation between infectious and non-infectious fever is vitally important in the intensive care unit (ICU). In the present study, patients admitted to the medical ICU were screened daily from August 2008 to February 2009. Within 24 hr after the development of fever (>38.3℃), serum was collected for the measurement of the procalcitonin (PCT) and high mobility group B 1 levels. Simplified Acute Physiology Score (SAPS) II and Acute Physiology And Chronic Health Evaluation (APACHE) III scores were also analyzed. Sixty-three patients developed fever among 448 consecutive patients (14.1%). Fever was caused by either infectious (84.1%) or non-infectious processes (15.9%). Patients with fever due to infectious causes showed higher values of serum PCT (7.8±10.2 vs 0.5±0.2 ng/mL, P=0.026), SAPS II (12.0±3.8 vs 7.6±2.7, P=0.006), and APACHE III (48±20 vs 28.7±13.3, P=0.039) than those with non-infectious fever. In receiver operating characteristic curve analysis, the area under the curve was 0.726 (95% CI; 0.587-0.865) for PCT, 0.759 (95% CI; 0.597-0.922) for SAPS II, and 0.715 (95% CI; 0.550-0.880) for APACHE III. Serum PCT, SAPS II, and APACHE III are useful in the differentiation between infectious and non-infectious fever in the ICU

    The efficacy of conditioned medium released by tonsil-derived mesenchymal stem cells in a chronic murine colitis model.

    No full text
    Tonsil-derived mesenchymal stem cells (TMSC) have characteristics of MSC and have many advantages. In our previous studies, intraperitoneal (IP) injection of TMSC in acute and chronic colitis mouse models improved the disease activity index, colon length, and the expression levels of proinflammatory cytokines. However, TMSC were not observed to migrate to the inflammation site in the intestine. The aim of this study was to verify the therapeutic effect of conditioned medium (CM) released by TMSC (TMSC-CM) in a mouse model of dextran sulfate sodium (DSS)-induced chronic colitis. TMSC-CM was used after seeding 5×105 cells onto a 100 mm dish and culturing for 5-7 days. TMSC-CM was concentrated (TMSC-CM-conc) by three times using a 100 kDa cut-off centrifugal filter. Seven-week-old C57BL/6 mice were randomly assigned to the following 5 groups: 1) normal, 2) colitis, 3) TMSC, 4) TMSC-CM, and 5) TMSC-CM-conc. Chronic colitis was induced by continuous oral administration of 1.5% dextran sulfate sodium (DSS) for 5 days, followed by 5 additional days of tap water feeding. This cycle was repeated two more times (total 30 days). Phosphate buffered saline (in the colitis group), TMSC, TMSC-CM, and TMSC-CM-conc were injected via IP route 4, 4, 12, and 4 times, respectively. Reduction of disease activity index, weight gain, recovery of colon length, and decreased in the expression level of the proinflammatory cytokines, interleukin (IL)-1β, IL-6, and IL-17 were observed at day 30 in the treatment groups, compared to control. However, histological colitis scoring and the expression level of tumor necrosis factor α and IL-10 did not differ significantly between each group. TMSC-CM showed an equivalent effect to TMSC related to the improvement of inflammation in the chronic colitis mouse model. The data obtained support the use of TMSC-CM to treat inflammatory bowel disease without any cell transplantation

    PP011 Covering New Medical Devices With Low Cost-Effectiveness Evidence

    No full text

    Cooperative allosteric ligand binding in calmodulin

    No full text
    The therapeutic potential of tonsil-derived mesenchymal stem cells (TMSC) prepared from human tonsillar tissue has been studied in animal models for several diseases such as hepatic injury, hypoparathyroidism, diabetes and muscle dystrophy. In this study, we examined the therapeutic effects of TMSC in a dextran sulfate sodium (DSS)-induced colitis model. TMSC were injected in DSS-induced colitis mice via intraperitoneal injection twice (TMSC[x2]) or four times (TMSC[x4]). Control mice were injected with either phosphate-buffered saline or human embryonic kidney 293 cells. Body weight, stool condition and disease activity index (DAI) were examined daily. Colon length, histologic grading, and mRNA expression of pro-inflammatory cytokines, interleukin 1β (IL-1β), IL-6, IL-17 and tumor necrosis factor α, and anti-inflammatory cytokines, IL-10, IL-11 and IL-13, were also measured. Our results showed a significant improvement in survival rates and body weight gain in colitis mice injected with TMSC[x2] or TMSC[x4]. Injection with TMSC also significantly decreased DAI scores throughout the experimental period; at the end of experiment, almost complete reversal of DAI scores to normal was found in colitis mice treated with TMSC[x4]. Colon length was also significantly recovered in colitis mice treated with TMSC[x4]. However, histopathological alterations induced by DSS treatment were not apparently improved by injection with TMSC. Finally, treatment with TMSC[x4] significantly reversed the mRNA levels of IL-1β and IL-6, although expression of all pro-inflammatory cytokines tested was induced in colitis mice. Under our experimental conditions, however, no apparent alterations in the mRNA levels of all the anti-inflammatory cytokines tested were found. In conclusion, our findings demonstrate that multiple injections with TMSC produced a therapeutic effect in a mouse model of DSS-induced colitis

    Overgrowth of long bone in rabbits by growth stimulation through metaphyseal hole creation

    No full text
    Abstract Overgrowth of long bones was noted in pediatric patients who underwent anterior cruciate ligament reconstruction. Hyperaemia during creating a metaphyseal hole and the microinstability made by the drill hole may induce overgrowth. This study aimed to determine whether metaphyseal hole creation accelerates growth and increases bone length and compare the effects of growth stimulation between metaphyseal hole creation and periosteal resection. We selected 7- to 8-week-old male New Zealand white rabbits. Periosteal resection (N = 7) and metaphyseal hole creation (N = 7) were performed on the tibiae of skeletally immature rabbits. Seven additional sham controls were included as age-matched controls. In the metaphyseal hole group, the hole was made using a Steinman pin at the same level of periosteal resection, and the cancellous bone beneath the physis was removed by curettage. The vacant space in the metaphysis below the physis was filled with bone wax. Tibiae were collected 6 weeks after surgery. The operated tibia was longer in the metaphyseal hole group (10.43 ± 0.29 cm vs. 10.65 ± 0.35 cm, P = 0.002). Overgrowth was higher in the metaphyseal hole group (3.17 ± 1.16 mm) than in the sham group (− 0.17 ± 0.39 mm, P < 0.001). The overgrowth in the metaphyseal hole group was comparable to that in the periosteal resection group (2.23 ± 1.52 mm, P = 0.287). In rabbits, metaphyseal hole creation and interposition with bone wax can stimulate long bone overgrowth, and the amount of overgrowth is similar to that seen in periosteal resection
    corecore