736 research outputs found
Photon-Photon Scattering, Pion Polarizability and Chiral Symmetry
Recent attempts to detect the pion polarizability via analysis of
measurements are examined. The connection
between calculations based on dispersion relations and on chiral perturbation
theory is established by matching the low energy chiral amplitude with that
given by a full dispersive treatment. Using the values for the polarizability
required by chiral symmetry, predicted and experimental cross sections are
shown to be in agreement.Comment: 21 pages(+10 figures available on request), LATEX, UMHEP-38
K_S\rightarrow \gamma\gamma , K_L\rightarrow\pi^0\gamma\gamma$ and Unitarity
Agreement between the experimental value and the number predicted via a one-loop chiral perturbation
theory calculation has been cited as a success for the latter. On the other
hand the one-loop prediction for the closely related process has been found to be a factor three below the experimental
value. Using the inputs of unitarity and dispersion relations, we demonstrate
the importance of higher order loop effects to both of these processes.Comment: 20 pages (4 figures available on request), UMHEP-39
Search for and Using Genetic Programming Event Selection
We apply a genetic programming technique to search for the double Cabibbo
suppressed decays and .
We normalize these decays to their Cabibbo favored partners and find
\Lambda_c^+ \to p K^+ \pi^-\Lambda_c^+ \to p K^-
\pi^+ and D_s^+ \to K^+ K^+
\pi^-D_s^+ \to K^+ K^- \pi^+ where
the first errors are statistical and the second are systematic. Expressed as
90% confidence levels (CL), we find and respectively.
This is the first successful use of genetic programming in a high energy
physics data analysis.Comment: 10 page
Measurement of the D+ and Ds+ decays into K+K-K+
We present the first clear observation of the doubly Cabibbo suppressed decay
D+ --> K-K+K+ and the first observation of the singly Cabibbo suppressed decay
Ds+ --> K-K+K+. These signals have been obtained by analyzing the high
statistics sample of photoproduced charm particles of the FOCUS(E831)
experiment at Fermilab. We measure the following relative branching ratios:
Gamma(D+ --> K-K+K+)/Gamma(D+ --> K-pi+pi+) = (9.49 +/- 2.17(statistical) +/-
0.22(systematic))x10^-4 and Gamma(Ds+ --> K-K+K+)/Gamma(Ds+ --> K-K+pi+) =
(8.95 +/- 2.12(statistical) +2.24(syst.) -2.31(syst.))x10^-3.Comment: 10 pages, 8 figure
A Non-parametric Approach to the D+ to K*0bar mu+ nu Form Factors
Using a large sample of D+ -> K- pi+ mu+ nu decays collected by the FOCUS
photoproduction experiment at Fermilab, we present the first measurements of
the helicity basis form factors free from the assumption of spectroscopic pole
dominance. We also present the first information on the form factor that
controls the s-wave interference discussed in a previous paper by the FOCUS
collaboration. We find reasonable agreement with the usual assumption of
spectroscopic pole dominance and measured form factor ratios.Comment: 14 pages, 5 figures, and 2 tables. We updated the previous version by
changing some words, removing one plot, and adding two tables. These changes
are mostly stylisti
Dalitz plot analysis of D_s+ and D+ decay to pi+pi-pi+ using the K-matrix formalism
FOCUS results from Dalitz plot analysis of D_s+ and D+ to pi+pi-pi+ are
presented. The K-matrix formalism is applied to charm decays for the first time
to fully exploit the already existing knowledge coming from the light-meson
spectroscopy experiments. In particular all the measured dynamics of the S-wave
pipi scattering, characterized by broad/overlapping resonances and large
non-resonant background, can be properly included. This paper studies the
extent to which the K-matrix approach is able to reproduce the observed Dalitz
plot and thus help us to understand the underlying dynamics. The results are
discussed, along with their possible implications on the controversial nature
of the sigma meson.Comment: To be submitted to Phys.Lett.B A misprint corrected in formula
Measurement of the branching ratio of the decay D^0 -> \pi^-\mu^+\nu relative to D^0 -> K^-\mu^+\nu
We present a new measurement of the branching ratio of the Cabibbo suppressed
decay D^0\to \pi^-\mu^+\nu relative to the Cabibbo favored decay D^0\to
K^-\mu^+\nu and an improved measurement of the ratio
|\frac{f_+^{\pi}(0)}{f_+^{K}(0)}|. Our results are 0.074 \pm 0.008 \pm 0.007
for the branching ratio and 0.85 \pm 0.04 \pm 0.04 \pm 0.01 for the form factor
ratio, respectively.Comment: 13pages, 3 figure
Study of Hadronic Five-Body Decays of Charmed Mesons
We study the decay of D+ and Ds+ mesons into charged five body final states,
and report the discovery of the decay mode D+ -> K+K-Pi+Pi+Pi-, as well as
measurements of the decay modes D+ -> K-Pi+Pi+Pi+Pi-, Ds+ -> K+K-Pi+Pi+Pi-, Ds+
-> PhiPi+Pi+Pi- and D+/Ds+ -> Pi+Pi+Pi+Pi-Pi-. An analysis of the resonant
substructure is also included, with evidence suggesting that both decays
proceed primarily through an a1 vector resonance.Comment: 11 pages, 3 figure
New Measurements of the D+ to K* mu nu Form Factor Ratios
Using a large sample of D+ to K- pi+ mu+ nu decays collected by the FOCUS
photoproduction experiment at Fermilab, we present new measurements of two
semileptonic form factor ratios: rv and r2. We find rv = 1.504 \pm 0.057 \pm
0.039 and r2 = 0.875 \pm 0.049 \pm 0.064. Our form factor results include the
effects of the s-wave interference discussed in a previous paper.Comment: 12 pages, 5 figure
Study of the D^0 \to pi^-pi^+pi^-pi^+ decay
Using data from the FOCUS (E831) experiment at Fermilab, we present new
measurements for the Cabibbo-suppressed decay mode . We measure the branching ratio .
An amplitude analysis has been performed, a first for this channel, in order to
determine the resonant substructure of this decay mode. The dominant component
is the decay , accounting for 60% of the decay rate.
The second most dominant contribution comes from the decay , with a fraction of 25%. We also study the
line shape and resonant substructure. Using the helicity formalism for the
angular distribution of the decay , we measure
a longitudinal polarization of %.Comment: 38 pages, 8 figures. accepted for publication in Physical Review
- …