95 research outputs found

    Computed tomography angiography versus Agatston score for diagnosis of coronary artery disease in patients with stable chest pain: individual patient data meta-analysis of the international COME-CCT Consortium

    Get PDF
    Objectives: There is conflicting evidence about the comparative diagnostic accuracy of the Agatston score versus computed tomography angiography (CTA) in patients with suspected obstructive coronary artery disease (CAD).Purpose: To determine whether CTA is superior to the Agatston score in the diagnosis of CAD.Methods: In total 2452 patients with stable chest pain and a clinical indication for invasive coronary angiography (ICA) for suspected CAD were included by the Collaborative Meta-analysis of Cardiac CT (COME-CCT) Consortium. An Agatston score of > 400 was considered positive, and obstructive CAD defined as at least 50% coronary diameter stenosis on ICA was used as the reference standard.Results: Obstructive CAD was diagnosed in 44.9% of patients (1100/2452). The median Agatston score was 74. Diagnostic accuracy of CTA for the detection of obstructive CAD (81.1%, 95% confidence interval [CI]: 77.5 to 84.1%) was significantly higher than that of the Agatston score (68.8%, 95% CI: 64.2 to 73.1%, p 1000).Conclusions: Results in our international cohort show CTA to have significantly higher diagnostic accuracy than the Agatston score in patients with stable chest pain, suspected CAD, and a clinical indication for ICA. Diagnostic performance of CTA is not affected by a higher Agatston score while an Agatston score of zero does not reliably exclude obstructive CAD.Key points: • CTA showed significantly higher diagnostic accuracy (81.1%, 95% confidence interval [CI]: 77.5 to 84.1%) for diagnosis of coronary artery disease when compared to the Agatston score (68.8%, 95% CI: 64.2 to 73.1%, p 1000). • Seventeen percent of patients with an Agatston score of zero showed obstructive coronary artery disease by invasive angiography showing absence of coronary artery calcium cannot reliably exclude coronary artery disease.</p

    Diagnosis of obstructive coronary artery disease using computed tomography angiography in patients with stable chest pain depending on clinical probability and in clinically important subgroups: meta-analysis of individual patient data

    Get PDF
    OBJECTIVETo determine whether coronary computed tomography angiography (CTA) should be performed in patients with any clinical probability of coronary artery disease (CAD), and whether the diagnostic performance differs between subgroups of patients.DESIGNProspectively designed meta-analysis of individual patient data from prospective diagnostic accuracy studies.DATA SOURCESMedline, Embase, and Web of Science for published studies. Unpublished studies were identified via direct contact with participating investigators.ELIGIBILITY CRITERIA FOR SELECTING STUDIESProspective diagnostic accuracy studies that compared coronary CTA with coronary angiography as the reference standard, using at least a 50% diameter reduction as a cutoff value for obstructive CAD. All patients needed to have a clinical indication for coronary angiography due to suspected CAD, and both tests had to be performed in all patients. Results had to be provided using 2x2 or 3x2 cross tabulations for the comparison of CTA with coronary angiography. Primary outcomes were the positive and negative predictive values of CTA as a function of clinical pretest probability of obstructive CAD, analysed by a generalised linear mixed model; calculations were performed including and excluding non-diagnostic CTA results. The no-treat/treat threshold model was used to determine the range of appropriate pretest probabilities for CTA. The threshold model was based on obtained post-test probabilities of less than 15% in case of negative CTA and above 50% in case of positive CTA. Sex, angina pectoris type, age, and number of computed tomography detector rows were used as clinical variables to analyse the diagnostic performance in relevant subgroups.RESULTSIndividual patient data from 5332 patients from 65 prospective diagnostic accuracy studies were retrieved. For a pretest probability range of 7-67%, the treat threshold of more than 50% and the no-treat threshold of less than 15% post-test probability were obtained using CTA. At a pretest probability of 7%, the positive predictive value of CTA was 50.9% (95% confidence interval 43.3% to 57.7%) and the negative predictive value of CTA was 97.8% (96.4% to 98.7%); corresponding values at a pretest probability of 67% were 82.7% (78.3% to 86.2%) and 85.0% (80.2% to 88.9%), respectively. The overall sensitivity of CTA was 95.2% (92.6% to 96.9%) and the specificity was 79.2% (74.9% to 82.9%). CTA using more than 64 detector rows was associated with a higher empirical sensitivity than CTA using up to 64 rows (93.4% v 86.5%, P=0.002) and specificity (84.4% v 72.6%, P<0.001). The area under the receiver-operating-characteristic curve for CTA was 0.897 (0.889 to 0.906), and the diagnostic performance of CTA was slightly lower in women than in with men (area under the curve 0.874 (0.858 to 0.890) v 0.907 (0.897 to 0.916), P<0.001). The diagnostic performance of CTA was slightly lower in patients older than 75 (0.864 (0.834 to 0.894), P=0.018 v all other age groups) and was not significantly influenced by angina pectoris type (typical angina 0.895 (0.873 to 0.917), atypical angina 0.898 (0.884 to 0.913), non-anginal chest pain 0.884 (0.870 to 0.899), other chest discomfort 0.915 (0.897 to 0.934)).CONCLUSIONSIn a no-treat/treat threshold model, the diagnosis of obstructive CAD using coronary CTA in patients with stable chest pain was most accurate when the clinical pretest probability was between 7% and 67%. Performance of CTA was not influenced by the angina pectoris type and was slightly higher in men and lower in older patients

    A new class of glycomimetic drugs to prevent free fatty acid-induced endothelial dysfunction

    Get PDF
    Background: Carbohydrates play a major role in cell signaling in many biological processes. We have developed a set of glycomimetic drugs that mimic the structure of carbohydrates and represent a novel source of therapeutics for endothelial dysfunction, a key initiating factor in cardiovascular complications. Purpose: Our objective was to determine the protective effects of small molecule glycomimetics against free fatty acid­induced endothelial dysfunction, focusing on nitric oxide (NO) and oxidative stress pathways. Methods: Four glycomimetics were synthesized by the stepwise transformation of 2,5­dihydroxybenzoic acid to a range of 2,5­substituted benzoic acid derivatives, incorporating the key sulfate groups to mimic the interactions of heparan sulfate. Endothelial function was assessed using acetylcholine­induced, endotheliumdependent relaxation in mouse thoracic aortic rings using wire myography. Human umbilical vein endothelial cell (HUVEC) behavior was evaluated in the presence or absence of the free fatty acid, palmitate, with or without glycomimetics (1µM). DAF­2 and H2DCF­DA assays were used to determine nitric oxide (NO) and reactive oxygen species (ROS) production, respectively. Lipid peroxidation colorimetric and antioxidant enzyme activity assays were also carried out. RT­PCR and western blotting were utilized to measure Akt, eNOS, Nrf­2, NQO­1 and HO­1 expression. Results: Ex vivo endothelium­dependent relaxation was significantly improved by the glycomimetics under palmitate­induced oxidative stress. In vitro studies showed that the glycomimetics protected HUVECs against the palmitate­induced oxidative stress and enhanced NO production. We demonstrate that the protective effects of pre­incubation with glycomimetics occurred via upregulation of Akt/eNOS signaling, activation of the Nrf2/ARE pathway, and suppression of ROS­induced lipid peroxidation. Conclusion: We have developed a novel set of small molecule glycomimetics that protect against free fatty acidinduced endothelial dysfunction and thus, represent a new category of therapeutic drugs to target endothelial damage, the first line of defense against cardiovascular disease

    Standardized Uptake Values of Normal Organs on 18

    No full text
    Standardized uptake values (SUVs) of normal organs were evaluated by F-18-fluorodeoxyglucose (18F-FDG) positron emission tomography and computed tomography (PET-CT) scanning. Seventy patients (38 men and 32 women) with no non-physiological 18F-FDG uptake participated in the study. All patients fasted for at least 4 h before PET-CT imaging and their fasting blood glucose levels were within the normal range. Image acquisition was performed after intravenous administration of 18F-FDG and images were obtained from the vertex to the upper thigh region. The SUVs of various organs were determined from the transverse views. The uptake of 18F-FDG was highest in the cerebrum, cerebellum, myocardium, tonsils, liver and spleen in both sexes. Having knowledge of the physiological uptake of 18F-FDG and normal organ SUVs is required for the correct interpretation of whole-body 18F-FDG-PET-CT studies

    Myocardial 18F-FDG-PET

    No full text

    Molecular imaging of postprandial metabolism

    No full text
    corecore