1,341 research outputs found

    The snail-killing flies of Alaska (Diptera: Sciomyzidae)

    Get PDF
    Information is given on the geographic distribution, habitat preferences, larval foods, and immature stages for 57 species of 9 genera of Sciomyzidae known to occur in Alaska. An illustrated key to adults is included. Alaska as a habitat for sciomyzid flies is discussed, and information on feeding habits of the larvae is summarized

    Obliquity Constraints on an Extrasolar Planetary-Mass Companion

    Get PDF
    We place the first constraints on the obliquity of a planetary-mass companion outside of the solar system. Our target is the directly imaged system 2MASS J01225093–2439505 (2M0122), which consists of a 120 Myr 0.4 M⊙ star hosting a 12–27 M_J companion at 50 au. We constrain all three of the system's angular-momentum vectors: how the companion spin axis, the stellar spin axis, and the orbit normal are inclined relative to our line of sight. To accomplish this, we measure projected rotation rates (v sin i) for both the star and the companion using new near-infrared high-resolution spectra with NIRSPEC at Keck Observatory. We combine these with a new stellar photometric rotation period from TESS and a published companion rotation period from Hubble Space Telescope to obtain spin-axis inclinations for both objects. We also fitted multiple epochs of astrometry, including a new observation with NIRC2/Keck, to measure 2M0122b's orbital inclination. The three line-of-sight inclinations place limits on the true de-projected companion obliquity and stellar obliquity. We find that while the stellar obliquity marginally prefers alignment, the companion obliquity tentatively favors misalignment. We evaluate possible origin scenarios. While collisions, secular spin–orbit resonances, and Kozai–Lidov oscillations are unlikely, formation by gravitational instability in a gravito-turbulent disk—the scenario favored for brown dwarf companions to stars—appears promising

    Associahedra via spines

    Full text link
    An associahedron is a polytope whose vertices correspond to triangulations of a convex polygon and whose edges correspond to flips between them. Using labeled polygons, C. Hohlweg and C. Lange constructed various realizations of the associahedron with relevant properties related to the symmetric group and the classical permutahedron. We introduce the spine of a triangulation as its dual tree together with a labeling and an orientation. This notion extends the classical understanding of the associahedron via binary trees, introduces a new perspective on C. Hohlweg and C. Lange's construction closer to J.-L. Loday's original approach, and sheds light upon the combinatorial and geometric properties of the resulting realizations of the associahedron. It also leads to noteworthy proofs which shorten and simplify previous approaches.Comment: 27 pages, 11 figures. Version 5: minor correction

    Classification of Reductive Monoid Spaces Over an Arbitrary Field

    Full text link
    In this semi-expository paper we review the notion of a spherical space. In particular we present some recent results of Wedhorn on the classification of spherical spaces over arbitrary fields. As an application, we introduce and classify reductive monoid spaces over an arbitrary field.Comment: This is the final versio

    Loop model with mixed boundary conditions, qKZ equation and alternating sign matrices

    Full text link
    The integrable loop model with mixed boundary conditions based on the 1-boundary extended Temperley--Lieb algebra with loop weight 1 is considered. The corresponding qKZ equation is introduced and its minimal degree solution described. As a result, the sum of the properly normalized components of the ground state in size L is computed and shown to be equal to the number of Horizontally and Vertically Symmetric Alternating Sign Matrices of size 2L+3. A refined counting is also considered

    Uniformizing the Stacks of Abelian Sheaves

    Full text link
    Elliptic sheaves (which are related to Drinfeld modules) were introduced by Drinfeld and further studied by Laumon--Rapoport--Stuhler and others. They can be viewed as function field analogues of elliptic curves and hence are objects "of dimension 1". Their higher dimensional generalisations are called abelian sheaves. In the analogy between function fields and number fields, abelian sheaves are counterparts of abelian varieties. In this article we study the moduli spaces of abelian sheaves and prove that they are algebraic stacks. We further transfer results of Cerednik--Drinfeld and Rapoport--Zink on the uniformization of Shimura varieties to the setting of abelian sheaves. Actually the analogy of the Cerednik--Drinfeld uniformization is nothing but the uniformization of the moduli schemes of Drinfeld modules by the Drinfeld upper half space. Our results generalise this uniformization. The proof closely follows the ideas of Rapoport--Zink. In particular, analogies of pp-divisible groups play an important role. As a crucial intermediate step we prove that in a family of abelian sheaves with good reduction at infinity, the set of points where the abelian sheaf is uniformizable in the sense of Anderson, is formally closed.Comment: Final version, appears in "Number Fields and Function Fields - Two Parallel Worlds", Papers from the 4th Conference held on Texel Island, April 2004, edited by G. van der Geer, B. Moonen, R. Schoo

    HST PanCET program: A Cloudy Atmosphere for the promising JWST target WASP-101b

    Get PDF
    We present results from the first observations of the Hubble Space Telescope (HST) Panchromatic Comparative Exoplanet Treasury (PanCET) program for WASP-101b, a highly inflated hot Jupiter and one of the community targets proposed for the James Webb Space Telescope (JWST) Early Release Science (ERS) program. From a single HST Wide Field Camera 3 (WFC3) observation, we find that the near-infrared transmission spectrum of WASP-101b contains no significant H2_2O absorption features and we rule out a clear atmosphere at 13{\sigma}. Therefore, WASP-101b is not an optimum target for a JWST ERS program aimed at observing strong molecular transmission features. We compare WASP-101b to the well studied and nearly identical hot Jupiter WASP-31b. These twin planets show similar temperature-pressure profiles and atmospheric features in the near-infrared. We suggest exoplanets in the same parameter space as WASP-101b and WASP-31b will also exhibit cloudy transmission spectral features. For future HST exoplanet studies, our analysis also suggests that a lower count limit needs to be exceeded per pixel on the detector in order to avoid unwanted instrumental systematics.Comment: 7 pages, 4 figures, 1 table, Accepted to ApJ

    The Off Shell ρ\rho-ω\omega Mixing in the QCD Sum Rules

    Full text link
    The q2q^2 dependence of the ρ−ω\rho-\omega mixing amplitude is analyzed with the use of the QCD sum rules and the dispersion relation. Going off shell the mixing decreases, changes sign at q2≃0.4mρ2>0q^2 \simeq 0.4 m_{\rho}^2 > 0 and is negative in the space like region. Implications of this result to the isospin breaking part of the nuclear force are discussed.Comment: 26 pages + 11 figures (PostScript

    A giant comet-like cloud of hydrogen escaping the warm Neptune-mass exoplanet GJ 436b

    Get PDF
    Exoplanets orbiting close to their parent stars could lose some fraction of their atmospheres because of the extreme irradiation. Atmospheric mass loss primarily affects low-mass exoplanets, leading to suggest that hot rocky planets might have begun as Neptune-like, but subsequently lost all of their atmospheres; however, no confident measurements have hitherto been available. The signature of this loss could be observed in the ultraviolet spectrum, when the planet and its escaping atmosphere transit the star, giving rise to deeper and longer transit signatures than in the optical spectrum. Here we report that in the ultraviolet the Neptune-mass exoplanet GJ 436b (also known as Gliese 436b) has transit depths of 56.3 +/- 3.5% (1 sigma), far beyond the 0.69% optical transit depth. The ultraviolet transits repeatedly start ~2 h before, and end >3 h after the ~1 h optical transit, which is substantially different from one previous claim (based on an inaccurate ephemeris). We infer from this that the planet is surrounded and trailed by a large exospheric cloud composed mainly of hydrogen atoms. We estimate a mass-loss rate in the range of ~10^8-10^9 g/s, which today is far too small to deplete the atmosphere of a Neptune-like planet in the lifetime of the parent star, but would have been much greater in the past.Comment: Published in Nature on 25 June 2015. Preprint is 28 pages, 12 figures, 2 table
    • 

    corecore