314 research outputs found

    Observations of molecules in high redshift galaxies

    Get PDF
    I present an overview of the molecular gas observations in high redshift galaxies. This field has seen tremendous progress in the past few years, with an increased number of detections of other molecules than CO. The molecular line observations are done towards different classes of massive starbursts, including submillimeter galaxies, quasars, and massive gas-rich disks. I will highlight results of detections of HCN, HCO+, and other small molecules, as well as the Spitzer detections of PAHs. Additionally, I will discuss about the excitation of CO and other species in the high-z galaxies and put this in the context of new telescopes such as ALMA

    The SCUBA-2 850 μm\mu m follow-up of WISE-selected, luminous dust-obscured quasars

    Full text link
    Hot dust-obscured galaxies (Hot DOGs) are a new population recently discovered in the \wise All-Sky survey. Multiwavelength follow-up observations suggest that they are luminous, dust-obscured quasars at high redshift. Here we present the JCMT SCUBA-2 850 μm\mu m follow-up observations of 10 Hot DOGs. Four out of ten Hot DOGs have been detected at >3σ>3\sigma level. Based on the IR SED decomposition approach, we derive the IR luminosities of AGN torus and cold dust components. Hot DOGs in our sample are extremely luminous with most of them having LIRtot>1014L⊙L_{\rm IR}^{\rm tot}>10^{14} L_\odot. The torus emissions dominate the total IR energy output. However, the cold dust contribution is still non-negligible, with the fraction of the cold dust contribution to the total IR luminosity (∼8−24%)(\sim 8-24\%) being dependent on the choice of torus model. The derived cold dust temperatures in Hot DOGs are comparable to those in UV bright quasars with similar IR luminosity, but much higher than those in SMGs. Higher dust temperatures in Hot DOGs may be due to the more intense radiation field caused by intense starburst and obscured AGN activities. Fourteen and five submillimeter serendipitous sources in the 10 SCUBA-2 fields around Hot DOGs have been detected at >3σ>3\sigma and >3.5σ>3.5\sigma levels, respectively. By estimating their cumulative number counts, we confirm the previous argument that Hot DOGs lie in dense environments. Our results support the scenario in which Hot DOGs are luminous, dust-obscured quasars lying in dense environments, and being in the transition phase between extreme starburst and UV-bright quasars.Comment: 26 pages, 7 figures, PASP accepte

    The effect of recessions on firms’ boundaries

    Get PDF
    The economic theory of the firm offers conflicting predictions of how the two major effects of recessions, changes in demand and access to credit, affect firm boundaries. Using data on Norwegian firms in the recent recession, we find support for both increased and reduced vertical integration of core activities in response to such changes. Further, we find that access to credit negatively moderates the effect of reductions in demand on vertical integration. The latter finding may highlight a possible explanation for the conflicting theoretical predictions

    Stacking of interferometric data

    Get PDF
    Radio and mm observations play an important role in determining the star formation properties of high redshift galaxies. However, most galaxies at high redshift are too faint to be detected individually at these wavelengths. A way to study this population of galaxies is to use stacking. By averaging the emission of a large number of galaxies detected in optical or near infrared surveys, we can achieve statistical detection. We investigate methods for stacking data from interferometric surveys. Interferometry poses unique challenges in stacking due to the nature of imaging of this data. We have compared directly stacking the uv data with stacking of the imaged data, the latter being the typically used approach. Using simulated data, we find that uv-stacking may provide around 50% less noise and that image based stacking systematically loses around 10% of the flux

    Structure and morphology of X-ray selected AGN hosts at 1<z<3 in CANDELS-COSMOS field

    Get PDF
    We analyze morphologies of the host galaxies of 35 X-ray selected active galactic nucleus (AGNs) at z∼2z\sim2 in the Cosmic Evolution Survey (COSMOS) field using Hubble Space Telescope/WFC3 imaging taken from the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS). We build a control sample of 350 galaxies in total, by selecting ten non-active galaxies drawn from the same field with the similar stellar mass and redshift for each AGN host. By performing two dimensional fitting with GALFIT on the surface brightness profile, we find that the distribution of Seˋ\`ersic index (n) of AGN hosts does not show a statistical difference from that of the control sample. We measure the nonparametric morphological parameters (the asymmetry index A, the Gini coefficient G, the concentration index C and the M20 index) based on point source subtracted images. All the distributions of these morphological parameters of AGN hosts are consistent with those of the control sample. We finally investigate the fraction of distorted morphologies in both samples by visual classification. Only ∼\sim15% of the AGN hosts have highly distorted morphologies, possibly due to a major merger or interaction. We find there is no significant difference in the distortion fractions between the AGN host sample and control sample. We conclude that the morphologies of X-ray selected AGN hosts are similar to those of nonactive galaxies and most AGN activity is not triggered by major merger.Comment: 5 pages, 3 figures, accepted for publication in The Astrophysical Journal Letter

    Occupant Experiences and Satisfaction with New Low-Energy Houses

    Get PDF

    LineStacker: A spectral line stacking tool for interferometric data

    Full text link
    LineStacker is a new open access and open source tool for stacking of spectral lines in interferometric data. LineStacker is an ensemble of CASA tasks, and can stack both 3D cubes or already extracted spectra. The algorithm is tested on increasingly complex simulated data sets, mimicking Atacama Large Millimeter/submillimeter Array and Karl G. Jansky Very Large Array observations of [CII] and CO(3-2) emission lines, from z∼7z\sim7 and z∼4z\sim4 galaxies respectively. We find that the algorithm is very robust, successfully retrieving the input parameters of the stacked lines in all cases with an accuracy ≳90\gtrsim90\%. However, we distinguish some specific situations showcasing the intrinsic limitations of the method. Mainly that high uncertainties on the redshifts (Δz>0.01\Delta z > 0.01) can lead to poor signal to noise ratio improvement, due to lines being stacked on shifted central frequencies. Additionally we give an extensive description of the embedded statistical tools included in LineStacker: mainly bootstrapping, rebinning and subsampling. Velocity rebinning {is applied on the data before stacking and} proves necessary when studying line profiles, in order to avoid artificial spectral features in the stack. Subsampling is useful to sort the stacked sources, allowing to find a subsample maximizing the searched parameters, while bootstrapping allows to detect inhomogeneities in the stacked sample. LineStacker is a useful tool for extracting the most from spectral observations of various types.Comment: Resubmitted to MNRAS after referee repor

    ALMA detects molecular gas in the halo of the powerful radio galaxy TXS 0828+193

    Full text link
    Both theoretical and observational results suggest that high-redshift radio galaxies (HzRGs) inhabit overdense regions of the universe and might be the progenitors of local, massive galaxies residing in the centre of galaxy clusters. In this paper we present CO(3-2) line observations of the HzRG TXS 0828+193 (z=2.57) and its environment using the Atacama Large Millimeter/submillimeter Array. In contrast to previous observations, we detect CO emission associated with the HzRG and derive a molecular gas mass of (0.9±0.3)×1010 M⊙(0.9\pm0.3)\times10^{10}\,\rm M_{\odot}. Moreover, we confirm the presence of a previously detected off-source CO emitting region (companion #1), and detect three new potential companions. The molecular gas mass of each companion is comparable to that of the HzRG. Companion #1 is aligned with the axis of the radio jet and has stellar emission detected by Spitzer. Thus this source might be a normal star-forming galaxy or alternatively a result of jet-induced star formation. The newly found CO sources do not have counterparts in any other observing band and could be high-density clouds in the halo of TXS 0828+193 and thus potentially linked to the large-scale filamentary structure of the cosmic web.Comment: Accepted by MNRAS; 9 pages, 4 figure

    A merger in the dusty, z=7.5z=7.5 galaxy A1689-zD1?

    Get PDF
    The gravitationally-lensed galaxy A1689-zD1 is one of the most distant spectroscopically confirmed sources (z=7.5z=7.5). It is the earliest known galaxy where the interstellar medium (ISM) has been detected; dust emission was detected with the Atacama Large Millimetre Array (ALMA). A1689-zD1 is also unusual among high-redshift dust emitters as it is a sub-L* galaxy and is therefore a good prospect for the detection of gaseous ISM in a more typical galaxy at this redshift. We observed A1689-zD1 with ALMA in bands 6 and 7 and with the Green Bank Telescope (GBT) in band QQ. To study the structure of A1689-zD1, we map the mm thermal dust emission and find two spatial components with sizes about 0.4−1.70.4-1.7\,kpc (lensing-corrected). The rough spatial morphology is similar to what is observed in the near-infrared with {\it HST} and points to a perturbed dynamical state, perhaps indicative of a major merger or a disc in early formation. The ALMA photometry is used to constrain the far-infrared spectral energy distribution, yielding a dust temperature (Tdust∼35T_{\rm dust} \sim 35--4545\,K for β=1.5−2\beta = 1.5-2). We do not detect the CO(3-2) line in the GBT data with a 95\% upper limit of 0.3\,mJy observed. We find a slight excess emission in ALMA band~6 at 220.9\,GHz. If this excess is real, it is likely due to emission from the [CII] 158.8\,μ\mum line at z[CII]=7.603z_{\rm [CII]} = 7.603. The stringent upper limits on the [CII]/LFIRL_{\rm FIR} luminosity ratio suggest a [CII] deficit similar to several bright quasars and massive starbursts.Comment: 9 pages, accepted to MNRAS, in pres

    ALMA Reveals a Gas-rich, Maximum Starburst in the Hyperluminous, Dust-obscured Quasar W0533-3401 at z similar to 2.9

    Get PDF
    We present ALMA observations and multiwavelength spectral energy distribution analysis in a Wide-field Infrared Survey Explorer-selected, hyperluminous dust-obscured quasar W0533-3401 at z = 2.9. We derive the physical properties of each of its components, such as molecular gas, stars, dust, and the central supermassive black hole (SMBH). Both the dust continuum at 3 mm and the CO (3-2) line are detected. The derived molecular gas mass M-gas = 8.4 x 10(10) M-circle dot and its fraction f(gas) = 0.7 suggest that W0533-3401 is gas-rich. The star formation rate (SFR) has been estimated to be similar to 3000-7000M(circle dot) yr(-1) by using different methods. The high values of SFR and specific SFR suggest that W0533-3401 is a maximum starburst. The corresponding gas depletion timescales are very short (t(depl) similar to 12-28 Myr). The CO (3-2) emission line is marginally resolved and has a velocity gradient, which is possibly due to a rotating gas disk, gas outflow, or merger. Finally, we infer the black hole mass growth rate of W0533-3401 ((M)over dot(BH) = 49 M-circle dot yr(-1)), which suggests a rapid growth of the central SMBH. The observed black hole to stellar mass ratio M-BH/M-* of W0533-3401, which is dependent on the adopted Eddington ratio, is over one order of magnitude higher than the local value, and is evolving toward the evolutionary trend of unobscured quasars. Our results are consistent with the scenario that W0533-3401, with both a gas-rich maximum starburst and a rapid black hole growth, is experiencing a short transition phase toward an unobscured quasar
    • …
    corecore