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Abstract

We present ALMA observations and multiwavelength spectral energy distribution analysis in a Wide-field Infrared
Survey Explorer-selected, hyperluminous dust-obscured quasar W0533−3401 at z=2.9. We derive the physical
properties of each of its components, such as molecular gas, stars, dust, and the central supermassive black hole
(SMBH). Both the dust continuum at 3 mm and the CO 3 2( – ) line are detected. The derived molecular gas mass
Mgas=8.4×1010Me and its fraction fgas=0.7 suggest that W0533−3401 is gas-rich. The star formation
rate (SFR) has been estimated to be ∼3000–7000Me yr−1 by using different methods. The high values of SFR and
specific SFR suggest that W0533−3401 is a maximum starburst. The corresponding gas depletion timescales are
very short (tdepl∼12–28Myr). The CO 3 2( – ) emission line is marginally resolved and has a velocity gradient,
which is possibly due to a rotating gas disk, gas outflow, or merger. Finally, we infer the black hole mass growth
rate of W0533−3401 ( =M 49BH˙ Me yr−1), which suggests a rapid growth of the central SMBH. The observed
black hole to stellar mass ratio MBH/Må of W0533−3401, which is dependent on the adopted Eddington ratio, is
over one order of magnitude higher than the local value, and is evolving toward the evolutionary trend of
unobscured quasars. Our results are consistent with the scenario that W0533−3401, with both a gas-rich maximum
starburst and a rapid black hole growth, is experiencing a short transition phase toward an unobscured quasar.

Unified Astronomy Thesaurus concepts: Active galaxies (17); High-redshift galaxies (734); Starburst galaxies
(1570); Galaxy evolution (594); Quasars (1319)

1. Introduction

Supermassive black holes (SMBH) have been discovered in
the centers of local elliptical galaxies, and the stellar bulge
mass in galaxies is found to be correlated with the mass of their
central SMBHs (e.g., Magorrian et al. 1998; Ferrarese &
Ford 2005), implying that galaxies and their central SMBHs
could coevolve (Kormendy & Ho 2013). In the popular
framework of massive galaxy formation and coevolution with
the central SMBH (e.g., Hopkins et al. 2008), galaxy gas-rich
mergers trigger intense starbursts and also provide the fuel for
central SMBH accretion. An evolutionary sequence is predicted
that the evolution of massive galaxies will experience several
phases: starburst, dust-obscured quasar, unobscured quasar and
finally a passively evolved galaxy (e.g., Sanders et al. 1988;
Granato et al. 2004; Alexander & Hickox 2012). Dust-obscured
quasars have been believed to represent a brief transition phase
linking intense starbursts and unobscured quasars, and will be
good candidates for studying the interplay between host
galaxies and their central SMBHs (e.g., Hickox & Alexander
2018).

Among several selection techniques commonly used to identify
and characterize obscured quasars (see a recent review by Hickox
& Alexander 2018), the mid-IR color–color diagnostics (Padovani
et al. 2017) are efficient and effective for identifying heavily

dust-obscured, powerful quasars. Recently, a new population of
luminous, dust-obscured galaxies has been discovered based on a
so-called W1W2-dropout color-selected method (Eisenhardt et al.
2012; Wu et al. 2012) which uses only four mid-IR wavebands
of the Wide-field Infrared Survey Explorer (WISE; Wright et al.
2010) all-sky survey. Follow-up studies, including UV/optical
spectral analysis (Wu et al. 2012, 2018), IR spectral energy
distribution (SED) analysis (Tsai et al. 2015; Fan et al. 2016,
2018), X-ray observations (Stern et al. 2014; Piconcelli et al.
2015; Assef et al. 2016; Ricci et al. 2017; Vito et al. 2018;
Zappacosta et al. 2018), and high-resolution radio imaging (Frey
et al. 2016), suggest that these WISE-selected galaxies are mainly
powered by accreting SMBHs and substantially dust-obscured
quasars.
Multiwavelength observations have been carried out to

investigate the physical properties of each component in these
dust-obscured quasars, such as stars, dust, gas, the central
SMBH, galaxy morphology, and the environment they reside in
(e.g., Wu et al. 2014; Assef et al. 2015; Jones et al. 2015, 2017;
Díaz-Santos et al. 2016, 2018; Fan et al. 2016, 2017, 2018;
Tsai et al. 2018). All results are generally consistent with the
merger-driven SMBH-host coevolution scenario.
In this paper, we report the results of ALMA observations and

a thorough UV-to-millimeter SED analysis of a WISE-selected
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dust-obscured quasar W0533−3401 at z∼2.9, which is among
the most luminous obscured quasars with a total IR luminosity
greater than 1014 Le (Tsai et al. 2015). Our previous study based
on IR SED decomposition suggests that W0533−3401 has
simultaneously rapid growth of SMBH and intense starburst
(>3000Me yr−1) (Fan et al. 2016). With the present ALMA
observations and multiwavelength SED analysis, we can further
derive the properties of each component in the host galaxy
and explore the potential relation between the assembly of
host galaxy and the central SMBH accretion. In Section 2, we
present our ALMA observations and data analysis on W0533
−3401. In Section 3, we compile the multiwavelength data
and introduce our SED modeling method. We show our main
results and discussion in Section 4. In Section 5, we summarize
our conclusions. Throughout this work we assume a standard,
flat ΛCDM cosmology (see Komatsu et al. 2011), with H0=
70 km s−1, ΩM=0.3, and ΩΛ=0.7.

2. ALMA Observations and Data Analysis

Observations of W0533−3401 were obtained with ALMA
using the band-3 receiver as a part of project 2017.1.00441.S.
The observations were carried out on 2017 December 20 using
45 antennas in a configuration with baseline length ranging
from 15 to 2460 m. The on-source integration time was 517 s.
The sources J0538−4405 and J0522−3627 were used for
bandpass and flux calibration, and for gain calibration,
respectively. The uncertainty on the absolute flux calibration
was estimated to be about 5%. The precipitable water vapor
was measured to be 4.2–4.5 mm and the weather conditions
were stable during this relatively short period. The receiver
settings were used as follows: the lower sideband has two
spectral windows tuned to 87.418 and 89.219 GHz with
spectral line mode using 960 spectral channels each, where
the tuning was selected to target CO 3 2( – ) using the optical
redshift zopt=2.904 (Tsai et al. 2015), and the upper sideband
has two spectral windows tuned to 99.421 and 101.221 GHz in
continuum mode with 128 channels each.

The data were processed using CASA (Common Astronomy
Software Application9; McMullin et al. 2007). We checked the
data calibration from observatory delivered pipeline proces-
sing. We found that the calibration was sufficient and made no
further adjustments. The calibrated visibilities were reimaged
using task tclean. For natural weighting, the angular
resolution of the observations (clean beam size) is 0 61×
0 53, at a position angle (P.A.)=−78°.4, and the rms is
0.43 mJy/beam in 53 km s−1 channels. A summary of target
properties and ALMA measurements can be found in Table 1.

3. Multiwavelength Data and SED Modeling

3.1. UV-to-millimeter SED

We construct the multiwavelength SED of W0533−3401 by
compiling the optical to millimeter broadband photometry from
various catalogs available in the literature (see Table 2).
Optical/near-infrared photometry in five broad bands, grizY,
are retrieved from the first public data release of the Dark
Energy Survey (DES DR1; Abbott et al. 2018).10 Near-infrared
J band photometry has been obtained by SOAR/OSIRIS
(Assef et al. 2015). The WISEW3 and W4 photometry

of W0533−3401 are from the ALLWISE Data Release
(Cutri 2013). W3 and W4 flux densities and uncertainties have
been converted from catalog Vega magnitude by using zero-
points of 29.04 and 8.284 Jy, respectively (Wright et al. 2010).
While for WISEW1 and W2 photometry, we do the aperture
photometry based on the unblurred coadded WISEimages11

(unWISE, Lang 2014; Meisner et al. 2017). The photometry
errors have been estimated based on the inverse variance
images. We also collect the FIR photometry of W0533−3401
obtained with Herschel(Pilbratt et al. 2010) PACS (Poglitsch
et al. 2010) at 70 and 160 μm and SPIRE (Griffin et al. 2010)
at 250, 350, and 500 μm in our previous work (Fan et al.
2016). Our ALMA observations show a marginal detection
(∼4.2σ) of 3 mm dust continuum. The measured observed-
frame continuum flux density is 0.140±0.033 mJy (see
Figure 1).

Table 1
Summary of Target Properties and ALMA Measurements

Name W0533−3401
R.A.WISE (J2000) 05:33:58.44
Decl.WISE (J2000) −34:01:34.5
zopt 2.904

Date of ALMA observations 2017 Dec 20
Number of antennas 45
R.A.CO(3–2) (J2000) 05:33:58.42
DecCO(3–2) (J2000) −34:01:34.5
zCO(3–2) 2.9026±0.0003
SizeCO(3–2) (arcsec

2) (0.73 ± 0.14)×(0.37 ± 0.14)
P.A.CO(3–2) (deg) 126±18
FWHM (km s−1)a 566±44
ICO(3–2) (Jy km s−1) 2.01±0.13
¢ -LCO 3 2( ) (1010 K km s−1 pc2) 8.4±0.5

S3mm [mJy] 0.140±0.033

Note.
a From a single Gaussian fit.

Table 2
Multiwavelength Photometry Data

Band Wavelength Frequency Flux Density
(μm) (GHz) (mJy)

CTIO/DECam g 0.36 833333 0.0052±0.0002
CTIO/DECam r 0.54 555556 0.0075±0.0003
CTIO/DECam i 0.64 468750 0.0099±0.0005
CTIO/DECam z 0.77 389610 0.0135±0.0011
CTIO/DECam Y 0.90 333333 0.0119±0.0033
SOAR/OSIRIS J 1.05 285714 0.0128±0.0013
WISE/W1 3.4 88174.2 0.0351±0.0016
WISE/W2 4.6 65172.3 0.0726±0.0036
WISE/W3 12 24982.7 3.0±0.1
WISE/W4 22 13626.9 11.9±1.1
Herschel/PACS 70 4143.65 39.3±5.9
Herschel/PACS 160 1805.05 97.4±14.0
Herschel/SPIRE 250 1199.17 107.5±4.8
Herschel/SPIRE 350 856.55 76.3±7.3
Herschel/SPIRE 500 599.585 48.9±4.5
ALMA 3000 100.00 0.140±0.033

9 https://casa.nrao.edu/
10 https://des.ncsa.illinois.edu/releases/dr1/ 11 https://unwise.me/
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3.2. Multiwavelength SED Analysis

For the multiwavelength SED analysis of W0533−3401, we
use a forthcoming version (Y. Han et al. 2019, in preparation)
of the Bayesian SED modeling and interpreting code BAYESED12

(Han & Han 2012, 2014, 2019). In the new version of
BAYESED, the stellar emission, dust attenuation, and dust
emission can be consistently connected by assuming an energy
balance, a technique similar to that employed in MAGPHYS(da
Cunha et al. 2008) and CIGALE(Noll et al. 2009; Boquien et al.
2019). The stellar emission is modeled by using the Bruzual &
Charlot (2003) SSP with a Chabrier (2003) initial mass
function, an exponentially declining star formation history
(SFH) and the Calzetti et al. (2000) dust attenuation law.
The energy of stellar emission absorbed by dust is assumed
to be totally re-emitted at the IR band, which is modeled by
a graybody. The graybody model is defined as µlS

- l
- l

l

b

e B T1 dust
0⎜ ⎟⎛

⎝
⎞
⎠( ) ( ), where Bλ is the Planck blackbody

spectrum and λ0=125 μm. Dust temperature Tdust and the
emissivity index β are two free parameters. Finally, as in Fan
et al. (2016), the active galactic nucleus (AGN) torus emission
is modeled independently with the extensive database13 of
1,247,400 SEDs from the CLUMPY torus model (Nenkova et al.
2008a, 2008b). A k-dimensional tree-based nearest-neighbor
searching technique has been employed to allow us to evaluate
the CLUMPY torus model at any point in its 6D parameter
space. Note that the CLUMPY model includes not only the torus
dust emission, but also a part of the AGN accretion disk emission
that is scattered into our line of sight or not absorbed by torus dust.
Thus the CLUMPY model can provide a consistent description of
AGN UV-to-millimeter SED. In total, the three-component model,
including stars, AGN, and cold dust emissions, has 12 free
parameters. The priors for them are summarized in Table 3.

In Figure 2, we show the best-fit three-component SED
model (black solid line) with BAYESED to the observed

UV-to-millimeter SED of W0533−3401 (red points). With a
newly developed function in the new version of BAYESED, we
can provide the confidence regions (CR) for our best-fit SED
model. We plot the 68% and 95% CR with color-filled
regions (cyan and purple, respectively). Absorbed stellar
emission, AGN emission, and cold dust emission are shown
by the green dotted line, the blue dashed line, and the gray
dotted–dashed line, respectively. The derived properties have
been shown in Table 4 and the results will be discussed in the
next section.

Figure 1. ALMA 3 mm dust continuum map of W0533−3401 imaged with
natural weighting. The ivory-colored contours are at −3,−2, 2, 3, and 4σ
level. The beam size is shown in gray and is about ∼0 6×0 5. The gray
contours represent the natural weighted CO(3–2) moment-0 map at 4, 5, 7, 9,
and 12σ level (see Figure 3). Table 3

The Model Parameters, Their Priors and Best-fitting Quantities for
Multiwavelength SED Analysis

Name Prior Min Max
Best-fitting

Value

Stellar componenta
-agelog yr 1( ) Uniform,

<age age zU ( )
5 10.3 -

+6.7 0.1
0.1

t -log yr 1( ) Uniform 6 12 -
+9.1 1.9

1.8

Zlog Z( ) Uniform −2.3 0.7 -
+0.28 0.38

0.18

A magV Uniform 0 4 -
+1.81 0.08

0.08

Graybody model

T Kdust Uniform 10 100 -
+78.1 5.2

5.9

β Uniform 1 3 -
+1.84 0.13

0.14

CLUMPY modelb

N0 Uniform 1 15 -
+5.9 1.0

1.3

Y Uniform 5 100 -
+48.2 28.2

32.6

i Uniform 0 90 -
+37.8 23.8

20.0

q Uniform 0 3 -
+2.2 0.4

0.4

σ Uniform 15 70 -
+62.3 5.1

8.5

tV Uniform 10 300 -
+22.2 5.1

5.4

Notes.
a Four parameters of stellar components: age (age), the e-folding time for the
exponentially declining SFH (τ), stellar metallicity (Z), and dust attenuation
(AV).
b The detailed description and definition of six free parameters for the CLUMPY

model can be found in Nenkova et al. (2008a, 2008b).

Figure 2. Best-fit three-component SED model (black solid line) with
BAYESED to the observed UV-to-millimeter SED of W0533−3401 (red
points). The color-filled regions with cyan and purple show the 68% and 95%
CR of the best-fit model, respectively. The green dotted line, the blue dashed
line, and the gray dotted–dashed line represent the emissions from stars, AGN,
and cold dust, respectively.

12 https://bitbucket.org/hanyk/bayesed/
13 http://www.pa.uky.edu/clumpy/models/clumpy_models_201410_
tvavg.hdf5/

3

The Astrophysical Journal, 887:74 (8pp), 2019 December 10 Fan et al.

https://bitbucket.org/hanyk/bayesed/
http://www.pa.uky.edu/clumpy/models/clumpy_models_201410_tvavg.hdf5/
http://www.pa.uky.edu/clumpy/models/clumpy_models_201410_tvavg.hdf5/
http://www.pa.uky.edu/clumpy/models/clumpy_models_201410_tvavg.hdf5/
http://www.pa.uky.edu/clumpy/models/clumpy_models_201410_tvavg.hdf5/


4. Results and Discussion

4.1. CO(3–2) Line Emission

In Figures 3 and 4, we show the resulting line detection, both
as spectrum and moment-maps. The CO 3 2( – ) emission line
peaks at a frequency corresponding to a redshift of =zCO 3 2( – )

2.9026 0.0003. The detected CO 3 2( – ) line is spatially
extended and shows a velocity gradient. We fit the velocity-
integrated visibilities with an elliptical Gaussian function.
The derived source size deconvolved from the beam is
(0.73± 0.14)×(0.37± 0.14) arcsec2 with P.A.=126±18.
We measure the line flux = I 2.01 0.13CO 3 2( – ) Jy km s−1.
The rms is determined in the inner 10″of the moment
map excluding the central part that contains the source
itself. A single Gaussian fit to the continuum-subtracted CO
3 2( – ) spectrum gives CO 3 2( – ) FWHM=566±44 km s−1.
From the CO 3 2( – ) line flux, we can derive the CO line
luminosity ¢ =  ´-L 8.4 0.5 10CO 3 2

10( )( ) Kkms−1pc2, by
using Equation (3) in Solomon & Vanden Bout (2005). The
continuum is marginally detected, as shown in Figure 1. The
extend of the continuum emission is smaller than that of the CO
3 2( – ) line, which is likely due to a combination of the optical
depth effects and the signal-to-noise ratio of continuum
detection. The results are summarized in Table 1.

We can infer the molecular gas mass directly from the
measured CO line luminosity. We adopt the excitation ratio
between the CO 3 2( – ) and CO(1–0) line of r32/10=0.8 as
suggested by Banerji et al. (2017). The adopted ratio is
intermediate between the typical values for submillimeter
galaxies (SMGs, r32/10=0.66) and optical quasars (r32/10=
0.97) from Carilli & Walter (2013), and consistent with the
expectation that obscured quasars represent the transition phase
from SMGs to unobscured quasars. The calculated CO(1–0) line
luminosity is ¢ =  ´L 10.5 0.6 10CO 1 0

10( )( – ) Kkms−1pc2.
We also adopt the CO-to-H2 conversion factor, αCO=
0.8Me(K km s−1 pc2)−1, which is suggested to be appropriate

for starbursts and quasar hosts (Carilli & Walter 2013). Under
these considerations, we obtain a molecular gas mass of =MH2

 ´ M8.4 0.5 1010( ) .
We show the CO 3 2( – ) velocity map in the right panel of

Figure 3 and the position versus velocity (PV) diagram
extracted along the major axis at P.A.=330° in Figure 5.
The CO 3 2( – ) emission line is marginally resolved. Both
figures show the possible presence of a velocity gradient. Such
a velocity gradient, which has also been observed in many
other high-redshift quasars (e.g., Leung et al. 2017; Brusa et al.
2018; Feruglio et al. 2018; Talia et al. 2018), could be possibly
the signature of a rotating disk of molecular gas, although the
explanation is not unique. Especially, tentatively emission is
seen at ∼3σ level extending to the west side of the source (see
the left panel of Figure 3). This suggests that the gas-rich late-
stage major merger and gas outflow are also possible for
originating such a velocity gradient (e.g., Springel & Hernquist
2005; Hopkins et al. 2009; Ueda et al. 2014; Hung et al. 2015).
However, due to limited depth and resolution, we cannot make
a solid conclusion. Deeper observation would be required to
distinguish them.
Assuming that the gas is distributed in a rotating disk, we

can investigate the kinematic properties of the molecular gas
traced by the CO 3 2( – ) line, using 3DBAROLO, a tool for fitting
3D tilted-ring models to emission-line data cubes (Di Teodoro
& Fraternali 2015). We assume a disk model with three rings
and a ring width of 0 2. We fix P.A.=330° and adopt an
inclination of 59°±14°, which is inferred from the observed
ratio of minor to major axis. The derived rotation velocity (Vrot)
and the intrinsic velocity dispersion σ are about ∼240 km s−1

and 60 km s−1, respectively. The ratio of rotation velocity to
velocity dispersion Vrot/σ for W0533−3401 is about 4, which
is close to the typical value ∼7 for the molecular gas in z>1
star-forming galaxies (Tacconi et al. 2013). The large ratio
Vrot/σ indicates that the molecular gas is turbulent, which is
possibly due to a thick, dynamically hot disk in W0533−3401.
A similar finding has been reported by Tadaki et al. (2018);
they found a gravitationally unstable, rotating gas disk in an
extreme starburst galaxy at z∼4. The dynamical mass within
the CO-emitting region can be estimated by applying the
relation in Wang et al. (2013), = ´ ´M M 1.16 10dyn

5


´ ´ D i0.75 FWHM sinCO
2( ) , where D is the disk diameter

in kiloparsecs from the CO 3 2( – ) measurement and i is the
inclination angle. This gives Mdyn=1.6×1011Me.

4.2. Dust Properties

Cold dust emission heated by stars has been modeled with a
graybody model in our multiwavelength SED analysis (see
Section 3.2 and Figure 2). The best-fit model gives the
estimations of dust properties: IR luminosity LGB, dust
temperature Tdust, and the emissivity index β, which are listed
in Table 4. The derived values are consistent with those in our
previous work based on only IR SED decomposition (Fan et al.
2016). Dust mass can also be calculated by using the following
equation:

k n
=

+
´ n

n
M

D

z

S

B T1 ,
, 1dust

L
2

rest dust

obs

rest( ) ( )
( )

where DL is the luminosity distance, nS obs is the flux density at
observed frequency νobs, k k n n=n

b
0 0rest ( ) is the dust mass

absorption coefficient at the rest frequency of the observed

Table 4
Derived Properties of W0533−3401

Parameter Value Unit Note

M (3.5 ± 0.9)×1010 Me (1)
SFR 6985±3006 Me yr−1 (2)
sSFR 200±100 Gyr−1 (3)
LAGN (7.0 ± 0.6)×1013 Le (4)
LGB (3.5 ± 0.4)×1013 Le (5)

L unabs (3.6 ± 0.4)×1013 Le (6)

L abs (9.7 ± 1.0)×1011 Le (7)
MH2 (8.4 ± 0.5)×1010 Me (8)
Mdyn 1.6×1011 Me (9)
MBH 2.2×109 Me (10)
Mdust (8.9 ± 1.6)×107 Me (11)
Tdust 78.1±5.6 K (12)
β 1.84±0.14 (13)
AV 1.81±0.08 mag (14)
tdepl ∼12–28 Myr (15)

Note. (1): Stellar mass. (2): Star formation rate. (3): Specific star formation rate.
(4): Bolometric luminosity of AGN component. (5): IR luminosity of cold dust.
(6): Bolometric luminosity of attenuation-corrected stellar emission. (7):
Bolometric luminosity of absorbed stellar emission. (8): Molecular gas mass.
(9): Dynamical mass. (10): The central suppermassive black hole mass by
assuming λEdd=1. (11): Dust mass. (12): Dust temperature. (13): Dust
emissivity index. (14): Dust attenuation. (15): The gas depletion timescales.
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band, and nB T,rest dust( ) is the Planck function at temperature
Tdust. Adopting the best-fit values Tdust=78.1 K, β=1.84,
and κ1 THz=20 cm2 g−1 which is the same as in Wu et al.
(2014) and Fan et al. (2016), we derive the dust mass Mdust=
(8.9±0.5)×107Me. The small uncertainty of dust mass
estimation only takes the uncertainties of the derived Tdust and
β values into account. We note that the largest uncertainty can
arise from the adopted knrest value, which can vary by over
one order of magnitude at a certain frequency/wavelength.
For instance, k m850 m can vary from ∼0.4 to ∼11 cm2 g−1 in the
literature (e.g., James et al. 2002; Draine 2003; Dunne et al.
2003; Siebenmorgen et al. 2014).

We derive the gas-to-dust mass ratio of W0533−3401,
d = 944 77GDR , based on the estimations of MH2 and Mdust.
The derived δGDR value of W0533−3401 is thus about one
order of magnitude higher than the typical value ∼50–150
derived for the Milky Way (Jenkins 2004), the local star-
forming galaxies (SFGs) and ultraluminous IR galaxies
(ULIRGs) at solar metallicity (Draine et al. 2007; Rémy-Ruyer
et al. 2014) and high-redshift SMGs (Magnelli et al. 2012;
Miettinen et al. 2017). The high δGDR value in W0533−3401
may be due to several possible reasons: the uncertainty of dust

mass estimation, the low efficiency of dust formation, and/or
the high efficiency of dust destruction. The dust mass derived
by using a graybody model is about half of that derived by the
Draine & Li (2007) model (Magdis et al. 2011). This will result
in an overestimation of δGDR by a factor of two. The δGDR
value is reported to increase with the decreasing metallicity and
the increasing redshift (e.g., Rémy-Ruyer et al. 2014; Miettinen
et al. 2017). It is possible that W0533−3401 has a low,
subsolar metallicity. It is also possible that dust destruction in
W0533−3401 may be efficient due to the strong radiation field
from massive young stars and AGN, and the supernova shock
waves which are expected to be frequent in this maximum-
starburst galaxy (Jones 2004).

4.3. Stellar Mass and Star Formation Rate

Based on our best-fit SED model presented in Section 3.2,
we derive the stellar mass and star formation rate (SFR) of
W0533−3401 and list them in Table 4. The stellar mass Må is
derived by adopting an exponentially declining SFH, which is
represented by a young stellar population. We check if there
is an old stellar population which is omitted by the present SED

Figure 3. In the left panel, we plot a moment-0 map of the CO 3 2( – ) emission line, where the gray contours represent the moment-0 at 4, 5, 7, 9, and 12σ and the ivory
contours are at −3,−2, 2, and 3σ levels (σ∼0.1 Jy km/s beam−1). In the right panel, the ivory contours represent the moment-1 in steps of 50 km s−1. The black
line shows the direction of the major axis. The beam size is shown in the bottom-left corner of each plot.

Figure 4. Continuum-subtracted CO 3 2( – ) spectrum. The red dashed line
shows a fit with a Gaussian function.

Figure 5. CO 3 2( – ) position vs. velocity (PV) diagram extracted along the
major axis at P.A.=330° assuming an inclination of 59°. The blue and red
contours indicate the isodensity contours of the galaxy and 3DBAROLO best-fit
model. The yellow points mark the rotation curve with rotation velocities of
246, 244, and 215 km s−1 (from center to outer disk), assuming a disk model
with three rings, each having a ring width of 0 2.
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fitting procedure. We add an SSP with an age of 1 Gyr to our
multiwavelength SED model. The result is that the contribution of
the old SSP to the derived stellar mass is not larger than 20%,
though the constraint from the SED fitting is loose. Given Må=
3.5×1010Me and = ´M M8.4 10H

10
2 , we can calculate

the molecular gas fraction = + =f M M M 0.71gas H H2 2( ) ,
which indicates that W0533−3401 is gas-rich. The derived SFR
is ∼7000Me yr−1. The specific SFR or sSFR=200 Gyr−1 of
W0533−3401 is over one order of magnitude higher than the
star-forming main-sequence (MS) at z∼3 (Speagle et al. 2014),
suggesting that it is a maximum starburst. The uncertainty of SFR
is large (∼3000Me yr−1) due to a wide range of possible SFH.
By using CO line luminosity, we can estimate SFR in an
individual way. First, we convert the measured ¢ -LCO 3 2( ) to
¢ -LCO 5 4( ) by taking ¢ ¢ =- -L L 0.7CO 5 4 CO 3 2( ) ( ) which is inter-

mediate between the typical values for SMGs and quasars (Carilli
& Walter 2013). Then we estimate FIR luminosity using the high-
J CO versus FIR luminosity relation presented in Liu et al.
(2015). Using the relation SFR (Me yr−1)=4.5×10−44 LFIR
(erg s−1), we calculate SFR∼3000Me yr−1 (Kennicutt 1998),
which is generally consistent with the best-fit SED result.
From the derived SFR and molecular gas mass, we can estimate
the gas depletion timescale tdepl=Mgas/SFR. We infer tdepl∼
12–28Myr using SFRs based on the best-fit SED result and the
CO line luminosity, respectively. The gas depletion timescale of
W0533−3401 is similar to other obscured quasars (e.g., Aravena
et al. 2008; Brusa et al. 2018), but is much shorter than MS
galaxies and SMGs (Bothwell et al. 2013; Sargent et al. 2014),
indicating that W0533−3401 as an obscured quasar is consuming
its residual gas more rapidly.

In Figure 6, we report the star formation efficiency (SFE),
traced by the ratio of IR to CO(1–0) line luminosities, as a
function of IR luminosity for W0533−3401 and the compiled
samples of SMGs, unobscured and obscured quasars at z>1
in Perna et al. (2018). For all three samples, SFE shows a
positive correlation with IR luminosity. W0533−3401 shows a
high SFE= ¢ = L L L464 56IR CO  (K km s−1 pc2), which
is well above the best-fit relation and 1σ scatter for massive MS
galaxies (Sargent et al. 2014). Similar to W0533−3401, both

unobscured and obscured quasars at z>1 show a higher SFE
at a given IR luminosity than MS galaxies and SMGs. Higher
SFE in unobscured and obscured quasars relative to MS
galaxies and SMGs is possibly due to the presence of starburst
activity and/or the depletion of cold gas by AGN feedback in
quasar host galaxies. The former enhances LIR and the latter
reduces ¢LCO. It is possible that LIR can be overestimated in
quasars, as AGN-heated dust on kiloparsec scales can
contribute significantly to IR luminosity (Duras et al. 2017;
Symeonidis 2017).

4.4. Rapid Growth of Both the Stellar Component and the
Central SMBH

We derive the AGN bolometric luminosity LAGN of W0533
−3401 by integrating the AGN component of the best-fit UV-
to-millimeter SED (see Section 3.2). Although we do not have
a direct measurement of the black hole mass in W0533−3401,
we can make a rough estimate from the derived LAGN. By
assuming Eddington ratios of 0.3, 1.0, and 3.0, the corresp-
onding black hole masses are 7.3×109, 2.2×109, and
7.3×108Me, respectively. Wu et al. (2018) reported the black
hole masses and Eddington ratios of five luminous obscured
quasars at z∼2, which are taken from the same parent sample
of W0533−3401, based on broad Hα lines. They found that the
average black hole mass is about 109Me and the derived
Eddington ratios are close to unity. Tsai et al. (2018) also
reported the measurement of MBH and LEdd for an extremely
luminous, obscured quasar W2246−0526 at z=4.6, which is
selected with the same criteria as W0533−3401. They found
that the central SMBH in it is growing rapidly by accreting at a
super-Eddington ratio (λEdd=2.8). Adopting the Eddington
ratio λEdd=1.0 for W0533−3401 will be a reasonable
approximation.
From SED-based stellar mass Må and the estimated SMBH

mass, we can infer the black hole to stellar mass ratio of W0533
−3401. In Figure 7, we plot the observed MBH/Må as a
function of redshift for W0533−3401 and several other
samples in the literature. If assuming λEdd=1.0, the black
hole to stellar mass ratio of W0533−3401 (MBH/Må=0.063)
is close to that of an X-ray selected unobscured quasar, CID-
947, which has the highest MBH/Må (1/8) at z∼3.3 known
so far. A low Eddington ratio in W0533−3401, for instance
λEdd<0.3, seems not likely, otherwise MBH/Må of W0533
−3401 will be higher than 0.2. Even if taking λEdd=1.0, the
inferred MBH/Må of W0533−3401 is not only over one order
of magnitude higher than the typical values ∼0.0002–0.0005 in
the local universe (Kormendy & Ho 2013), but also ∼5 times
higher than the expected value by the evolutionary trend of
MBH/Må (McLure et al. 2006; Peng et al. 2006; Merloni et al.
2010; Targett et al. 2012; Bongiorno et al. 2014; Matsuoka
et al. 2018). We derive the black hole mass growth rate MBH˙ of
W0533−3401 from the bolometric luminosity by using the
relation h h= -L M c 1AGN BH

2( ˙ ) ( ) and adopting =h
h-

0.1
1

.

We infer =M 49BH˙ Me yr−1, which suggests a rapid growth of
the central SMBH. We then calculate the ratio between the
black hole mass growth rate and SFR and obtain MBH˙ /SFR=
0.007, which is close to the local MBH/Må values. The result
indicates that W0533−3401 is evolving toward the evolu-
tionary trend of MBH/Må (the dashed line in Figure 7).

Figure 6. Star formation efficiency (SFE) traced by the ratio of IR to CO(1–0)
line luminosities as a function of IR luminosity. W0533−3401 is labeled with a
red circle symbol. The purple diamond, blue square, and green triangle symbols
represent the samples of SMGs, unobscured and obscured quasars at z>1,
respectively, compiled in Perna et al. (2018). Each sample has been divided
into two bins according to the IR luminosity. Larger symbols with error bars
show the average values and uncertainties for each bin. The solid line and two
dashed lines show the best-fit relation and 1σ scatter for massive MS galaxies,
respectively (Sargent et al. 2014).
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5. Summary and Conclusions

We present ALMA observations of cold dust and molecular
gas and multiwavelength SED analysis in a WISE-selected,
hyperluminous dust-obscured quasar W0533−3401 at z=2.9.
We derive the physical properties of each component, such
as molecular gas, stars, dust, and the central SMBH. We
summarize our main results as follows.

1. Our ALMA band-3 observations detect both the dust
continuum and the CO 3 2( – ) line. The derived molecular
gas mass, Mgas=8.4×1010Me and its fraction fgas=
0.7 suggest that W0533−3401 is gas-rich. Based on the
FWHM of the CO 3 2( – ) line, we estimate the dynamical
mass Mdyn=1.6×1010Me, which is generally consis-
tent with the sum of the molecular gas mass and stellar
mass. The velocity map of the CO 3 2( – ) emission line
showing a velocity gradient is possibly due to a rotating
gas disk. However, other possibilities, such as mergers
and outflows, cannot be ruled out. Under the assumption
of rotation disk, we can roughly estimate the rotation
velocity and velocity dispersion. The ratio Vrot/σ is large,
indicating that the gas disk is possibly unstable, which
may be partly responsible for the observed high star
formation efficiency in W0533−3401.

2. By assuming a graybody model, we derive the cold
dust temperature Tdust=78.1±5.6 K and dust mass
Mdust=(8.9±1.6)×107Me. The gas-to-dust ratio of
W0533−3401, σGDR=944±77, is about one order of
magnitude higher than the typical values for the Milky
Way, the local SFGs/ULIRGs, and high-redshift SMGs.

3. Based on the UV-to-millimeter SED modeling, we
derive the stellar mass and SFR of W0533−3401. The
stellar mass of W0533−3401 is (3.5±0.9)×1010Me.

The SFR is estimated to be ∼3000–7000Me yr−1 by
using different methods. The high values of SFR and
specific SFR suggest W0533−3401 is a maximum
starburst. The corresponding gas depletion timescales
are very short (tdepl∼12–28 Myr).

4. Finally, we infer the black hole mass growth rate of W0533
−3401 ( =M 49BH˙ Me yr−1), which suggests a rapid
growth of the central SMBH. The observed black hole to
stellar mass ratio MBH/Må of W0533−3401, which is
dependent on the adopted Eddington ratio, is over one
order of magnitude higher than the local value if assuming
a reasonable Eddington ratio λEdd=1.0, and is evolving
toward the evolutionary trend of unobscured quasars.

5. Our results suggest that W0533−3401 has both a gas-rich
maximum starburst and a rapid black hole growth within
it. All results are consistent with the scenario that W0533
−3401 is experiencing a short transition phase toward an
unobscured quasar.

We thank the anonymous referee for constructive comments
and suggestions. We thank Dr. Hu Zou (NAOC) for his help on
optical photometry. This work is supported by the National Key
R&D Program of China (No. 2017YFA0402703). We thank the
staff of the Nordic ALMA Regional Center (ARC) node for their
support and helpful discussions. The Nordic ARC node is based
at Onsala Space Observatory and funded through Swedish
Research Council grant No. 2017-00648. L.F. acknowledges the
support from the National Natural Science Foundation of China
(NSFC, grant Nos. 11822303, 11773020, and 11433005) and
Shandong Provincial Natural Science Foundation, China
(ZR2017QA001, JQ201801). K.K. acknowledges support from
the Knut and Alice Wallenberg Foundation and the Swedish
Research Council. Y.H. acknowledges the support from NSFC
(grant No. 11773063) and Natural Science Foundation of
Yunnan Province (grant No. 2017FB007). Q.-H.T. acknowledges
the support from the NSFC (grant No. 11803090).
This paper makes use of the following ALMA data: ADS/

JAO.ALMA#2017.1.00441.S. ALMA is a partnership of ESO
(representing its member states), NSF (USA), and NINS
(Japan), together with NRC (Canada), NSC and ASIAA
(Taiwan), and KASI (Republic of Korea), in cooperation with
the Republic of Chile. The Joint ALMA Observatory is
operated by ESO, AUI/NRAO and NAOJ.
This paper makes use of data products from the Wide-field

Infrared Survey Explorer, which is a joint project of the
University of California, Los Angeles, and the Jet Propulsion
Laboratory/California Institute of Technology, funded by the
National Aeronautics and Space Administration.
This paper used public archival data from the Dark Energy

Survey (DES). Funding for the DES Projects has been provided by
the U.S. Department of Energy, the U.S. National Science
Foundation, the Ministry of Science and Education of Spain, the
Science and Technology Facilities Council of the United Kingdom,
the Higher Education Funding Council for England, the National
Center for Supercomputing Applications at the University of
Illinois at Urbana-Champaign, the Kavli Institute of Cosmological
Physics at the University of Chicago, the Center for Cosmology
and Astro-Particle Physics at the Ohio State University, the
Mitchell Institute for Fundamental Physics and Astronomy at
Texas A&M University, Financiadora de Estudos e Projetos,
Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do
Rio de Janeiro, Conselho Nacional de Desenvolvimento Científico

Figure 7. Observed cosmic evolution of black hole to stellar mass ratio (MBH/
Må). TheMBH/Må ratios of W0533−3401 are shown as three star symbols by
assuming different Eddington ratios λEdd=Lbol/LEdd=0.3, 1.0, and 3.0,
respectively. Other data points represent the available MBH/Må estimates in
the literature. Color-coded symbols show the average values and the
corresponding uncertainties of MBH/Må for several samples: blue triangles
for a sample of broad-line AGN in the redshift range 1<z<2.2 (Merloni
et al. 2010), brown squares for a sample of lensed and nonlensed quasars at
1<z<4.5 (Peng et al. 2006), and cyan diamond for a sample of X-ray
obscured, red AGN (Bongiorno et al. 2014). Two luminous SDSS quasars at
z∼4 are denoted with purple filled triangles (Targett et al. 2012). The gold
filled square shows an extremely red dust-obscured quasar (WISE J1042
+1641) at z=2.52 (Toba & Nagao 2016; Matsuoka et al. 2018). The green
filled diamond denotes an X-ray selected unobscured quasar, CID-947 at
z∼3.3, which has a high black hole to stellar mass ratio MBH/Må=1/8
(Trakhtenbrot et al. 2015). The dashed line shows the evolutionary trend of
MBH/Må at z<2 (McLure et al. 2006). The gray area shows the range of the
typical values of MBH/Må in the local universe (Kormendy & Ho 2013).

7

The Astrophysical Journal, 887:74 (8pp), 2019 December 10 Fan et al.



e Tecnológico and the Ministério da Ciência, Tecnologia e
Inovação, the Deutsche Forschungsgemeinschaft, and the Colla-
borating Institutions in the Dark Energy Survey. The Collaborating
Institutions are Argonne National Laboratory, the University
of California at Santa Cruz, the University of Cambridge,
Centro de Investigaciones Energéticas, Medioambientales y
Tecnológicas-Madrid, the University of Chicago, University
College London, the DES-Brazil Consortium, the University of
Edinburgh, the Eidgenössische Technische Hochschule (ETH)
Zürich, Fermi National Accelerator Laboratory, the University of
Illinois at Urbana-Champaign, the Institut de Ciències de l’Espai
(IEEC/CSIC), the Institut de Física d’Altes Energies, Lawrence
Berkeley National Laboratory, the Ludwig-Maximilians Universität
München and the associated Excellence Cluster Universe, the
University of Michigan, the National Optical Astronomy Observa-
tory, the University of Nottingham, The Ohio State University, the
OzDES Membership Consortium, the University of Pennsylvania,
the University of Portsmouth, SLAC National Accelerator
Laboratory, Stanford University, the University of Sussex, and
Texas A&M University. Based in part on observations at Cerro
Tololo Inter-American Observatory, National Optical Astronomy
Observatory, which is operated by the Association of Universities
for Research in Astronomy (AURA) under a cooperative
agreement with the National Science Foundation.

Facilities: ALMA, Herschel (PACS, SPIRE), WISE, CTIO
(DECam).

ORCID iDs

Lulu Fan (范璐璐) https://orcid.org/0000-0003-4200-4432
Kirsten K. Knudsen https://orcid.org/0000-0002-7821-8873
Yunkun Han (韩云坤) https://orcid.org/0000-0002-
2547-0434
Qing-hua Tan (谈清华) https://orcid.org/0000-0003-
3032-0948

References

Abbott, T. M. C., Abdalla, F. B., Allam, S., et al. 2018, ApJS, 239, 18
Alexander, D. M., & Hickox, R. C. 2012, NewAR, 56, 93
Aravena, M., Bertoldi, F., Schinnerer, E., et al. 2008, A&A, 491, 173
Assef, R. J., Eisenhardt, P. R. M., Stern, D., et al. 2015, ApJ, 804, 27
Assef, R. J., Walton, D. J., Brightman, M., et al. 2016, ApJ, 819, 111
Banerji, M., Carilli, C. L., Jones, G., et al. 2017, MNRAS, 465, 4390
Bongiorno, A., Maiolino, R., Brusa, M., et al. 2014, MNRAS, 443, 2077
Boquien, M., Burgarella, D., Roehlly, Y., et al. 2019, A&A, 622, A103
Bothwell, M. S., Smail, I., Chapman, S. C., et al. 2013, MNRAS, 429, 3047
Brusa, M., Cresci, G., Daddi, E., et al. 2018, A&A, 612, A29
Bruzual, G., & Charlot, S. 2003, MNRAS, 344, 1000
Calzetti, D., Armus, L., Bohlin, R. C., et al. 2000, ApJ, 533, 682
Carilli, C. L., & Walter, F. 2013, ARA&A, 51, 105
Chabrier, G. 2003, PASP, 115, 763
Cutri, R. M. 2013, yCat, 2328
da Cunha, E., Charlot, S., & Elbaz, D. 2008, MNRAS, 388, 1595
Díaz-Santos, T., Assef, R. J., Blain, A. W., et al. 2016, ApJL, 816, L6
Díaz-Santos, T., Assef, R. J., Blain, A. W., et al. 2018, Sci, 362, 1034
Di Teodoro, E. M., & Fraternali, F. 2015, MNRAS, 451, 3021
Draine, B. T. 2003, ARA&A, 41, 241
Draine, B. T., Dale, D. A., Bendo, G., et al. 2007, ApJ, 663, 866
Draine, B. T., & Li, A. 2007, ApJ, 657, 810
Dunne, L., Eales, S., Ivison, R., Morgan, H., & Edmunds, M. 2003, Natur,

424, 285
Duras, F., Bongiorno, A., Piconcelli, E., et al. 2017, A&A, 604, A67
Eisenhardt, P. R. M., Wu, J., Tsai, C.-W., et al. 2012, ApJ, 755, 173
Fan, L., Gao, Y., Knudsen, K. K., et al. 2018, ApJ, 854, 157
Fan, L., Han, Y., Fang, G., et al. 2016, ApJL, 822, L32
Fan, L., Han, Y., Nikutta, R., Drouart, G., & Knudsen, K. K. 2016, ApJ,

823, 107

Fan, L., Jones, S. F., Han, Y., & Knudsen, K. K. 2017, PASP, 129, 124101
Fan, L., Knudsen, K. K., Fogasy, J., et al. 2018, ApJL, 856, L5
Ferrarese, L., & Ford, H. 2005, SSRv, 116, 523
Feruglio, C., Fiore, F., Carniani, S., et al. 2018, A&A, 619, A39
Frey, S., Paragi, Z., Gabányi, K. É, et al. 2016, MNRAS, 455, 2058
Granato, G. L., De Zotti, G., Silva, L., et al. 2004, ApJ, 600, 580
Griffin, M. J., Abergel, A., Abreu, A., et al. 2010, A&A, 518, L3
Han, Y., & Han, Z. 2012, ApJ, 749, 123
Han, Y., & Han, Z. 2014, ApJS, 215, 2
Han, Y., & Han, Z. 2019, ApJS, 240, 3
Hickox, R. C., & Alexander, D. M. 2018, ARA&A, 56, 625
Hopkins, P. F., Cox, T. J., Younger, J. D., et al. 2009, ApJ, 691, 1168
Hopkins, P. F., Hernquist, L., Cox, T. J., et al. 2008, ApJS, 175, 356
Hung, C.-L., Rich, J. A., Yuan, T., et al. 2015, ApJ, 803, 62
James, A., Dunne, L., Eales, S., & Edmunds, M. G. 2002, MNRAS, 335, 753
Jenkins, E. B. 2004, in Canegie Obs. Centennial Symp., Origin and Evolution

of the Elements, ed. A. McWilliam & M. Rauch (Cambridge: Cambridge
Univ. Press), 336

Jones, A. P. 2004, in ASP Conf. Ser. 309,Astrophysics of Dust, ed. A. N. Witt,
G. Clayton, & B. T. Draine (San Francisco, CA: ASP), 347

Jones, S. F., Blain, A. W., Assef, R. J., et al. 2017, MNRAS, 469, 4565
Jones, S. F., Blain, A. W., Lonsdale, C., et al. 2015, MNRAS, 448, 3325
Kennicutt, R. C. 1998, ARA&A, 36, 189
Komatsu, E., Smith, K. M., Dunkley, J., et al. 2011, ApJS, 192, 18
Kormendy, J., & Ho, L. C. 2013, ARA&A, 51, 511
Lang, D. 2014, AJ, 147, 108
Leung, T. K. D., Riechers, D. A., & Pavesi, R. 2017, ApJ, 836, 180
Liu, D., Gao, Y., Isaak, K., et al. 2015, ApJL, 810, L14
Magdis, G. E., Daddi, E., Elbaz, D., et al. 2011, ApJL, 740, L15
Magnelli, B., Lutz, D., Santini, P., et al. 2012, A&A, 539, A155
Magorrian, J., Tremaine, S., Richstone, D., et al. 1998, AJ, 115, 2285
Matsuoka, K., Toba, Y., Shidatsu, M., et al. 2018, A&A, 620, L3
McLure, R. J., Jarvis, M. J., Targett, T. A., et al. 2006, MNRAS, 368, 1395
McMullin, J. P., Waters, B., Schiebel, D., Young, W., & Golap, K. 2007, in

ASP Conf. Ser. 376, Astronomical Data Analysis Software and Systems
XVI, ed. R. A. Shaw, F. Hill, & D. J. Bell (San Francisco, CA: ASP), 127

Meisner, A. M., Lang, D., & Schlegel, D. J. 2017, AJ, 154, 161
Merloni, A., Bongiorno, A., Bolzonella, M., et al. 2010, ApJ, 708, 137
Miettinen, O., Delvecchio, I., Smolčić, V., et al. 2017, A&A, 606, A17
Nenkova, M., Sirocky, M. M., Ivezić, Ž, & Elitzur, M. 2008a, ApJ, 685, 147
Nenkova, M., Sirocky, M. M., Nikutta, R., Ivezić, Ž, & Elitzur, M. 2008b, ApJ,

685, 160
Noll, S., Burgarella, D., Giovannoli, E., et al. 2009, A&A, 507, 1793
Padovani, P., Alexander, D. M., Assef, R. J., et al. 2017, A&ARv, 25, 2
Peng, C. Y., Impey, C. D., Rix, H.-W., et al. 2006, ApJ, 649, 616
Perna, M., Sargent, M. T., Brusa, M., et al. 2018, A&A, 619, A90
Piconcelli, E., Vignali, C., Bianchi, S., et al. 2015, A&A, 574, L9
Pilbratt, G. L., Riedinger, J. R., Passvogel, T., et al. 2010, A&A, 518, L1
Poglitsch, A., Waelkens, C., Geis, N., et al. 2010, A&A, 518, L2
Rémy-Ruyer, A., Madden, S. C., Galliano, F., et al. 2014, A&A, 563, A31
Ricci, C., Assef, R. J., Stern, D., et al. 2017, ApJ, 835, 105
Sanders, D. B., Soifer, B. T., Elias, J. H., et al. 1988, ApJ, 325, 74
Sargent, M. T., Daddi, E., Béthermin, M., et al. 2014, ApJ, 793, 19
Siebenmorgen, R., Voshchinnikov, N. V., & Bagnulo, S. 2014, A&A,

561, A82
Solomon, P. M., & Vanden Bout, P. A. 2005, ARA&A, 43, 677
Speagle, J. S., Steinhardt, C. L., Capak, P. L., et al. 2014, ApJS, 214, 15
Springel, V., & Hernquist, L. 2005, ApJL, 622, L9
Stern, D., Lansbury, G. B., Assef, R. J., et al. 2014, ApJ, 794, 102
Symeonidis, M. 2017, MNRAS, 465, 1401
Tacconi, L. J., Neri, R., Genzel, R., et al. 2013, ApJ, 768, 74
Tadaki, K., Iono, D., Yun, M. S., et al. 2018, Natur, 560, 613
Talia, M., Pozzi, F., Vallini, L., et al. 2018, MNRAS, 476, 3956
Targett, T. A., Dunlop, J. S., & McLure, R. J. 2012, MNRAS, 420, 3621
Toba, Y., & Nagao, T. 2016, ApJ, 820, 46
Trakhtenbrot, B., Urry, C. M., Civano, F., et al. 2015, Sci, 349, 168
Tsai, C.-W., Eisenhardt, P. R. M., Jun, H. D., et al. 2018, ApJ, 868, 15
Tsai, C.-W., Eisenhardt, P. R. M., Wu, J., et al. 2015, ApJ, 805, 90
Ueda, J., Iono, D., Yun, M. S., et al. 2014, ApJS, 214, 1
Vito, F., Brandt, W. N., Stern, D., et al. 2018, MNRAS, 474, 4528
Wang, R., Wagg, J., Carilli, C. L., et al. 2013, ApJ, 773, 44
Wright, E. L., Eisenhardt, P. R. M., Mainzer, A. K., et al. 2010, AJ, 140, 1868
Wu, J., Bussmann, R. S., Tsai, C.-W., et al. 2014, ApJ, 793, 8
Wu, J., Jun, H. D., Assef, R. J., et al. 2018, ApJ, 852, 96
Wu, J., Tsai, C.-W., Sayers, J., et al. 2012, ApJ, 756, 96
Zappacosta, L., Piconcelli, E., Duras, F., et al. 2018, A&A, 618, A28

8

The Astrophysical Journal, 887:74 (8pp), 2019 December 10 Fan et al.

https://orcid.org/0000-0003-4200-4432
https://orcid.org/0000-0003-4200-4432
https://orcid.org/0000-0003-4200-4432
https://orcid.org/0000-0003-4200-4432
https://orcid.org/0000-0003-4200-4432
https://orcid.org/0000-0003-4200-4432
https://orcid.org/0000-0003-4200-4432
https://orcid.org/0000-0003-4200-4432
https://orcid.org/0000-0002-7821-8873
https://orcid.org/0000-0002-7821-8873
https://orcid.org/0000-0002-7821-8873
https://orcid.org/0000-0002-7821-8873
https://orcid.org/0000-0002-7821-8873
https://orcid.org/0000-0002-7821-8873
https://orcid.org/0000-0002-7821-8873
https://orcid.org/0000-0002-7821-8873
https://orcid.org/0000-0002-2547-0434
https://orcid.org/0000-0002-2547-0434
https://orcid.org/0000-0002-2547-0434
https://orcid.org/0000-0002-2547-0434
https://orcid.org/0000-0002-2547-0434
https://orcid.org/0000-0002-2547-0434
https://orcid.org/0000-0002-2547-0434
https://orcid.org/0000-0002-2547-0434
https://orcid.org/0000-0002-2547-0434
https://orcid.org/0000-0003-3032-0948
https://orcid.org/0000-0003-3032-0948
https://orcid.org/0000-0003-3032-0948
https://orcid.org/0000-0003-3032-0948
https://orcid.org/0000-0003-3032-0948
https://orcid.org/0000-0003-3032-0948
https://orcid.org/0000-0003-3032-0948
https://orcid.org/0000-0003-3032-0948
https://orcid.org/0000-0003-3032-0948
https://doi.org/10.3847/1538-4365/aae9f0
https://ui.adsabs.harvard.edu/abs/2018ApJS..239...18A/abstract
https://doi.org/10.1016/j.newar.2011.11.003
https://ui.adsabs.harvard.edu/abs/2012NewAR..56...93A/abstract
https://doi.org/10.1051/0004-6361:200810628
https://ui.adsabs.harvard.edu/abs/2008A&A...491..173A/abstract
https://doi.org/10.1088/0004-637X/804/1/27
https://ui.adsabs.harvard.edu/abs/2015ApJ...804...27A/abstract
https://doi.org/10.3847/0004-637X/819/2/111
https://ui.adsabs.harvard.edu/abs/2016ApJ...819..111A/abstract
https://doi.org/10.1093/mnras/stw3019
https://ui.adsabs.harvard.edu/abs/2017MNRAS.465.4390B/abstract
https://doi.org/10.1093/mnras/stu1248
https://ui.adsabs.harvard.edu/abs/2014MNRAS.443.2077B/abstract
https://doi.org/10.1051/0004-6361/201834156
https://ui.adsabs.harvard.edu/abs/2019A&A...622A.103B/abstract
https://doi.org/10.1093/mnras/sts562
https://ui.adsabs.harvard.edu/abs/2013MNRAS.429.3047B/abstract
https://doi.org/10.1051/0004-6361/201731641
https://ui.adsabs.harvard.edu/abs/2018A&A...612A..29B/abstract
https://doi.org/10.1046/j.1365-8711.2003.06897.x
https://ui.adsabs.harvard.edu/abs/2003MNRAS.344.1000B/abstract
https://doi.org/10.1086/308692
https://ui.adsabs.harvard.edu/abs/2000ApJ...533..682C/abstract
https://doi.org/10.1146/annurev-astro-082812-140953
https://ui.adsabs.harvard.edu/abs/2013ARA&A..51..105C/abstract
https://doi.org/10.1086/376392
https://ui.adsabs.harvard.edu/abs/2003PASP..115..763C/abstract
https://ui.adsabs.harvard.edu/abs/2013yCat.2328....0C/abstract
https://doi.org/10.1111/j.1365-2966.2008.13535.x
https://ui.adsabs.harvard.edu/abs/2008MNRAS.388.1595D/abstract
https://doi.org/10.3847/2041-8205/816/1/L6
https://ui.adsabs.harvard.edu/abs/2016ApJ...816L...6D/abstract
https://doi.org/10.1126/science.aap7605
https://ui.adsabs.harvard.edu/abs/2018Sci...362.1034D/abstract
https://doi.org/10.1093/mnras/stv1213
https://ui.adsabs.harvard.edu/abs/2015MNRAS.451.3021D/abstract
https://doi.org/10.1146/annurev.astro.41.011802.094840
https://ui.adsabs.harvard.edu/abs/2003ARA&A..41..241D/abstract
https://doi.org/10.1086/518306
https://ui.adsabs.harvard.edu/abs/2007ApJ...663..866D/abstract
https://doi.org/10.1086/511055
https://ui.adsabs.harvard.edu/abs/2007ApJ...657..810D/abstract
https://doi.org/10.1038/nature01792
https://ui.adsabs.harvard.edu/abs/2003Natur.424..285D/abstract
https://ui.adsabs.harvard.edu/abs/2003Natur.424..285D/abstract
https://doi.org/10.1051/0004-6361/201731052
https://ui.adsabs.harvard.edu/abs/2017A&A...604A..67D/abstract
https://doi.org/10.1088/0004-637X/755/2/173
https://ui.adsabs.harvard.edu/abs/2012ApJ...755..173E/abstract
https://doi.org/10.3847/1538-4357/aaaaae
https://ui.adsabs.harvard.edu/abs/2018ApJ...854..157F/abstract
https://doi.org/10.3847/2041-8205/822/2/L32
https://ui.adsabs.harvard.edu/abs/2016ApJ...822L..32F/abstract
https://doi.org/10.3847/0004-637X/823/2/107
https://ui.adsabs.harvard.edu/abs/2016ApJ...823..107F/abstract
https://ui.adsabs.harvard.edu/abs/2016ApJ...823..107F/abstract
https://doi.org/10.1088/1538-3873/aa8e91
https://ui.adsabs.harvard.edu/abs/2017PASP..129l4101F/abstract
https://doi.org/10.3847/2041-8213/aab496
https://ui.adsabs.harvard.edu/abs/2018ApJ...856L...5F/abstract
https://doi.org/10.1007/s11214-005-3947-6
https://ui.adsabs.harvard.edu/abs/2005SSRv..116..523F/abstract
https://doi.org/10.1051/0004-6361/201833174
https://ui.adsabs.harvard.edu/abs/2018A&A...619A..39F/abstract
https://doi.org/10.1093/mnras/stv2399
https://ui.adsabs.harvard.edu/abs/2016MNRAS.455.2058F/abstract
https://doi.org/10.1086/379875
https://ui.adsabs.harvard.edu/abs/2004ApJ...600..580G/abstract
https://doi.org/10.1051/0004-6361/201014519
https://ui.adsabs.harvard.edu/abs/2010A&A...518L...3G/abstract
https://doi.org/10.1088/0004-637X/749/2/123
https://ui.adsabs.harvard.edu/abs/2012ApJ...749..123H/abstract
https://doi.org/10.1088/0067-0049/215/1/2
https://ui.adsabs.harvard.edu/abs/2014ApJS..215....2H/abstract
https://doi.org/10.3847/1538-4365/aaeffa
https://ui.adsabs.harvard.edu/abs/2019ApJS..240....3H/abstract
https://doi.org/10.1146/annurev-astro-081817-051803
https://ui.adsabs.harvard.edu/abs/2018ARA&A..56..625H/abstract
https://doi.org/10.1088/0004-637X/691/2/1168
https://ui.adsabs.harvard.edu/abs/2009ApJ...691.1168H/abstract
https://doi.org/10.1086/524362
https://ui.adsabs.harvard.edu/abs/2008ApJS..175..356H/abstract
https://doi.org/10.1088/0004-637X/803/2/62
https://ui.adsabs.harvard.edu/abs/2015ApJ...803...62H/abstract
https://doi.org/10.1046/j.1365-8711.2002.05660.x
https://ui.adsabs.harvard.edu/abs/2002MNRAS.335..753J/abstract
https://ui.adsabs.harvard.edu/abs/2004oee..symp..336J/abstract
https://ui.adsabs.harvard.edu/abs/2004ASPC..309..347J/abstract
https://doi.org/10.1093/mnras/stx1141
https://ui.adsabs.harvard.edu/abs/2017MNRAS.469.4565J/abstract
https://doi.org/10.1093/mnras/stv214
https://ui.adsabs.harvard.edu/abs/2015MNRAS.448.3325J/abstract
https://doi.org/10.1146/annurev.astro.36.1.189
https://ui.adsabs.harvard.edu/abs/1998ARA&A..36..189K/abstract
https://doi.org/10.1088/0067-0049/192/2/18
https://ui.adsabs.harvard.edu/abs/2011ApJS..192...18K/abstract
https://doi.org/10.1146/annurev-astro-082708-101811
https://ui.adsabs.harvard.edu/abs/2013ARA&A..51..511K/abstract
https://doi.org/10.1088/0004-6256/147/5/108
https://ui.adsabs.harvard.edu/abs/2014AJ....147..108L/abstract
https://doi.org/10.3847/1538-4357/aa5b98
https://ui.adsabs.harvard.edu/abs/2017ApJ...836..180L/abstract
https://doi.org/10.1088/2041-8205/810/2/L14
https://ui.adsabs.harvard.edu/abs/2015ApJ...810L..14L/abstract
https://doi.org/10.1088/2041-8205/740/1/L15
https://ui.adsabs.harvard.edu/abs/2011ApJ...740L..15M/abstract
https://doi.org/10.1051/0004-6361/201118312
https://ui.adsabs.harvard.edu/abs/2012A&A...539A.155M/abstract
https://doi.org/10.1086/300353
https://ui.adsabs.harvard.edu/abs/1998AJ....115.2285M/abstract
https://doi.org/10.1051/0004-6361/201833943
https://ui.adsabs.harvard.edu/abs/2018A&A...620L...3M/abstract
https://doi.org/10.1111/j.1365-2966.2006.10228.x
https://ui.adsabs.harvard.edu/abs/2006MNRAS.368.1395M/abstract
https://ui.adsabs.harvard.edu/abs/2007adass..16..127M/abstract
https://doi.org/10.3847/1538-3881/aa894e
https://ui.adsabs.harvard.edu/abs/2017AJ....154..161M/abstract
https://doi.org/10.1088/0004-637X/708/1/137
https://ui.adsabs.harvard.edu/abs/2010ApJ...708..137M/abstract
https://doi.org/10.1051/0004-6361/201730762
https://ui.adsabs.harvard.edu/abs/2017A&A...606A..17M/abstract
https://doi.org/10.1086/590482
https://ui.adsabs.harvard.edu/abs/2008ApJ...685..147N/abstract
https://doi.org/10.1086/590483
https://ui.adsabs.harvard.edu/abs/2008ApJ...685..160N/abstract
https://ui.adsabs.harvard.edu/abs/2008ApJ...685..160N/abstract
https://doi.org/10.1051/0004-6361/200912497
https://ui.adsabs.harvard.edu/abs/2009A&A...507.1793N/abstract
https://doi.org/10.1007/s00159-017-0102-9
https://ui.adsabs.harvard.edu/abs/2017A&ARv..25....2P/abstract
https://doi.org/10.1086/506266
https://ui.adsabs.harvard.edu/abs/2006ApJ...649..616P/abstract
https://doi.org/10.1051/0004-6361/201833040
https://ui.adsabs.harvard.edu/abs/2018A&A...619A..90P/abstract
https://doi.org/10.1051/0004-6361/201425324
https://ui.adsabs.harvard.edu/abs/2015A&A...574L...9P/abstract
https://doi.org/10.1051/0004-6361/201014759
https://ui.adsabs.harvard.edu/abs/2010A&A...518L...1P/abstract
https://doi.org/10.1051/0004-6361/201014535
https://ui.adsabs.harvard.edu/abs/2010A&A...518L...2P/abstract
https://doi.org/10.1051/0004-6361/201322803
https://ui.adsabs.harvard.edu/abs/2014A&A...563A..31R/abstract
https://doi.org/10.3847/1538-4357/835/1/105
https://ui.adsabs.harvard.edu/abs/2017ApJ...835..105R/abstract
https://doi.org/10.1086/165983
https://ui.adsabs.harvard.edu/abs/1988ApJ...325...74S/abstract
https://doi.org/10.1088/0004-637X/793/1/19
https://ui.adsabs.harvard.edu/abs/2014ApJ...793...19S/abstract
https://doi.org/10.1051/0004-6361/201321716
https://ui.adsabs.harvard.edu/abs/2014A&A...561A..82S/abstract
https://ui.adsabs.harvard.edu/abs/2014A&A...561A..82S/abstract
https://doi.org/10.1146/annurev.astro.43.051804.102221
https://ui.adsabs.harvard.edu/abs/2005ARA&A..43..677S/abstract
https://doi.org/10.1088/0067-0049/214/2/15
https://ui.adsabs.harvard.edu/abs/2014ApJS..214...15S/abstract
https://doi.org/10.1086/429486
https://ui.adsabs.harvard.edu/abs/2005ApJ...622L...9S/abstract
https://doi.org/10.1088/0004-637X/794/2/102
https://ui.adsabs.harvard.edu/abs/2014ApJ...794..102S/abstract
https://doi.org/10.1093/mnras/stw2784
https://ui.adsabs.harvard.edu/abs/2017MNRAS.465.1401S/abstract
https://doi.org/10.1088/0004-637X/768/1/74
https://ui.adsabs.harvard.edu/abs/2013ApJ...768...74T/abstract
https://doi.org/10.1038/s41586-018-0443-1
https://ui.adsabs.harvard.edu/abs/2018Natur.560..613T/abstract
https://doi.org/10.1093/mnras/sty481
https://ui.adsabs.harvard.edu/abs/2018MNRAS.476.3956T/abstract
https://doi.org/10.1111/j.1365-2966.2011.20286.x
https://ui.adsabs.harvard.edu/abs/2012MNRAS.420.3621T/abstract
https://doi.org/10.3847/0004-637X/820/1/46
https://ui.adsabs.harvard.edu/abs/2016ApJ...820...46T/abstract
https://doi.org/10.1126/science.aaa4506
https://ui.adsabs.harvard.edu/abs/2015Sci...349..168T/abstract
https://doi.org/10.3847/1538-4357/aae698
https://ui.adsabs.harvard.edu/abs/2018ApJ...868...15T/abstract
https://doi.org/10.1088/0004-637X/805/2/90
https://ui.adsabs.harvard.edu/abs/2015ApJ...805...90T/abstract
https://doi.org/10.1088/0067-0049/214/1/1
https://ui.adsabs.harvard.edu/abs/2014ApJS..214....1U/abstract
https://doi.org/10.1093/mnras/stx3120
https://ui.adsabs.harvard.edu/abs/2018MNRAS.474.4528V/abstract
https://doi.org/10.1088/0004-637X/773/1/44
https://ui.adsabs.harvard.edu/abs/2013ApJ...773...44W/abstract
https://doi.org/10.1088/0004-6256/140/6/1868
https://ui.adsabs.harvard.edu/abs/2010AJ....140.1868W/abstract
https://doi.org/10.1088/0004-637X/793/1/8
https://ui.adsabs.harvard.edu/abs/2014ApJ...793....8W/abstract
https://doi.org/10.3847/1538-4357/aa9ff3
https://ui.adsabs.harvard.edu/abs/2018ApJ...852...96W/abstract
https://doi.org/10.1088/0004-637X/756/1/96
https://ui.adsabs.harvard.edu/abs/2012ApJ...756...96W/abstract
https://doi.org/10.1051/0004-6361/201732557
https://ui.adsabs.harvard.edu/abs/2018A&A...618A..28Z/abstract

	1. Introduction
	2. ALMA Observations and Data Analysis
	3. Multiwavelength Data and SED Modeling
	3.1. UV-to-millimeter SED
	3.2. Multiwavelength SED Analysis

	4. Results and Discussion
	4.1. CO(3–2) Line Emission
	4.2. Dust Properties
	4.3. Stellar Mass and Star Formation Rate
	4.4. Rapid Growth of Both the Stellar Component and the Central SMBH

	5. Summary and Conclusions
	References



