7,059 research outputs found

    Probing quasiparticle excitations in a hybrid single electron transistor

    Get PDF
    We investigate the behavior of quasiparticles in a hybrid electron turnstile with the aim of improving its performance as a metrological current source. The device is used to directly probe the density of quasiparticles and monitor their relaxation into normal metal traps. We compare different trap geometries and reach quasiparticle densities below 3um^-3 for pumping frequencies of 20 MHz. Our data show that quasiparticles are excited both by the device operation itself and by the electromagnetic environment of the sample. Our observations can be modelled on a quantitative level with a sequential tunneling model and a simple diffusion equation

    Bark beetle impacts on remotely sensed evapotranspiration in the Colorado Rocky Mountains

    Get PDF
    January 2019.Includes bibliographical references.Bark beetles represent a major ongoing forest disturbance throughout the southern Rocky Mountains with unknown implications for hydrological partitioning between the abiotic (evaporation) and biotic (transpiration) components of the total evapotranspiration (ET) flux. Since changes in ET are linked to both groundwater and surface water recharge processes, this scenario has the potential to affect water delivery to agricultural, industrial, and residential consumers downstream. Accordingly, this research used satellite remote sensing, eddy covariance, and hydrological modeling approaches to independently quantify the impact of bark beetles on growing season ET, the transpiration fraction of ET (T/ET), and streamflow across a range of spatial scales throughout the 144,462 km2 EPA Level III Southern Rocky Mountain ecoregion. The results of this work demonstrate statistically significant post-disturbance ET reductions between 9% (remote sensing) and 28% (eddy covariance) relative to pre-disturbance conditions. Further, commensurate decreases in transpiration and T/ET from disturbed areas suggest that the total ET flux was primarily sensitive to changes in transpiration. In the context of the water balance, the Variable Infiltration Capacity (VIC) hydrological model simulated decreased canopy interception and increased soil moisture as a result of beetle disturbance, which increased streamflow by 9%. Factoring in the number of grid cells that were disturbed, bark beetles decreased ET by 62,000 acre-feet and increased streamflow by 54,000 acre-feet between 2000 and 2013. These results will benefit water managers tasked with forecasting water resources from disturbed areas both now and in the future

    Solution to the Equations of the Moment Expansions

    Get PDF
    We develop a formula for matching a Taylor series about the origin and an asymptotic exponential expansion for large values of the coordinate. We test it on the expansion of the generating functions for the moments and connected moments of the Hamiltonian operator. In the former case the formula produces the energies and overlaps for the Rayleigh-Ritz method in the Krylov space. We choose the harmonic oscillator and a strongly anharmonic oscillator as illustrative examples for numerical test. Our results reveal some features of the connected-moments expansion that were overlooked in earlier studies and applications of the approach

    Compound-specific amino acid <sup>15</sup>N stable isotope probing of nitrogen assimilation by the soil microbial biomass using gas chromatography/combustion/isotope ratio mass spectrometry

    Get PDF
    RATIONALE: Organic nitrogen (N) greatly exceeds inorganic N in soils, but the complexity and heterogeneity of this important soil N pool make investigations into the fate of N‐containing additions and soil organic N cycling challenging. This paper details a novel approach to investigate the fate of applied N in soils, generating quantitative measures of microbial assimilation and of newly synthesized soil protein. METHODS: Laboratory incubation experiments applying (15)N‐ammonium, (15)N‐nitrate and (15)N‐glutamate were carried out and the high sensitivity and selectivity of gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS) exploited for compound‐specific (15)N stable isotope probing ((15)N‐SIP) of extracted incubation soil amino acids (AAs; as N‐acetyl, O‐isopropyl derivatives). We then describe the interpretation of these data to obtain a measure of the assimilation of the applied (15)N‐labelled substrate by the soil microbial biomass and an estimate of newly synthesised soil protein. RESULTS: The cycling of agriculturally relevant N additions is undetectable via bulk soil N content and ÎŽ (15)N values and AA concentrations. The assimilation pathways of the three substrates were revealed via patterns in AA ÎŽ (15)N values with time, reflecting known biosynthetic pathways (e.g. ammonium uptake occurs first via glutamate) and these data were used to expose differences in the rates and fluxes of the applied N substrates into the soil protein pool (glutamate > ammonium > nitrate). CONCLUSIONS: Our compound‐specific (15)N‐SIP approach using GC/C/IRMS offers a number of insights, inaccessible via existing techniques, into the fate of applied (15)N in soils and is potentially widely applicable to the study of N cycling in any soil, or indeed, in any complex ecosystem. © 2016 The Authors. Rapid Communications in Mass Spectrometry Published by John Wiley & Sons Ltd

    Resonant Formation of dÎŒtd\mu t Molecules in Deuterium: An Atomic Beam Measurement of Muon Catalyzed dt Fusion

    Full text link
    Resonant formation of dÎŒtd\mu t molecules in collisions of muonic tritium (ÎŒt\mu t) on D2_2 was investigated using a beam of ÎŒt\mu t atoms, demonstrating a new direct approach in muon catalyzed fusion studies. Strong epithermal resonances in dÎŒtd\mu t formation were directly revealed for the first time. From the time-of-flight analysis of 2036±1162036\pm 116 dtdt fusion events, a formation rate consistent with 0.73±(0.16)meas±(0.09)model0.73\pm (0.16)_{meas} \pm (0.09)_{model} times the theoretical prediction was obtained. For the largest peak at a resonance energy of 0.423±0.0370.423 \pm 0.037 eV, this corresponds to a rate of (7.1±1.8)×109(7.1 \pm 1.8) \times 10^9 s−1^{-1}, more than an order of magnitude larger than those at low energies.Comment: To appear in Phys. Rev. Let

    Correlation effects in MgO and CaO: Cohesive energies and lattice constants

    Full text link
    A recently proposed computational scheme based on local increments has been applied to the calculation of correlation contributions to the cohesive energy of the CaO crystal. Using ab-initio quantum chemical methods for evaluating individual increments, we obtain 80% of the difference between the experimental and Hartree-Fock cohesive energies. Lattice constants corrected for correlation effects deviate by less than 1% from experimental values, in the case of MgO and CaO.Comment: LaTeX, 4 figure

    Dry-mass sensing for microfluidics

    Get PDF
    We present an approach for interfacing an electromechanical sensor with a microfluidic device for the accurate quantification of the dry mass of analytes within microchannels. We show that depositing solutes onto the active surface of a quartz crystal microbalance by means of an on-chip microfluidic spray nozzle and subsequent solvent removal provides the basis for the real-time determination of dry solute mass. Moreover, this detection scheme does not suffer from the decrease in the sensor’s quality factor and the viscous drag present if the measurement is performed in a liquid environment, yet allows solutions to be analysed. We demonstrate the sensitivity and reliability of our approach by controlled deposition of nanogram levels of salt and protein from a micrometer-sized channel.We thank Alexander K. Buell, Igor Efimov, and Victor Ostanin for valuable discussions on QCM sensors and gratefully acknowledge financial support from the Swiss National Science Foundation (SNF), the Engineering and Physical Sciences Research Council (EPSRC), the Biotechnology and Biological Sciences Research Council (BBSRC), the European Research Council (ERC), as well as the Frances and Augustus Newman Foundation.Permission is granted to quote from an AIP publication with the customary acknowledgment of the source. Republication of an article or portions thereof (e.g., excerpts of greater than 400 words, figures, tables, etc.) in original form or in translation, as well as other types of reuse (such as use in course packs or electronic reserves) require formal permission from AIP and may be subject to fees. Although it is not a legal requirement for permission, as a courtesy, an author of the original article should be informed of any request for republication/reuse
    • 

    corecore