871 research outputs found

    Doppler cooling of calcium ions using a dipole-forbidden transition

    Full text link
    Doppler cooling of calcium ions has been experimentally demonstrated using the S1/2 to D5/2 dipole-forbidden transition. Scattering forces and fluorescence levels a factor of 5 smaller than for usual Doppler cooling on the dipole allowed S1/2 to P1/2 transition have been achieved. Since the light scattered from the ions can be monitored at (violet) wavelengths that are very different from the excitation wavelengths, single ions can be detected with an essentially zero background level. This, as well as other features of the cooling scheme, can be extremely valuable for ion trap based quantum information processing.Comment: 4 pages, 4 figures, minor changes to commentary and reference

    Fast accumulation of ions in a dual trap

    Full text link
    Transporting charged particles between different traps has become an important feature in high-precision spectroscopy experiments of different types. In many experiments in atomic and molecular physics, the optical probing of the ions is not carried out at the same location as the creation or state preparation. In our double linear radio-frequency trap, we have implemented a fast protocol allowing to shuttle large ion clouds very efficiently between traps, in times shorter than a millisecond. Moreover, our shuttling protocol is a one-way process, allowing to add ions to an existing cloud without loss of the already trapped sample. This feature makes accumulation possible, resulting in the creation of large ion clouds. Experimental results show, that ion clouds of large size are reached with laser-cooling, however, the described mechanism does not rely on any cooling process

    Correcting symmetry imperfections in linear multipole traps

    Get PDF
    Multipole radio-frequency traps are central to collisional experiments in cryogenic environments. They also offer possibilities to generate new type of ion crystals topologies and in particular the potential to create infinite 1D/2D structures: ion rings and ion tubes. However, multipole traps have also been shown to be very sensitive to geometrical misalignment of the trap rods, leading to additional local trapping minima. The present work proposes a method to correct non-ideal potentials, by modifying the applied radio-frequency amplitudes for each trap rod. This approach is discussed for the octupole trap, leading to the restitution of the ideal Mexican-Hat-like pseudo-potential, expected in multipole traps. The goodness of the compensation method is quantified in terms of the choice of the diagnosis area, the residual trapping potential variations, the required adaptation of the applied radio-frequency voltage amplitudes, and the impact on the trapped ion structures. Experimental implementation for macroscopic multipole traps is also discussed, in order to propose a diagnostic method with respect to the resolution and stability of the trap drive. Using the proposed compensation technique, we discuss the feasibility of generating a homogeneous ion ring crystal, which is a measure of quality for the obtained potential well

    Parallel ion strings in linear multipole traps

    Full text link
    Additional radio-frequency (rf) potentials applied to linear multipole traps create extra field nodes in the radial plane which allow one to confine single ions, or strings of ions, in totally rf field-free regions. The number of nodes depends on the order of the applied multipole potentials and their relative distance can be easily tuned by the amplitude variation of the applied voltages. Simulations using molecular dynamics show that strings of ions can be laser cooled down to the Doppler limit in all directions of space. Once cooled, organized systems can be moved with very limited heating, even if the cooling process is turned off

    Metastable Feshbach Molecules in High Rotational States

    Full text link
    We experimentally demonstrate Cs2 Feshbach molecules well above the dissociation threshold, which are stable against spontaneous decay on the timescale of one second. An optically trapped sample of ultracold dimers is prepared in an l-wave state and magnetically tuned into a region with negative binding energy. The metastable character of these molecules arises from the large centrifugal barrier in combination with negligible coupling to states with low rotational angular momentum. A sharp onset of dissociation with increasing magnetic field is mediated by a crossing with a g-wave dimer state and facilitates dissociation on demand with a well defined energy.Comment: 4 pages, 5 figure

    Anharmonic contributions in real RF linear quadrupole traps

    No full text
    See also erratum at : http://www.sciencedirect.com/science/article/pii/S1387380610001004International audienceThe radiofrequency quadrupole linear ion trap is a widely used device in physics and chemistry. When used for trapping of large ion clouds, the presence of anharmonic terms in the radiofrequency potential limits the total number of stored ions. In this paper, we have studied the anharmonic content of the trapping potential for different implementations of a quadrupole trap, searching for the geometry best suited for the trapping of large ion clouds. This is done by calculating the potential of a real trap using SIMION8.0, followed by a fit, which allows us to obtain the evolution of anharmonic terms for a large part of the inner volume of the trap

    Dark resonances as a probe for the motional state of a single ion

    Full text link
    Single, rf-trapped ions find various applications ranging from metrology to quantum computation. High-resolution interrogation of an extremely weak transition under best observation conditions requires an ion almost at rest. To avoid line-broadening effects such as the second order Doppler effect or rf heating in the absence of laser cooling, excess micromotion has to be eliminated as far as possible. In this work the motional state of a confined three-level ion is probed, taking advantage of the high sensitivity of observed dark resonances to the trapped ion's velocity. Excess micromotion is controlled by monitoring the dark resonance contrast with varying laser beam geometry. The influence of different parameters such as the cooling laser intensity has been investigated experimentally and numerically
    • …
    corecore