24 research outputs found

    “Open science? Activism!” Working together to share modelling resources

    Get PDF
    Canada First Research Excellence FundNon-Peer ReviewedA young hydrological modeler becomes an advocate for open science

    When good signatures go bad: Applying hydrologic signatures in large sample studies

    Full text link
    Hydrologic signatures are quantitative metrics that describe streamflow statistics and dynamics. Signatures have many applications, including assessing habitat suitability and hydrologic alteration, calibrating and evaluating hydrologic models, defining similarity between watersheds and investigating watershed processes. Increasingly, signatures are being used in large sample studies to guide flow management and modelling at continental scales. Using signatures in studies involving 1000s of watersheds brings new challenges as it becomes impractical to examine signature parameters and behaviour in each watershed. For example, we might wish to check that signatures describing flood event characteristics have correctly identified event periods, that signature values have not been biassed by data errors, or that human and natural influences on signature values have been correctly interpreted. In this commentary, we draw from our collective experience to present case studies where naïve application of signatures fails to correctly identify streamflow dynamics. These include unusual precipitation or flow regimes, data quality issues, and signature use in human‐influenced watersheds. We conclude by providing guidance and recommendations on applying signatures in large sample studies

    Modular Assessment of Rainfall-Runoff Models Toolbox (MARRMoT) v1.2:an open-source, extendable framework providing implementations of 46 conceptual hydrologic models as continuous state-space formulations

    Get PDF
    This paper presents the Modular Assessment of Rainfall-Runoff Models Toolbox (MARRMoT): A modular open-source toolbox containing documentation and model code based on 46 existing conceptual hydrologic models. The toolbox is developed in MATLAB and works with Octave. MARRMoT models are based solely on traceable published material and model documentation, not on already-existing computer code. Models are implemented following several good practices of model development: The definition of model equations (the mathematical model) is kept separate from the numerical methods used to solve these equations (the numerical model) to generate clean code that is easy to adjust and debug; the implicit Euler time-stepping scheme is provided as the default option to numerically approximate each model's ordinary differential equations in a more robust way than (common) explicit schemes would; threshold equations are smoothed to avoid discontinuities in the model's objective function space; and the model equations are solved simultaneously, avoiding the physically unrealistic sequential solving of fluxes. Generalized parameter ranges are provided to assist with model inter-comparison studies. In addition to this paper and its Supplement, a user manual is provided together with several workflow scripts that show basic example applications of the toolbox. The toolbox and user manual are available from span classCombining double low line"uri"https://github.com/wknoben/MARRMoT/span (last access: 30 May 2019; a hrefCombining double low line"https://doi.org/10.5281/zenodo.3235664"https://doi.org/10.5281/zenodo.3235664). Our main scientific objective in developing this toolbox is to facilitate the inter-comparison of conceptual hydrological model structures which are in widespread use in order to ultimately reduce the uncertainty in model structure selection
    corecore