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ABSTRACT

Hydrological modelling is complicated by several sources of uncertainty: observations
of climatic forcing and streamflow will have errors, model parameters are not
always properly identifiable, and the choice of model structure itself can be difficult.

A model structure, i.e. the collection of equations that represent certain hydrologic states
and fluxes, can be seen as a hypothesis about how a given catchment behaves. Different
models are different hypotheses and choosing the appropriate model is thus important
for many applications, e.g. runoff prediction in ungauged basins, climate change impact
assessment, and prediction of extremes such as floods and droughts. However, many
different models have been created and differences and similarities between models are
not well understood. In an ideal situation, we would (1) select a representative sample of
testing conditions and (2) a representative sample of models (that are (3) implemented in
a coding framework that ensures an objective comparison between models can be made),
(4) use an objective and extensive testing scheme to find between-model differences and
similarities and thus improve our understanding of model structure uncertainty. None of
these four steps are straightforward. Focussing on a sub-type of hydrologic models known
as conceptual models, this thesis contributes to each of the steps in turn, although in every
case many challenges remain.

The findings from any experiment are conditional on the study set-up and conclusions
can only be generalised if it is clear how the tested sample relates to all possible cases.
In hydrology, selecting a representative sample of catchments is difficult because it is
not well known how hydrologic conditions vary across the world. Hydrologic conditions
can be separated into climatic conditions and catchment attributes such as soil type and
geology. Global data are available for several climatic variables that are hydrologically
relevant (e.g. precipitation, temperature), but global data for hydrologically meaningful
catchment attributes are more difficult to find. This thesis investigates the possibility of
a hydrologically-informed climate classification and shows that a system based on three
dimensionless numbers contains sufficient information to group hydrologically similar
regimes on a global scale. These numbers do not account for a region’s annual number of
rainfall seasons, even though this strongly influences within-year hydrologic behaviour.
Further analysis shows that on a global scale, the number of rainfall seasons is a relevant
indicator on approximately 7% of the Earth’s land surface. These results give us some
idea of how representative a sample of catchments is of the global range of hydro-climatic
conditions. An open challenge on this topic is expanding our approach to a global catchment
classification that includes catchment attributes as well as climatic conditions, but, for
now, data limitations place that out of reach.
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In a model-comparison study, the next challenge is selecting a representative sample of
models. There is however a wide variety of models available and no clear basis for defining
both the total model space (i.e. all possible model configurations) and a representative
selection within that space (i.e. several model structures that are in some way considered
to cover different areas of the total model space). This thesis assumes that an iterative
approach is appropriate, where a large number of models is used in a first model-comparison
study. In a next pass, results from the first round can inform model selection to reduce
the total number of structures and identify whether the first model sample leaves any
obvious gaps in the total model space uncovered. To facilitate objective model comparison,
a new open-source modelling framework has been created that currently includes 46
different conceptual hydrological models. The framework follows several best practices in
model development and through its modular nature provides a stable ground for model-
comparison studies. Each modelling decision can be isolated in turn and its impact assessed.
Expansion of the framework is straightforward, so that it can easily be used for iterative
model-comparison studies.

Any large-sample study must necessarily sacrifice study depth to some extent, in
return for larger sample sizes. This thesis investigates model structure uncertainty using
36 conceptual models, three different objective functions and 559 catchments (for which
time series of climatic forcing and a variety of catchment attributes are known). To keep
the analysis manageable, for each combination of model, catchment and objective function,
only a single parameter set is calibrated. For the majority of cases at least two but up to 25
models achieve very similar efficiency values, although these are not the same models for
each catchment. Contrary to expectations, there is no obvious relation between the number
of model parameters and either calibration performance, evaluation performance and
performance change between both periods. Instead, the model structure seems to dictate
whether a model will do well for a given objective function and whether it will perform
better or worse (relative to the other models) under certain flow regimes. The relation
between model performance and catchment attributes is inconclusive, but models can be
relatively neatly grouped based on their (weak) correlation with catchment attributes. This
suggests that certain shared model structure elements lead to similar model performance
in specific types of catchments, although this hypothesis remains untested.

Taken together, several important steps towards a comprehensive and generalizable
model-comparison study have been made in this thesis. A variety of challenges remain,
from the need for a catchment classification scheme to a combined assessment of model
structure, data and parameter uncertainty. However, these are grand challenges which
the hydrologic community has been working on for several decades. The results presented
here contribute to progress towards these goals and indicate several promising, practical
next steps that can be taken in future work.

ii



People look down on stuff like geography and meteorology, and not only because
they’re standing on one and being soaked by the other. They don’t look quite like
real science†. But geography is only physics slowed down with a few trees stuck
on it, and meteorology is full of excitingly fashionable chaos and complexity.
And summer isn’t a time. It’s a place as well. Summer is a moving creature
and likes to go south for the winter.

† That is to say, the sort you can use to give something three extra legs and
then blow it up.

TERRY PRATCHETT, FEET OF CLAY
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INTRODUCTION

Sections 1.1.1 and 1.1.2 are based on a summary of discussions with Rosie Lane, Ida

Westerberg, Jan Seibert, Stan Schymanski, Charlie Luce and Martyn Clark.

1.1 Background

Hydrology is a science that revolves around a simple question: what happens to rain

[252]? Simple as this questions sounds, answers to it are often vague. Experiments in

the field and laboratories can improve our understanding of the real-world processes

that define hydrologic behaviour, and ever increasingly, computer models are used to

complement this understanding. These models serve a variety of roles that can be broadly

categorized into virtual laboratories [345] and decision support systems [40]. As the former,

models are used to improve our understanding of the real world by testing assumptions

or hypotheses based on field or laboratory observations. As the latter, models are used

to provide simulations that inform a variety of decisions, ranging from mitigation of

hydrological extremes (i.e. floods and droughts), to long-term planning of water resources,

to enforcement of water quality standards. Both approaches involve extrapolation into

the unknown. The measurements that underlie our models are limited in time and space

[e.g. 34] but humanity’s need for accurate hydrological predictions extends into situations

where measurements are unavailable (ungauged catchments) and where measurements

are impossible (the future) [40]. It is therefore critical that the tools which we use to

make predictions, i.e. our hydrological models, are well understood and appropriate for the

question they are applied to.
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CHAPTER 1. INTRODUCTION

1.1.1 The model development process

Different types of hydrologic computer models exist and they can be broadly categorized

in various ways. We can for example distinguish between lumped and distributed models

(depending on their spatial discretisation), between conceptual and physics-based models

(depending on whether the equations are more empirical or describe the physics of the

system), between deterministic and stochastic models (depending on whether there is one

outcome or several with associated probabilities) [40], and various other distinctions are

possible as well [248]. Distinguishing between models is generally not quite as clear cut

as these definitions might imply and there are for example semi-distributed models that

divide a catchment into several different elements (e.g. through topographic indices [49]),

without resorting to a fully distributed approach (e.g. THALES, [124]). Similarly, many

models blur the line between conceptual and physics-based models [e.g. 194], and to a

certain extent all models are arguably empirical because even the physics-based models

are simplified representations of reality. Regardless, in all cases model development follows

(or at least, should follow) the same basic steps.

Many authors have summarized the model development steps [e.g. 37, 40, 72, 128].

There are differences in terminology and in the number of steps they define, but they

agree on the general structure of the modelling process. First, the modeller develops

a perceptual model of a catchment, which is a personal and potentially very complex

understanding of how the catchment responds to climatic forcing. The perceptual model is

not fixed and changes with increased understanding of the system (see for example the

change in understanding of the experimental Maimai catchment in New Zealand as more

studies are conducted [210]). Next, the modeller develops a conceptual model, which is a

simplification of the perceptual model that describes the most relevant processes and their

interactions. Based on this, the modeller creates a mathematical model. This is a definition

of the state variables and units, and of the equations that describe the changes in state

variables (i.e. the mathematical functions that represent the hydrological fluxes described

in the conceptual model). The modeller translates the mathematical model into computer

code and specifies a way in which the model equations are solved, creating a numerical

model. After this, any model parameters are assigned a value either through parameter

estimation (if the parameters are assumed to relate to measurable real-world phenomena)

or calibration (i.e. adjusting parameter values in order to optimize a score on a given (set

of) objective function(s)). For an application of this process, see for example the steps taken

to create models for several catchments in Luxembourg [104–106] or those that inform the

landscape-specific FLEX-Topo models [274].

2



1.1. BACKGROUND

1.1.2 Models as hypotheses

Regardless of the final shape of the model, any hydrological model is in essence a hypo-

thesis about how a given catchment works. However, it is not straightforward to map our

understanding of a catchment (i.e. the perceptual and conceptual models) onto a model

structure (i.e. the mathematical model) [35, 36, 73, 280]. There is no agreement on which

hydrologic processes are important (in general, and for a given study purpose such as floods

or droughts, because which processes are important is often dependent on the catchment),

nor on which type of model (e.g. empirical or physics-based, lumped or distributed) should

be used, nor on which specific equations should be used to represent a given hydrologic

process (see e.g. the enormous variety of evaporation [211] and snow equations [97]). Many

models have been created [298, 337] and for any given place several different model struc-

tures tend to emulate observations of streamflow equally well [47, 112, 254], a problem

termed equifinality. However, simply reproducing observations sufficiently accurately is

not enough. A model must produce the right results because it is an appropriate repre-

sentation of the catchment under consideration. Otherwise, the model is nothing more

than a ”mathematical marionette”, reproducing streamflow observations it has seen during

model calibration but not to be trusted when streamflow simulations are required that

extrapolate beyond calibration conditions [173, 175].

Unfortunately, models of open systems (such as a river basin) can never be validated, i.e.

proven to be correct [239]. However, models can be tested under a variety of conditions and

the results tell us something about the appropriateness of the assumptions that underlie

the model. Klemeş’ four-step model evaluation framework [176] assesses how generally

applicable a calibrated model is. The tests show how the model performs under climatic

conditions that are different from those during calibration, how the model performs in

a similar climate but different catchment, and how it performs in a different catchment

with different climatic conditions (for an example application, see [265]). Similarly, in the

case of model structure equifinality, different models can be treated as alternative working

hypotheses [38, 73] that can be subjected to a variety of tests. If a model fails an evaluation

test, we can use this as an opportunity for learning [13, 38]: through diagnosing the reason

why the model failed, improvements to the model are possible [83, 90, 131]. If a model

passes our evaluation tests, we have increased our confidence in the model’s ability and we

can provide better justification for using the model during our research and work.

1.1.3 Modelling uncertainty

Model performance is influenced by various sources of uncertainty and these complicate

our search for finding the most appropriate model for a given place. Three main sources of
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FIGURE 1.1. Overview of the main uncertainties influencing hydrologic modelling.
Observations of the natural world inform all our modelling efforts, but do
not necessarily fully overlap with reality. Data uncertainty, parameter uncer-
tainty and model structure uncertainty are consequences of this mismatch
between reality and observations of reality.

uncertainty can be distinguished [e.g. 40, 43, 214, 248, 335]: data uncertainty (including

uncertainty in initial and boundary conditions), parameter uncertainty and model structure

uncertainty (Figure 1.1). Further uncertainties are natural variability [248] and ”unknown

unknowns” [91] which we ignore for the moment, because these are respectively not

directly related to the modelling process and impossible to quantify. There is considerable

debate within the hydrological community about the nature of uncertainty and appropriate

terminology [e.g. 41, 227]. This section contains a practical, rather than philosophical,

discussion about the uncertainties that complicate hydrologic modelling.

Data uncertainty originates from inaccurate or incomplete measurements of the real

world. Data uncertainty can impact both model use through input data, initial conditions

and boundary conditions, and model set-up when it influences model calibration [e.g.

43, 248]. Models generally require observations of the real world (e.g. time series of

climatic forcing, digital elevation maps showing topography) in order to be used. However,

these measurements are fragmented in space and time (not everything is measured

everywhere and always), have their own unique properties (e.g. relating to the relevant

time scale for observations and time-variable error properties of different observations)

and are also susceptible to a variety of errors [214]. For example, the natural world is

continuous but measurements might be taken at fixed locations (e.g. rain gauges) and

spatial heterogeneity is thus not fully represented in the measurements. This can lead

to a mismatch in scale between available data and model domain. The catchment is an
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often used scale of interest for models, but data might only be (accurately) available in a

certain radius around each measurement station, measurement stations themselves tend

to be scattered with unmonitored space between them, and measurement stations are

completely absent in the vast majority of locations [55]. Measurement conditions can be

non-stationary and introduce bias (e.g. a stream that overflows its banks and thus partly

bypasses the discharge measurement station during high flows leads to underestimation of

high flows). There may also be malfunctions of the equipment and human-induced errors

[214].

Parameter uncertainty originates from difficulties with estimating the most appropri-

ate parameter set for a given model and catchment. Ideally, parameter values would be

estimated directly from field measurements [e.g. 309] but effectively translating field ob-

servations to model parameters has not yet been realised (partly due to the scale mismatch

of data availability and model domain mentioned before). Model parameters are therefore

often calibrated: i.e. parameter values are iteratively changed until a sufficient similar-

ity between observations and model simulations is obtained (or some other convergence

criterion is reached). This weakens the connection between model behaviour and reality,

because there is no guarantee that the obtained parameter values relate to the actual

conditions in the catchment. In the best case scenario, parameter sets are identifiable

[94, 332], unique [34, 94], and stable [94]. Identifiability indicates that each parameter has

a clearly defined optimal value. If this is not the case, the model might be insensitive to

this parameter’s value or the parameter’s optimal value might be difficult to determine

due to interactions with a another parameter. In either case, it is difficult to determine

a parameter set that fulfils the uniqueness criterion. Uniqueness requires that the data

constrains parameter values into a single time-invariant parameter set for a catchment (i.e.

parameter values that are not conditional on the calibration conditions). Stability indicates

that (small) errors in the input data (sometimes referred to as dis-informative data [51])

should not have disproportionate (large) impacts on the optimal parameter values. Further

complications arise through over-parametrisation [10, 254], in cases where the degrees of

freedom of the model (i.e. the number of parameters) are higher than what can be robustly

estimated from the data. Parameter estimation is also affected by the geometry of the

model’s parameter and objective function space, which can be unnecessarily complex due

to non-robust numerical implementation of the model [72, 150, 160, 167], and the choice of

optimization method used to search this space [16, 248].

Model structure uncertainty originates from lacking or incomplete knowledge about

how the real world should be represented by a model, and from the fact that even the most

complex model will still be an abstract representation of reality [239]. Even though ideally

the conceptual model of a catchment is based on a perceptual model, the perceptual model
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is often based on local observations that cannot directly explain catchment-wide behaviour.

This makes it difficult to relate local observations, catchment-averaged descriptors and

model behaviour [104]. It has been suggested to instead focus on emergent processes at

the catchment scale rather than scaling up local observations [6, 53]. However, incomplete

knowledge about hydrologic processes, whether they are local and detailed or catchment-

wide emergent processes, makes it difficult to represent them in a model. Examples are

the functioning of preferential flow paths and travel time distributions [39], the often high

non-linearity between precipitation and runoff [53] and the apparent non-stationarity

of hydro-meteorological systems [53, 220, 333]. Non-stationarity in particular leads to

modification of the physical structure of the system over longer time scales and the model

structure that best represents the catchment can thus change over time [113, 128]. There

is also little agreement on how different hydrologic processes can be mathematically

represented [104, 148].

Summarizing, the availability and accuracy of observations in a catchment influence our

view of how a catchment works and thus which processes we think a model of the catchment

should include. However, we are usually unable to directly measure any parameters used in

mathematical descriptions of these processes and must thus calibrate the model parameters

instead. Unfortunately, obtaining appropriate parameter values through calibration is often

difficult (in part due to data uncertainty) and we are thus faced with a trade-off between

a model that uses as few parameters as is justified by the data, and a model that uses

enough parameters to include all the hydrological processes we think are relevant. Data

availability is limited for many places and the number of required model parameters (for

all important processes) regularly exceeds the number of parameters that can be robustly

estimated. This leads to a situation where models can be calibrated to optimize a score on a

given objective function but this mathematical optimum is not necessarily the hydrological

optimum [10, 109, 148]. That is, model calibration gives parameter values that maximize

some efficiency metric, but are not necessarily a representation of catchments processes

(conditional on the - doubtful - assumption that model parameters relate to catchment

processes in the first place). However, because models are intended to be a representation of

reality, a good model should produce the right results because it accurately represents the

catchment processes (i.e. catchment-appropriate parameter values), rather than being a

chance result of a mathematical curve-fitting exercise (i.e. parameter values that maximize

some efficiency score) [37, 73, 125, 148, 173, 176].

The impacts of multiple uncertainties on the modelling process are generally assessed

through sensitivity analysis (SA) and uncertainty analysis (UA) methods. The main benefits

of SA and UA include include being able to learn about the data being used [51, 159], learn

about the model as a whole [106] and to produce more reliable and robust simulations by
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FIGURE 1.2. Set-up of the ideal model inter-comparison study. This framework
results in generalizable understanding of model structure uncertainty.

providing ranges of possible simulations (through ensembles of parameter sets, or models,

or otherwise) rather than deterministic values [159]. These methods can for example

be used to quantify the uncertainty in input data [e.g. 165, 166, 214, 267], streamflow

observations [e.g. 213, 214], parameters [e.g. 43, 47] and model structure [e.g. 128, 267,

325, 330]. For the specific purpose of understanding model structure uncertainty and the

differences between various model structures, multi-model comparison frameworks have

been developed. Examples include the Modular Modeling System [MMS, 191], the Rainfall-

Runoff Modelling Toolbox [RRMT, 331], the Framework for Understanding Structural

Errors [FUSE, 78], SUPERFLEX [103, 162] and the Structure for Unifying Multiple

Modeling Alternatives [SUMMA, 75, 76].

1.2 Problem analysis

As evident from Section 1.1.3, the three uncertainty aspects that complicate hydrologic

modelling have received considerable attention. However, it is not yet common practice to

address model structure uncertainty in hydrologic studies, there is no clear guidance that

helps choosing an appropriate model, and in many studies the choice for a given model is

motivated by concerns other than the appropriateness of the model for a given catchment

and study purpose [2]. It is known that different model structures behave differently,

but how differences in model structures lead to differences in simulation capabilities is

currently not well understood [73, 75, 78, 128] and research on this topic so far has been

fragmented and lacks an overarching methodology [128].

Figure 1.2 shows a general set-up of a model inter-comparison study, which would

increase our understanding of model structure uncertainty. Because it is logically impos-

7



CHAPTER 1. INTRODUCTION

sible to test all possible combinations of models and catchments [227], we must perform

studies using a reduced sample of models and catchments. For generalizable results, this

sample must be representative of the full range of catchments and models we are inter-

ested in. Additionally, the methodology must ensure that our research questions can be

unambiguously answered. This ideal framework therefore specifies the use of a represen-

tative sample of catchments and models and accounts for other sources of uncertainty

that might interfere with the assessment of model structure uncertainty. Many models

exist [e.g. 298] and various authors have investigated between-model differences [e.g.

88, 98, 111, 143, 185, 222, 254, 293, 325]. These studies have taken place over a wide range

of catchments, but little is known about how well these catchments cover the global range

of hydro-climatic conditions. No study as of yet has been able to follow a framework as

shown in Figure 1.2 and model structure uncertainty assessments have been quite ad hoc

and poorly reproducible [65]. This thesis focuses on structuring this process and clarifying

model structure uncertainty, specifically that of lumped conceptual hydrological models

(also known as bucket models).

1.2.1 Representative sample of testing conditions

Box 1 (Figure 1.2) states that a representative sample of testing conditions is required. It

is prohibitively expensive to test model performance using the entire world as a sample. In

many cases it is also impossible to evaluate the model simulations against observations,

because the observations simply do not exist: climate data is generally available at the

global scale but not necessarily at the spatial or temporal resolution of interest, streamflow

observations are unavailable for many catchments worldwide, and hydrological states and

fluxes inside the catchment (e.g. extent of saturated catchment area, actual evaporation)

are rare. We thus need to select a subset of the world where the necessary observations

are available as our testing sample, such that we can extend findings from this subset to

the wider world. However, hydrology struggles with organizing the catchments we work

in in a meaningful way. Studies generally report some characteristics of the catchment(s)

under consideration (e.g. mean precipitation, average slope) but we have no framework

that tells us the full possible range of these characteristics, nor is it clear which of these

characteristics are meaningful to report. We need a catchment classification system that

lets us structure and organize results from different studies, but so far this does not exist

[209, 334].

There are two distinct challenges in creating a catchment classification. The first is the

lack of high-quality global data on potentially relevant characteristics. Hydrologic similar-

ity can be expressed as a 3-dimensional space with axes for climatic forcing, catchment
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structure and catchment response [334]. Climatic data are commonly available on the

global scale, although the spatial and temporal resolution varies [e.g. 226]. Measurements

of streamflow response are increasingly available on larger scales, but are by no means

available everywhere [e.g. 93, 127, 317], and measurements of water quality and internal

catchment states and fluxes are rare outside of densely monitored experimental catchments

[e.g. 64]. Data on the catchment structure (e.g. local topography, geology, vegetation, soils,)

tend to suffer from large uncertainties and are fragmented across different institutes [e.g.

4].

The second challenge is a lack of understanding of what makes catchments different or

similar. At a certain (high) level of detail, all catchments are structurally different from

each other (i.e. ”uniqueness of place” [34]). However, this is in part an issue of scale and

relevance, because not all differences are meaningful at the scale of interest. Instead of

looking at only the catchment structure, emergent processes have been suggested as an

important feature of defining catchment similarity [145].

There is currently little theory underlying the choice of metrics used to summarize a

catchment’s climatic conditions, catchment attributes and streamflow response, and how

these three aspects influence each other. Recent studies have relied on ad hoc selection

of data and used statistical clustering methods to generate groups of similar catchments

[e.g. 79, 187, 275, 276]. These results show that catchments can exhibit similar streamflow

behaviour but the relation with catchment attributes is not conclusive [3]. Given the lack

of clarity on this subject, we limit the scope of this thesis to catchments with limited

human influences. The presence of dams, reservoirs, abstractions etc. interferes with the

natural tendency of hydrological processes and obscures the relationship between climatic

forcing, catchment structure and catchment response. Although predictions of future water

resources are most critical for regions with human populations, understanding hydrologic

similarity in natural catchments is an easier place to start.

1.2.2 Representative sample of models

Box 2 (Figure 1.2) states that a representative sample of models is required. We already

constrain the scope of this thesis to lumped conceptual models only, but this still leaves

an enormous variety of models too choose from. Several authors have attempted to create

overviews of hydrological models in books [e.g. 296–298] and wiki-pages [e.g. 341] but the

simple conclusion is that maintaining such a list is impossible. There are too many models

[337] and even though we can in theory perfectly know and define the ”model space” [37],

in practice this is impossible.

Therefore, selecting a representative sample of models for a model inter-comparison
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study is not straightforward. Ideally, we would create a model classification scheme akin to

the catchment classification scheme mentioned earlier. However, model classification faces

the same challenges as catchment classification: we don’t have the data to quantify the full

”model space” and we don’t understand well enough what makes models similar or different

in a practical sense [73, 75, 78, 128]. It is also highly plausible that whether models are

functionally different depends on the testing conditions used. In a climate with no rain

and runoff, every model that produces no runoff is effectively the same. In a similar vein,

in a snow-dominated catchment a model with a snow component will be more appropriate

than a model without one, but in a catchment without an annual snow pack these two

models might be functionally equivalent. Of course these examples are obvious, but they do

highlight that what consists of a representative sample of models is partly conditional on

the climatic conditions under consideration. It is plausible that this reasoning also applies

to catchment attributes and the objective functions used to quantify model performance. It

is thus critical to frame model selection both in terms of model space (i.e. which models are

available) and in terms of the conditions the models are intended to represent.

No such framing currently exists and lacking an objective way to select representative

model samples, model comparison studies to date have generally used a large selection

of existing model structures [e.g. 254, 293], ensemble approaches that decompose a few

different model structures into several constitutive components and combine these into

various new models [e.g. 78, 335] or relied on generic model elements (i.e. fluxes, stores,

delays) to generate new model structures [e.g. 103, 184]. Other approaches include step-

wise model building (expanding a simple model) [e.g. 309] or stepwise model breakdown

(simplifying a complex model) [e.g. 154]. These approaches have generated various new

insights, but these focus mainly on the fact that models are different and that model choice

can strongly influence study conclusions. We are not yet near true understanding of why

models respond differently to climate inputs [73, 75, 78, 128] and whether models can

be grouped according to their respective response to inputs. The main challenge remains

unchanged: it is still unknown what the most appropriate model structure for a given

problem is [78, 128].

1.2.3 Model comparison framework

Box 3 (Figure 1.2) indicates a need for model comparison frameworks. These frameworks

are used to ensure objective testing of model structures. They provide the flexibility needed

to isolate individual modelling decisions and to test different hypotheses about model

behaviour [78, 103]. Most importantly, they ensure that the comparison is objective, by

standardizing those elements of model set-up (e.g. coding of individual model elements,
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numerical implementation, calibration algorithm) that can create artificial differences

between models if they are not strictly controlled for. Using a model comparison framework

ensures that any differences in model outcome can be attributed to only differences in the

model structures [65, 103].

Various model comparison frameworks have been created. Obvious candidates for

use in this work are RRMT [331], FUSE [78] and SUPERFLEX [103, 162] because each

incorporates a suite of coded conceptual models, which are the focus of this thesis. At the

same time, each framework has its own limitations which might reduce their usefulness

for the work here. RRMT does not separate model equations (i.e. the Ordinary Differential

Equations that describe the change in model stores) and the numerical approximation used

to solve these equations. The chosen numerical scheme is Explicit Euler, which is a common

choice in hydrologic modelling but has several drawbacks [e.g. 72, 160, 285]. However, the

combined implementation of model equations and numerical scheme requires a thorough

overhaul of RRMT if a different numerical approximation method were to be used. FUSE

and SUPERFLEX avoid these numerical complications. FUSE uses four ”parent models”

to provide equally plausible modelling options for the store configurations in the upper and

lower soil layer, and for a variety of fluxes. The user chooses which equations to combine

into a new model. However, the overall model structure is fixed (into an upper soil layer

connected to a lower soil lower layer) and expanding this to allow for a wider variety of

model structures requires significant changes to the code. Similarly, SUPERFLEX uses a

single ”master model” in which the user turns components on or off. This master model

is based on a given hypothesis of how hydrologic behaviour can be expressed as a model

and changing the code to allow different hypotheses (e.g. introduce a new connection

between two stores that is not in the master model) would again require significant work.

Summarizing, the choice of model comparison framework is as much dependent on the

research questions one is interested in as the choice of any model is. Different frameworks

are suitable for different questions and the final choice requires careful consideration.

1.2.4 Methodology that accounts for other uncertainty sources

Box 4 (Figure 1.2) specifies some concerns regarding the study’s methodology. As men-

tioned, three main sources of uncertainty influence hydrological modelling: data uncer-

tainty, parameter uncertainty and model structure uncertainty. To properly investigate

model structure uncertainty, we need a way to mitigate the impacts of data and parameter

uncertainty. Various methods have been developed that do this [e.g. 185, 214, 248]. How-

ever, a major concern in the ideal study set-up is the practical impact of large sample sizes.

Uncertainty analysis generally involves increased sampling of e.g. different parameter
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values or permutations of the input data. Combined with our aim to use a representative

sample of catchments and a representative sample of models, available time and our (lim-

ited) ability to summarize, comprehend and visualize the study results are real concerns.

This is a known limitation of large-sample studies, where one has to sacrifice study depth

(e.g. properly account for parameter and data uncertainty) for study breadth (e.g. using a

large sample of places and models) [130]. The objectives in this thesis are thus necessarily

shaped by what is reasonably possible in a limited amount of time.

1.3 Aims and objectives

Better understanding of the models we use to predict future water resources is critical but

we have identified that the ideal model comparison study that could facilitate this under-

standing is currently out of reach. The aim of this thesis is to address some of the current

shortcomings in large-sample model comparison studies and improve our understanding

of model structure differences. We limit the scope of this thesis to lumped conceptual

hydrological models and to catchments with limited human influences. Ultimately, we hope

to contribute to answering a critical question in hydrologic modelling: what is the most

appropriate model structure for a given objective? This aim divides the research in this

thesis into different parts, centred around the following broad questions:

1. What is a representative sample of testing conditions?

2. What is a representative sample of models?

3. How can we ensure a flexible framework for testing conditions?

4. What can we learn about model structure uncertainty?

It is unlikely that we can resolve all challenges involved and we can therefore only

address these questions in part. The following research objectives contribute to answering

these questions:

• Given that data is lacking for a full catchment classification but that climate data is

widely available, create a way to quantify the global hydro-climate. This will give us

a meaningful way of assessing how representative any given sample of catchments is

compared to the global variety of hydro-climatic conditions.

• Review the currently available conceptual hydrologic models and create a testing

framework that allows objective comparison of different lumped model structures.
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Given that (too) many models currently exist, it is unlikely that our review can cover

all relevant model structures. Therefore our testing framework must be available to,

and extendible by, other researchers.

• Perform an exploratory large-sample model comparison study, (i) quantifying model

structure uncertainty across a wide range of catchments, (ii) quantifying differences

between the models in our sample in simulating streamflow under a range of different

conditions and objective functions, and (iii) connecting both aspects to investigate

whether certain models are inherently better suited for certain places or for certain

objectives and why that is the case.

1.4 Dissertation outline

Figure 1.3 summarizes the contributions of this work in the context of the ideal model

structure comparison study in Figure 1.2. Contributions of individual chapters are briefly

described in this section.

Representative sample of 
models

Representative sample of 
testing conditions

Model-comparison framework
Large-sample 

testing 
methodology

Understanding of 
model structure 

uncertainty

Data Tools Methods Results

Current options do not suit our 
needs: alternative developed in 
Chapter 4

Knowledge is lacking to define 
this sample: new insights 
gained from Chapter 5

Knowledge is lacking to define 
this sample: partly addressed in 
Chapter 2, 3

Several questions answered in  Chapter 5, 
but many questions and challenges 
remain. Data uncertainty treated as a 
constant for all models, parameter 
uncertainty ignored due to sample size

FIGURE 1.3. Overview of how the work in thesis contributes to improving our
ability to perform large-sample model structure comparison studies. Because
defining a representative sample of models is currently not possible, an
iterative procedure might be adopted where results based on a large sample
of models inform the selection of a smaller representative model sample in
future work.
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Chapter 2: Hydrologic climate classification This chapter introduces a new

hydrologically-informed climate classification scheme. This climate classification scheme

shows how climatic forcing can be summarized in an informative but parsimonious way,

shows how global streamflow regimes relate to the global climate patterns, and can be

used to quantify how much of the global hydro-climate any sample of catchments covers.

Chapter 3: Global precipitation modality Our hydrologic climate classification does

not specifically account for the number of rainfall seasons regions experience. This chapter

investigates how common the occurrence of more than one rainfall season is on a global

scale, to assess whether this is a major limitation of the scheme developed in Chapter 2.

Chapter 4: Multi-model comparison framework The modelling process is complex

and models can only objectively be compared in a model-comparison framework that en-

sures that all models are coded in the same way. This chapter introduces a new open-source

modelling framework for this purpose. It is based on a review of conceptual hydrologic

models and currently includes 46 different model structures.

Chapter 5: Model structure uncertainty The new modelling framework is used as

part of a large-sample study. This chapter shows the results of calibrating 36 models for

streamflow simulation in 559 catchments that cover a wide variety of hydro-climates, using

three different objective functions that focus on high, low and combined flow simulation.

Chapter 6: Conclusions and outlook This chapter summarizes the work performed

and outlines several promising avenues for further research.

Appendix A Supporting analyses for Chapter 2, showing the result of manual quality

control of each of the 1103 catchments used, development of an empirical variant of the

standard Wilcoxon statistical test, extended significance testing results and an overview of

the geographical spread of the 1103 catchments.

Appendix B Supporting documentation for the modelling framework presented in Chapter

4, giving detailed descriptions of the equations that make up each of the 46 models, an

overview of how these model equations are implemented as re-usable modular computer

code, a similar overview for the 7 different routing schemes implemented in the modelling

framework, and tables with generalized parameter ranges that can be used to ensure fair

model comparison studies.

Appendix C Supporting information for Chapter 5, showing the changes in climatic

conditions between model calibration and evaluation periods, additional figures that repeat
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analysis done in the main chapter for different objective functions, and correlation figures

that summarize the relationships shown in the individual scatter plots.

Appendix D Additional publication that appeared as a blog post on the website of the

Young Hydrologic Society.

Appendix E Author’s CV.

1.5 Note on definitions

Confusingly, within the hydrologic literature two different meanings are attached to the

phrase ”conceptual model”. The first uses the term to mean a distinct step in the building

process of any model: it is used to either mean the theoretical understanding of how

a given catchment functions [e.g. 128] or the collection of equations that quantify this

understanding [e.g. 40, 72]. The second refers to a specific type of hydrological model [e.g.

167, 309], also know as bucket-style models [e.g. 301], with at their core a soil moisture

accounting routine (they are in fact also occasionally referred to as Explicit Soil Moisture

Accounting models [p.16 in 40]). In this thesis, ”conceptual model” is used to mean bucket-

style hydrologic models, unless explicitly stated otherwise.
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HYDROLOGIC CLIMATE CLASSIFICATION

This chapter has been published as a research article in Water Resources Research. Slight

modifications have been made to better fit the general layout of this thesis. We acknowledge

the comments from Martyn Clark and three anonymous reviewers, that helped to clarify

and improve this chapter.

Citation: Knoben, W. J. M., Woods, R. A., & Freer, J. E. (2018). A quantitative hydrologi-

cal climate classification evaluated with independent streamflow data. Water Resources

Research, 54. https://doi.org/10.1029/2018WR022913

Abstract

Classification is essential in the study of natural systems, yet hydrology has no formal

way to structure the climatic forcing that underlies hydrologic response. Various climate

classification systems can be borrowed from other disciplines but these are based on

different organizing principles than a hydrological classification might need. This work

presents a hydrologically informed way to quantify global climates, explicitly addressing

the shortcomings in earlier climate classifications. In this work, causal factors (climate) and

hydrologic response (streamflow) are separated, meaning that our classification scheme

is based only on climatic information and can be evaluated with independent streamflow

data. Using gridded global climate data, we calculate three dimensionless indices per

grid cell, describing annual aridity, aridity seasonality, and precipitation-as-snow. We

use these indices to create several climate groups and define the membership degree

of 1,103 catchments to each of the climate groups, based on each catchment’s climate.
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Streamflow patterns within each group tend to be similar, and tend to be different between

groups. Visual comparison of flow regimes and Wilcoxon two-sample statistical tests on

16 streamflow signatures show that this index-based approach is more effective than the

often-used Köppen-Geiger classification for grouping hydrologically similar catchments.

Climate forcing exerts a strong control on typical hydrologic response and we show that at

the global scale both change gradually in space. We argue that hydrologists should consider

the hydro-climate as a continuous spectrum defined by the three climate indices, on which

all catchments are positioned and show examples of this in a regionalisation context.

2.1 Introduction

Classification is an essential step in understanding natural phenomena, as evidenced by

globally agreed-upon classification schemes in many different disciplines and a strong

expressed need for a catchment classification scheme in hydrology [e.g. 209, 334]. Well-

known classification examples are the periodic table that chemistry uses to group elements

with similar properties [e.g. 278] and Linnaean taxonomy as used in biology to group

organisms based on similarity of their characteristics [e.g. 89]. Classifying phenomena

into groups with similar characteristics allows transfer of knowledge from well-observed

members of the group to members about which less is known. In hydrology, defining

similarity between catchments plays a crucial role in enabling predictions in ungauged

basins [334].

In complex systems as are common in earth sciences, classification is not straightfor-

ward [209]. Many different classification schemes are available, each with a different focus

or underlying principles, and the choice for one is often motivated by a study’s particular

needs. All classification schemes however aim to group those elements of a system that

are similar, and separate them from groups of other elements that are in some significant

way different from the others. For example, soils can be classified with an international

system based on their diagnostic horizons, properties and materials [151], but various

national systems are used as well [e.g. 21, 140, 307]. Lakes can be classified on a variety of

characteristics; e.g. thermal properties [108, 149], mixing properties [193], trophic status

[61] or a combination of hydrological, chemical and biological properties [156]. Similarly,

different schemes are available to classify vegetation, e.g. by using plants’ survival strategy

[126], or as a hierarchical scheme based on leaf cover area akin to Linnaean taxonomy

[327], or as a function of dominant prevailing climate known as life zones [142].

Catchments are a common object of study within hydrology. The need for a catchment

classification scheme [e.g. 209, 334] is usually interpreted as defining catchment similar-

ity based on hydrological response, presumed drivers of the streamflow response, or a
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combination of both. Wagener et al. [334] lists possible options for classification based

on hydro-climatic region, catchment structure or functional catchment response. Hydro-

logic similarity (i.e. grouping similar catchments) follows from mapping the relationship

between these aspects. An early example of a global classification of river regimes [133]

defines 15 different typical annual streamflow patterns across the globe. Increases in data

availability have allowed more detailed regional studies covering e.g. Australia [170] and

the US [15]. Looking just at causal factors underlying streamflow, examples of regional

classifications exist based on soil characteristics [196] and climate [29]. Many studies

combine both approaches, using causal factors, such as average aridity, average catchment

slope and land use, together with streamflow characteristics, often in the form of stream-

flow signatures such as mean flow and slope of the flow duration curve, to group similar

catchments [e.g. 79, 187, 275, 276, 348]. Whereas a wide variety of metrics and models

are used to describe catchment structure and functional response, there seems to be at

least some consensus on how hydro-climatic aspects can be conceptualised: available water

(precipitation) and energy (temperature, evaporation) interact within the catchment to

control the water balance. Understanding of this principle has led to the Budyko-curve

on an annual scale [58] and shown the importance of within-year variation of climate [e.g.

219].

In catchment classification studies, climate is often considered in a basic form (e.g.

annual average aridity) or in direct relation to streamflow response (e.g. runoff ratio,

streamflow elasticity) but recent work shows that a more nuanced approach that describes

the influence of climatic input on typical flow regimes might be appropriate [3, 4, 29]. With

three dimensionless numbers that summarize the climate’s aridity, precipitation timing

and snowiness, typical flow regimes in the US can be classified into 10 distinct groups

[29]. Addor et al. [4] present an extended set of US catchments, including information

about each catchment’s climate (using three very similar indices), topography, soils and

vegetation. In later work [3], they correlate this information with streamflow signatures for

each catchment and find that climate, as expressed by the three indices, has the strongest

correlation with streamflow signature values for this set of USA data. Information about

climate, even expressed as three simple numbers, can thus be used to explain broad

streamflow patterns.

Several global climate classifications exist, but these are mostly bio-climatic in origin,

and thus do not explicitly include those aspects of climate regimes that are important

influences on hydrology. The original Köppen scheme (work by Köppen in the late 19th

and early 20th century) is for an important part based on observations of vegetation,

which could be used as a proxy for prevailing climate in times when large-scale climate

data was unavailable [250]. Köppen’s classification inspired several other classification
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schemes that tried to improve the correspondence between climate zones and observed

global vegetation patterns [117, 319, 320]. These schemes use hierarchical rules, mainly

based on temperature and to a lesser extent precipitation thresholds, to define climatic

zones. They are still regularly updated with new data [e.g. 27, 183, 250]. Vahl’s climatic

divisions [268] attempt to address the arbitrary nature of Köppen’s thresholds and certain

mismatches between the classification scheme and observations, by using fewer hierar-

chical divisions and introducing precipitation probabilities. Holdridge Life Zones [142]

and the Thornthwaite classification [319] move away from using mainly temperature and

precipitation for classification, although they are still bioclimatic in origin. Holdridge

uses a combination of precipitation, potential evapotranspiration, humidity, altitude and

latitude to define biomes. Thornthwaite attempts to address the perceived arbitrary na-

ture of the Köppen-Geiger thresholds and to create a more rational classification scheme.

Thornthwaite uses climate observations from the USA to create a classification approach

that relies on a precipitation-effectiveness index, a moisture index, thermal efficiency index

and the absolute value of potential evapotranspiration. However, despite these improved

alternatives, the original Köppen-Geiger scheme remains widely used today.

Currently, the main available climate classifications suffer from significant shortcom-

ings when applied to hydrology. Haines et al. [133] tested the ability of the Köppen-Geiger

classification to predict typical global runoff regimes and found some relationship between

climate zones and flow regimes, but also considerable spread in the data: a flow regime

might occur in many climate zones, and a single climate zone might contain many flow

regimes. Based on recent work [3, 29] in the USA, we can hypothesise that this is likely

because Köppen-like climate classification schemes lack hydrologically relevant detail, in

the form of the interaction between water and energy availability, climate seasonality and

snow pack formation. Thornthwaite’s classification comes close to addressing this, but

is only based on USA data and untested in its accuracy for predicting global hydrologic

regimes. Additionally, Thornthwaite already noted that “variations in the heat factor of

climate do not generally result in the development of sharply defined boundaries between

vegetation formations” and that “the boundaries separating tropical, mesothermal, mi-

crothermal and subpolar climates are vague and ill-defined” [318], as a point of potential

improvement for classification schemes. Traditionally, classification maps include sharp,

unrealistic, boundaries between different classes. More recently, advances in data sciences

[e.g. 286] have led to more nuanced classification schemes in hydrology where catchments

can belong to several classes at the same time, but with differing degrees of membership to

each class [e.g. 276].

This study addresses an identified need for a global hydrologically-informed climate

classification scheme, that (i) corresponds to observed similarities and differences in

20



2.2. DATA

observed hydrological response, (ii) avoids introducing artificial boundaries between classes.

We choose to address climate alone, without consideration of catchment characteristics, as

a first step to developing a more general catchment classification.

2.2 Data

This study first uses gridded climate data to summarize the world’s climate with several

climate indices and uses these to define different climate clusters. Then, 1103 catchments

are associated with the appropriate climate clusters using the catchments’ locations and

boundaries, after which streamflow data from the catchments is used to evaluate the

hydrological usefulness of the climate clusters.

2.2.1 Climate data

This study uses monthly average climate values from the CRU TS v3.23 data set [137],

for the climatic variables precipitation (P), number of rain days per month (N, defined as

days with P > 0.1mm), temperature (T) and potential evapotranspiration (Ep). These data

are available at a 0.5° x 0.5° resolution for the Earth’s land areas, excluding Antarctica.

The data set offers so-called primary variables, which include P, N and T, that are a re-

analysis of station observations and existing climatology. The secondary variables, such

as Ep, are estimated from the primary variables. Ep is estimated with a variant of the

Penman-Monteith formula [7, 137].

Ep values are missing for approximately 7.3% of global land cells due to incomplete

coverage of the wind speed data needed for Ep estimation. Ep values are highly spatially

correlated (average autocorrelation coefficient at 1 grid cell distance = 0.99 in latitude

direction, average 0.72 in longitude direction) and most of the missing values are bordered

by cells for which Ep values are available. Nearly all missing values can be filled with

a weighted nearest-neighbour approach, apart from several small islands that are too

isolated for correlations to be a useful approach.

For this study, P/T/N/Ep data for 1984-2014 are averaged per month to find a typical

year (e.g. the typical January P is the average of all 30 January P values from 1984 to

2014), to approximate the typical annual variation in all four climate variables.

2.2.2 Streamflow data

The Global Runoff Data Centre [316] manages a large database of river discharge data.

This study uses a subset of data known as Pristine River Basins that contains daily

streamflow data for 1182 gauging stations world-wide for the study period 1984-2014. The
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FIGURE 2.1. Location and boundaries (if available, circles with size relative to
catchment area are used when not) of GRDC Pristine catchments. Catch-
ments for which no boundary data is available are only used if the aproximate
catchment length is smaller than or equal to a climate correlation threshold
length and removed from the analysis if larger. Colouring indicates approxi-
mate start of the hydrological year, here defined as the 120 days before the
time of the 61-day average maximum flow.

catchments in this dataset are asserted to have minimal development and river regulations

and diversions. In addition, records for each catchment cover at least 20 years (overview

of record lengths in Appendix A.2.3) and exceed a certain accuracy threshold [315]. We

applied quality assurance procedures to the data and as a result 79 catchments were

excluded (details in Appendix A.2.2), leaving 1103 stations for use in this study.

Catchment boundary information is available for 718 of the GRDC Pristine Basins

[314]. The remaining 449 catchments in the Pristine Basins set vary in area from 0.69 km2

to 4,680,000 km2, with median 596 km2. Larger catchments can cover many grid cells and

without information on the catchments’ boundaries it is impossible to tell how varied the

climate within each catchment is. Therefore we include only those catchments with an area

smaller than or equivalent to the approximate area of 9 grid cells, for which the climate at

each gauge’s location might reasonably be considered representative of the climate in the
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whole catchment. This limits both the uncertainty about the prevailing climate in these

catchments, and the number of catchments that must be excluded from further analysis

(details in Appendix A.2.1).

We create a typical streamflow year for each catchment from daily streamflow data, by

taking the median flow for each Julian day (e.g. the typical Jan-1 flow refers to the median

of all available Jan-1 for a particular place). Using the median flow decreases the influence

of extreme events in the data and is preferable to the mean because of the skewed nature

of flow variability. We also align all flow records in time so that t=1 coincides with the

start of the hydrological/water year for each location, because it is easier to visually assess

similarities between flow patterns when distinctive features such as the seasonal flow

peaks are aligned. Catchments are spread across both hemispheres, so hydrological years

are preferable to calendar years for comparison purposes. By convention the water year in

the Northern Hemisphere runs from October to September [e.g. 24, 322] however for the

Southern Hemisphere both April to March [24] and July to June [324] are in use. While

conventions such as these can be useful on a small scale, on a global scale these are too

general. Therefore, we use a 61-day moving window to find the period of maximum flow in

a typical year for each catchment, and assume that the water year has started 120 days

before this point (Figure 2.1). Both numbers are determined through trial-and-error and

were found to give the best results (in terms of ease of visual comparison of flow similarity)

for the data used in this study, but should be revisited if a more comprehensive data set is

available.

2.3 Method

This study creates a climate classification scheme that summarises global climate patterns

as a causal factor of global streamflow response. Causal factors (climate) and response

(streamflow) are separated, meaning that our classification scheme is based on only cli-

matic information and can be independently evaluated with streamflow data. First, we

summarize the global climate with several gridded dimensionless indices (section 2.3.1).

These climatic indices are clustered into fuzzy groups with a fuzzy c-means clustering

algorithm (section 2.3.2) to define several climates that are representative of the land

surface. We then evaluate the correspondence of the climatic clusters with global stream-

flow response, testing the hypothesis that locations within a cluster experience similar

flow patterns while locations in different clusters show different streamflow regimes. We

evaluate this both qualitatively through comparing typical seasonal flow patterns within

and between climate clusters, and quantitatively through streamflow signature values

and statistical tests. We compare the effectiveness of our climatic clustering with that
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of the Köppen-Geiger classification, testing the hypothesis that our scheme improves on

another often-used method (section 2.3.3). Last, we investigate the potential of abandoning

climate classes or clusters and show the benefits of viewing the global hydro-climate as a

continuum rather than a patchwork of different classes (section 2.3.4).

2.3.1 Dimensionless climate indices

The climate at any given location influences the processes near the land surface and those

concerning precipitation and evaporation. The balance between available water and energy

determines whether water will remain on land or be returned to the atmosphere. Periods

with lower temperatures can lead to snow pack formation, and precipitation intensity can

influence whether water will infiltrate into the soil or become surface runoff. However,

precipitation and temperature (and by extension potential evapotranspiration) patterns are

variable throughout the year and precipitation and temperature peaks are not necessarily

in phase. It is thus plausible that our indices need to cover not only annual averages, but

also provide a measure of the seasonal variability of climate variables. This leads to the

hypothesis that, in addition to the total annual precipitation, five different climate aspects

might be hydrologically relevant [e.g. 3, 4, 29, 219, 346, 347]: (i) the annual average

aridity, specifying the ratio of available energy and water; (ii) the seasonality in aridity,

indicating if seasonal water and energy distributions are in or out of phase; (iii) the fraction

of precipitation that falls as snow, indicating whether precipitation will be (temporarily)

stored on the land surface; (iv) the average rainfall intensity, showing whether rainfall will

exceed infiltration rates and thus produce surface runoff; and (v) the seasonality of rainfall

intensity, indicating whether infiltration excess runoff is more likely to occur in certain

parts of the year.

We limit this work to aridity and snow indices for several reasons. First, although

precipitation intensity can vary significantly across the world, its impact on local hydrology

(i.e. whether rain infiltrates or becomes surface flow) depends on local catchment charac-

teristics. Accounting for global differences in soil types and other catchment characteristics

is considered beyond the scope of this work. Second, the CRU TS climate data set lacks

information on the sub-monthly time scale, and precipitation intensity can thus only be

quantified by dividing the monthly precipitation totals by the number of rain days per

month (days with P ≥ 0.1mm). Both the annual average and seasonality of this approximate

intensity are strongly inversely correlated with the annual average aridity (Spearman

rank correlation coefficient R < -0.8 across all land cells) and thus are unlikely to add any

significant new information at the global scale. Similarly, we considered using the absolute

annual average precipitation [mm/y] as a metric, but this is strongly correlated with annual
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average aridity (R = 0.74). Several tests during clustering (not shown for brevity) confirm

that these metrics indeed add very little independent information at the global scale. Third,

earlier work [3, 4, 29] shows that average and seasonal aridity indices and one snow index

are strongly related to seasonal streamflow patterns, without considering rainfall intensity

or absolute precipitation totals.

Using CRU TS climate data averaged into a typical year (section 2.2.1), we calculate

three climate indices for each 0.5° land cell. We use a version of Thornthwaite’s moisture

index MI (eq. 2.1) [343] to express average aridity (Im, eq. 2.2) and its seasonality (Im,r, eq.

2.3), and a numerical implementation of the fraction of annual precipitation that occurs as

snowfall ( fs, eq. 2.4) [347]. These indices have been used for climate classification before

but not in this particular combination (e.g. Willmott & Feddema [343] for MI; Berghuijs et

al. [29] for fs). These indices describe the processes of interest using bounded intervals,

which is useful for interpretation and clustering analysis.

MI(t)=


1− Ep(t)

P(t) , i f P(t)> Ep(t)

0, i f P(t)= Ep(t)
P(t)

Ep(t) −1, i f P(t)< Ep(t)

(2.1)

Im = 1
12

t=12∑
t=1

MI(t) (2.2)

Im,r = max (MI(t))−min (MI(t)) (2.3)

fs =
∑

P (T(t)≤ T0)∑t=12
t=1 P(t)

(2.4)

P(t), Ep(t) and T(t) are mean monthly observations of precipitation, potential evapo-

transpiration and temperature in the CRU TS data set. T0 is a threshold temperature

below which precipitation is assumed to occur as snow, here set at 0°C. The annual aver-

age moisture index Im has range [-1, 1] where -1 indicates the most arid (water-limited)

conditions and 1 indicates the most humid (energy-limited) conditions. The moisture index

seasonality Im,r has range [0, 2] where 0 indicates that there are no intra-annual changes

in the water/energy budget and 2 indicates that the climate switches between fully arid

(Im = −1) and fully saturated (Im = 1) within a single year. fs has range [0,1] where 0

indicates no snowfall in a year and 1 that all precipitation falls as snow. Note that fs =

0 does not imply that the temperature does not go below the threshold temperature T0,

but merely that during this period no precipitation occurs. The indices rely on similar

information and express phenomena with similar underlying causes (e.g. seasonality of

aridity might be caused by a strong summer-winter contrast, which may also increase
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the likelihood of snowfall) so some correlation between the indices is unavoidable. The

Spearman rank correlation between Im and Im,r is 0.27, between Im and fs 0.27, and

between Im,r and fs 0.37. These are considered to be sufficiently independent for use in

this study, because each index has a different physical interpretation.

2.3.2 Selecting representative climates for comparison with the
Köppen-Geiger classification

Traditional climate classification schemes use distinct boundaries between climate classes

[e.g. 117, 183, 250, 320], but Thornthwaite already pointed out that climates change

gradually in space and distinct boundaries do not do this justice [318]. However, sharp

boundaries are a logical and inescapable result of the classification method that underlies

Köppen-like classifications. In this work, we argue that the global hydro-climate should

be seen as a continuous spectrum and that imposing boundaries on this spectrum should

generally be avoided. However, for illustration purposes we use an automated fuzzy c-

means clustering algorithm [52] to select several representative points in the climate

space described by our three indices. Each location (grid cell in the global data) belongs

with a certain degree of membership to each representative climate, based on the simi-

larity of each location’s climate index values to the climate in each representative point.

Memberships can vary from 0 (the location does not belong to this representative climate

at all) to 1 (the location’s climate is the same as the representative climate), with the

possibility for a location to belong simultaneously to several representative climates. Using

these representative climates, it is straightforward to compare how similar the hydrologic

regimes are for locations with the same Köppen-Geiger class compared to locations with

the same representative climate.

While the fuzzy c-means algorithm can objectively create clusters from data, it does

require human input in finding the appropriate settings and determining the appropriate

number of clusters. We use Matlab’s c-means implementation (function fcm) in a multi-

start framework to account for the inherent randomness resulting from its use of random

initial cluster centroids. Before clustering, we standardize the values of our climate indices

so that each has a range [0,1], to avoid biasing the clustering procedure towards the index

with the largest range. The fuzzy c-means procedure uses a so-called fuzzifier parameter to

allow data points to belong to different clusters through fuzzy membership. This parameter

can be used to decrease the influence of data points that are near the boundaries between

two clusters when determining the cluster centroid positions [286]. This value is kept at

its default value of 2. The number of representative climates was determined through

trial-and-error, by performing the clustering procedure with 2 to 30 clusters and analysing
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the resulting climate clusters. We did not use any river flow data to either create or help

choose the number of climate clusters. We chose 18 clusters for communication purposes in

this study, because this provides an adequate amount of detail but does not create overly

specific geographically-focussed clusters. However, we emphasise that our key goal is the

identification of climate indices for global hydrology, rather than the set of 18 clusters.

2.3.3 Effectiveness of hydrologic grouping based on representative
climates versus Köppen-Geiger classes

We use GRDC river flow data for 1103 catchments to compare how well hydrologic regimes

can be grouped based on our representative climates. We also group the same catchments

based on their Köppen-Geiger climate class, to assess whether our approach improves upon

this alternative. The success of this grouping exercise is determined with a qualitative

approach to investigate typical streamflow patterns per group and a quantitative approach

to investigate differences between streamflow signatures in each cluster. First, we define

the membership degree of 1103 catchments to all 18 representative climates, using the

catchment-averaged values of our three climate indices. For catchments without boundary

information we assume that the climate at the outlet location is representative of the whole

catchment. We can then show the typical flows per representative climate, using every

catchment’s membership degree to determine how closely the climate in each catchment

resembles that of each representative climate. We assess the typical flows in a qualitative

way.

We also assess the differences between flows per representative climate quantitatively

through streamflow signatures and statistical tests. Olden and Poff [237] categorize 171

streamflow signatures into five main types relating to flow event magnitude, frequency,

duration, timing and rate of change, distinguishing between high and low flow conditions

within the first three categories. This study uses 16 signatures that cover these 5 categories

(Table 2.1), mainly following recommendations from Kuentz et al. [187] and Addor et al.

[4]. For each catchment, we calculate a signature’s value per hydrological year and then

take the average of these yearly signature values. We repeat this for all 16 signatures.

Correlation analysis (not shown here for brevity) indicates that each signature contains

some independent information although there is duplication of information as well. We con-

sider this acceptable for our purposes because the signatures are only used to evaluate the

two classification schemes and are not part of the classification methods themselves. The

classification thus remains unbiased by potential duplicate information in the streamflow

signatures.

Our null hypothesis is that there are no significant differences between signature
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values calculated for flows in different representative climates. The alternative is that

there are differences between signature values of flows per representative climate, which

indicates that our climate classification scheme can tell us something informative about the

hydrologic response. The Wilcoxon two-sample test [336, 342] is a suitable statistical test

to compare a signature’s values between two climate clusters, because the test assumes no

knowledge of the distribution and parameters of the total population, and allows comparing

samples with very different sizes. It allows testing of distributions (e.g. the values of a

signature calculated for 70 catchments in climate I and 115 catchments in climate II)

with H0 : µ1 = µ2. We have modified this test to allow weighted samples as well (details

in Appendix A.3.1). We apply this test to all climate cluster pairs and for all signatures.

The sheer number of tests makes it likely that we will find significant differences through

chance alone. We therefore investigate the number of signatures for which a climate pair

is statistically different: if a pair is different for 16 out of 16 signatures, we can assume

that typical streamflow for these pairs is different. If a statistical difference is only found

for 1 out 16 signatures, it is more likely that we have found this result through chance. We

repeat this analysis on the catchment grouping created based on the Köppen-Geiger class

of each catchment and comment on the differences.

2.3.4 Beyond catchment grouping and towards climatic assessment on
a continuous spectrum

In addition to being a quantified way to communicate the climate of hydrological systems,

these indices can be used as a rational way to transfer hydrological information from gauged

to ungauged basins. This can also be a starting point to define more powerful hydrological

similarity metrics, eventually resulting in a hydrological catchment classification scheme.

In the second part of this paper we briefly explore the predictive power of the three climate

indices. Each catchment is treated as ungauged in turn, and we use climatic similarity

as a very preliminary flow prediction method. Climatic similarity is expressed as those

catchments that (1) belong to the same Köppen-Geiger class, (2) belong to the same climate

cluster, or (3) are nearby based on standardized Euclidean distance in climate index space

(so that every index has range [0,1]) expressed by the Im, Im,r and fs indices. In the

latter case, we investigate both (3a) distance-based weighting of all catchments and (3b)

distance-based weighting of the five catchments that are climatically the most similar to

the “ungauged” catchment. We estimate both the flow regime of each “ungauged” catchment

and values for the 16 signatures. The accuracy metric used to compare estimated and

observed flow regimes is the Kling-Gupta Efficiency (KGE) [129]. The metric used to

compare estimated and observed signature values is the absolute error.
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Table 2.1: Overview of the hydrological signatures used in this study. Signatures are
calculated for every hydrological year available for each catchment, after which we take the
mean for each signature across all hydrological years available for a catchment. Numbering
in the leftmost column refers to Figure 2.7.

Signature Unit Description Source

Magnitude

1 Mean flow [mm/d] Mean of daily flow -
11 Q5 [mm/d] 5th percentile of daily flow [187]
12 Q95 [mm/d] 95th percentile of daily flow [187]
14 Skewness [-] Mean divided by median of daily flow [187]
2 Baseflow index [-] Baseflow fraction of total flow [132]
4 High flow discharge [-] 90th percentile divided by median

flow
[187]

Frequency

10 No flow frequency [-] Normalized average frequency of no
flow (number of days with 0 flow)

-

8 Low flow frequency [-] Normalized average frequency of low
flow (number of days with flow <
0.2*mean)

[237, 339]

6 High flow frequency [-] Normalized average frequency of
high flow (number of days with flow
> 9*median)

[237,
339]

Duration

9 No flow duration [-] Normalized average duration of no
flow (number of consecutive days
with 0 flow)

-

7 Low flow duration [-] Normalized average duration of low
flow (number of consecutive days <
0.2*mean)

[237, 339]

5 High flow duration [-] Normalized average duration of high
flow (number of consecutive days >
9*median)

[237,
339]

Timing

16 Half flow date [-] Fraction of year when 50% flow oc-
curs

[81]

15 Half flow interval [-] Fraction of year in which 25th to 75th

percentile flow occurs
[81]

Rate of change

3 Flow duration curve
slope

[-] FDC slope between 33rd and 66th per-
centile in log space

[348]

13 Rising limb density [d−1] Number of rising limbs divided by
time that hydrograph is rising

[275]
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2.4 Results

2.4.1 Approximating climatic gradients with representative climates

Figure 2.2 shows that values for the three climate indices (annual average aridity, Im; the

seasonal change in aridity, Im,r; and the fraction of precipitation as snowfall, fs) generally

change gradually in space (Figure 2.2c-e for individual indices, 2.2b for a map combining

all three indices into a single global overview). The presence of mountain ranges leads

to relatively sharp transitions in climate (e.g. Canadian Rockies, Andes, European Alps,

Himalayas). Large areas of deserts are visible in red. These are arid locations with a

high potential evapotranspiration compared to available precipitation, only small seasonal

changes in this ratio and no snowfall. Very wet regions (dark green) are centred mostly

around the equator. These are areas with a continual water surplus and low snowfall.

Traditionally this climate is associated with tropical rain forests but other areas (e.g.

Scotland, Japan, northern New Zealand) show similar index values, even if the underlying

climatic drivers are different in absolute terms. Regions in bright green and yellow show

transitional zones between constantly arid and constantly wet regions. The transitional

zones experience strong seasonality in their water-energy balance, either through clearly

defined wet and dry seasons (seasonal rain), through summer and winter patterns (seasonal

changes in potential evapotranspiration) or a combination of both. Blue and pink regions

indicate places where nearly all precipitation occurs as snowfall. Figure 2.2a further shows

that climates with low seasonality concentrate near both ends of the aridity (Im) axis

(bright red, dark green) and that annual average aridity is not necessarily an accurate

representation of month-to-month aridity, especially in cases where the annual water and

energy budgets are approximately balanced (Im = 0).

In section 2.4.2, we will investigate whether our index-based classification is better

suited for grouping hydrologically similar regimes than the Köppen-Geiger classification

is. For a straightforward comparison with the Köppen-Geiger classes, we here define 18

representative climates in our continuous climate-index space. These give a representative

sample of the climate on the land surface. Figure 2.3a shows that 18 clusters approximate

the climatic gradients in Figure 2.2b well, but the continuous variation of climate in space

makes it impossible to create completely homogeneous classes where every location has a

climate that strongly resembles that of the representative point it belongs to. Each grid

cell is coloured based on the climate cluster that the cell belongs to with the highest degree

of membership, here called the “main cluster” for each cell. Figure 2.3c shows how high

this main membership degree is. A membership threshold of 0.5 is commonly seen as the

cell belonging exclusively to its main cluster [286]. Large areas of high membership degree
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FIGURE 2.2. Overview of average climate index values calculated for 1984-2014.
(a) Climate index legend to help interpret figure 2.2b, showing how values
on the three climate index axes determine the final RGB colour. The 3D-plot
includes all land cells shown in Figure 2.2b. The coloured square shows
the colour scheme at 7 pre-determined points in 5 different Im, Im,r planes
along the fs axis. (b) World map with each 0.5° resolution grid cell with local
average aridity (red), aridity seasonality (green) and fraction precipitation
as snowfall (blue) determining the RGB colour scale. (c-e) Plots of average
aridity Im (red), aridity seasonality Im,r (green) and fraction of precipitation
as snow fs (blue) respectively, showing how each index varies globally.

values are visible (blue) and mainly occur away from cluster boundaries. However, the

gradual nature of the changes in climate indices makes it difficult to classify all cells in

homogeneous clusters, as evidenced by the large number of cells that have membership

degrees <0.5 for their main cluster. These cells can be thought of as belonging to multiple

clusters simultaneously. With 18 clusters, slightly over half (50.4%) of all land cells have

membership degrees >0.5 for their main cluster.

Climate cluster centroids (Figure 2.3b) are not distributed uniformly in the climate

index space and the centroid marker size (larger size indicates that a higher number of

land cells have that cluster as their main cluster) shows that certain climates are more

prevalent than others. The centroids approximate the pattern of all individual cells in

climate index space (Figure 2.2b), showing where this pattern is dense and comparatively

sparse. This is a result of the clustering procedure trying to maximise within-cluster
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FIGURE 2.3. Results of fuzzy c-means clustering performed on climatic indices.
(a) The cluster to which a cell belongs with the highest degree of membership
(here called main cluster). (b) Location of climate cluster centroids in climate
index space, with marker size corresponding to the number of cells for which
a cluster is the main cluster. (c) The degree of membership with which each
cell belongs to its main cluster; membership of each cell to the remaining 17
non-main clusters is by definition lower than its membership to the main
cluster. (d) Number of cells for which a cluster is the main cluster (bar height)
and degree of membership distribution per cluster (bar shading, legend in
Figure 2.3c).

similarity and between-cluster differences. In the absence of clearly defined clusters/groups

in the data, as is the case with the gradual changes in climate, the algorithm will struggle

to draw appropriate boundaries between clusters and reverts to positioning the cluster

centroids in response to point density. Figure 2.3d quantifies the number of cells for which

each climate cluster is the main cluster and the degree of membership to the main cluster.

Hot and very arid deserts (clusters 1 and 2) are both common and well-defined. Clusters

16 and 17 are on the other extremes (being very wet and snow-dominated respectively)

and are also well-defined but contain fewer cells. In most clusters however, membership

degrees are generally lower (< 0.5, red shading), because locations tend to lie between

several representative climate points. Clusters 1, 2, 16 and 17 are relatively well-defined

because their climates can be roughly approximated with terms as “always” and “no” (e.g.

climate 1: always arid, no seasonality and no snow). The other clusters are all positioned at
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some non-extreme point on each climate index axis, and this makes it impossible to draw

distinct appropriate boundaries between different climatic zones in these cases.

2.4.2 Effectiveness of hydrologic grouping

2.4.2.1 Comparison of climatic gradients and Köppen-Geiger classes

The proposed new climate indices do not map directly onto Köppen-Geiger classes. The

subclasses of the tropical (A) and arid (B) Köppen-Geiger main classes are relatively

distinct from one another in the climate space defined by indices Im, Im,r and fs, whereas

the subclasses of the colder temperate (C), continental (D) and polar (E) classes cover

relatively similar regions in climate index space (Figure 2.4). This can be seen around the

equator, in North-Africa, the Middle-East and most of Australia, where the Köppen-Geiger

map (Figure 2.4b) is similar to the climate index map (Figure 2.4a). These regions are

either very dry (through a combination of high temperatures and low precipitation) or

very wet (resulting from very high precipitation) and see virtually no snowfall. These

characteristics are captured well through the threshold approach in the Köppen-Geiger

classification scheme. The hydrologically relevant nuances of precipitation differences in

colder climates are not well captured in the Köppen-Geiger scheme. This can be seen in

e.g. the Eastern USA, Alaska, Greenland, most of Northern Europe and Russia, where the

Köppen-Geiger boundaries are nearly exclusively determined by temperature thresholds.

Different degrees of relative water availability and snow pack formation are lost in this

classification. While the thresholds are an appropriate choice to define vegetation zones,

as is the original goal of the Köppen-Geiger scheme, this approach is less relevant from

a hydrological point of view. The climate indices contain more hydrologically relevant

information, as the following sections will show.

2.4.2.2 Qualitative comparison of grouped streamflow regimes

Grouping the typical flow regime of all catchments according to the catchments’ climate

indices (Figure 2.5) shows that seasonal flow patterns gradually evolve along climate

gradients. Clusters 4, 14 and 15 are similar with respect to the aridity seasonality Im,r and

snow fs metrics but are progressively less arid (Im metric). As a result of this increased

water availability, the clusters’ typical flow patterns look similar but average flows become

progressively higher. Clusters 1, 2, 3, 4, 5 and 6 are similarly arid (Im) and low on snow ( fs)

but their aridity is progressively more seasonal (Im,r). The latter clusters thus occasionally

experience a water-surplus, even if on average these places are severely water-limited. As

a result, the average flow is low for all clusters, but a progressively higher seasonal flow
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FIGURE 2.4. Comparison of the Köppen-Geiger climate classification and the
global distribution of climate index values. (a) Global distribution of climate
index values, as shown in Figure 2.2b. (b) Köppen-Geiger climate classifica-
tion [250]. (c-e) Box plots of average aridity (Im), seasonality of aridity (Im,r)
and fraction of precipitation as snow ( fs) values per Köppen-Geiger class.

peak can be seen. Clusters 6, 8, 11, 12 and 13 have similar values for the snow ( fs) and

seasonality (Im,r) metrics but are progressively less arid. As a result of this increased water

availability, average flows become progressively higher and the main flow peak (likely

resulting from snow melt since fs > 0 at the cluster centroids) becomes progressively more

pronounced.

Typical flow features such as average flow magnitude and flow peak height and shape

are distinctly different between clusters, but climate can only inform us about average

seasonal patterns. For example, the flow peak shape in snow dominated climates (e.g.

clusters 13, 12, 11) shows a much sharper rise and decline than elsewhere, presumably due

to snow storage and melt processes. In warmer but not water-limited climates (e.g. 16, 15,

10) the flow peak rises and declines gradually, presumably as a result of seasonal changes in

water surplus. However, within each cluster a wide variety of flows are included and what

is true on average for the cluster, is not necessarily true for a single specific catchment. In a

catchment classification context, climate is an important driver of hydrologic processes but

the influence of the catchment itself (e.g. topography, vegetation, anthropogenic influence)

cannot be ignored. This is however considered beyond the scope of this work.
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FIGURE 2.5. Typical flow regime for catchments grouped by climate cluster with
the membership-weighted weighted median in black and the weighted 25th

and 75th percentiles in red. Only catchments with a minimum membership
of 0.10 or higher are shown, with darker lines corresponding to higher mem-
bership degrees. Includes all 1103 unique catchments, although catchments
may appear in multiple climate plots. Title colouring corresponds to climate
cluster centroids (figure 2.3a, 2.3b). Clusters 17 and 18 are not shown because
the data lacks climate-specific flow records for these clusters.

Figure 2.4 showed that Köppen-Geiger main classes A and B show strong correspon-

dence with our more arid and wet representative climates (e.g. climates 1-4, and 10, 15, 16

respectively). This pattern repeats with respect to grouping flow regimes by Köppen-Geiger

classes (Figure 2.6): grouped flows for subclasses in the tropical (A) zone are very similar

to the flows in representative climates 16, 15 and 10 (compare Figure 2.5), which have low

aridity and no snowfall. The flows in the arid (B) subclasses are similar to our arid clusters

1, 2, 3 and 4. However, subclasses of C, D and E climates do not seem to group flow patterns

in any meaningful way. To aid in this comparison, each flow record is coloured according

to our catchment-averaged climatic index values and within main classes A and B the

colouring seems relatively consistent. In climates C, D and E however, catchments with

very different hydro-climates are lumped in each subclass and don’t reveal any obvious

typical flow pattern. E.g. subclass ET (polar tundra) contains flow patterns ranging from
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being nearly zero all-year round (orange), to very high, snow melt-dominated regimes

(blue-green). The snow melt regimes are not as obviously grouped in the Köppen-Geiger

classes as they are in the climate-index clusters (compare Figure 2.5 and Figure 2.6).

FIGURE 2.6. Typical annual flow for all 1103 catchments per Köppen-Geiger
climate class with the median (black) and 25th and 75th percentiles (red).
Typical flows from individual catchments are coloured by the catchment’s
climate index values as used with the climate index approach.

2.4.2.3 Quantitative comparison of grouped streamflow signatures

We use catchment membership degrees to create a weighted average streamflow signature

value for 16 different streamflow signatures for each of the 18 representative climates.

Statistical tests show that 145 out of the 153 possible combinations of two representative

climates are statistically different at a 0.01 significance level. Another 7 out of 153 pairs

are different at a 0.1 significance level and only a single pair shows no significant difference

(p-value of 0.28; Figure 2.7d). Figure 2.7a shows an example of weighted average signature

values per representative climate, here showing results for the average_flow signature

(overview of all signatures is given in Appendix A.3.2). A clear gradient is visible in

the climate space, with the signature value increasing primarily as aridity decreases and

secondarily as seasonality increases. Figure 2.7b shows the results of an empirical Wilcoxon

test to determine the statistical significance of the differences in average_flow signature
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values between all representative climates. This procedure uses the average_flow signature

value for each catchment, coupled with the catchment’s membership degree (Figure 2.7c)

to each representative climate, to estimate an empirical p-value (details in Appendix A.3.1).

Most representative climates have statistically different average_flow signature values at

a 0.01 level (dark blue shading), but not all climate pairs are significantly different based

on this single signature (white and red shades). Figure 2.7d shows the lowest p-value

per climate pair across all 16 signatures and shows that 148 out of 153 climate pairs are

different at the 0.05 significance level (bottom-left section of the figure). The top-right part

of the figure shows the number of signatures for which the empirical p-value is below 0.05.

The prevalence of darker shades indicates that climate pairs are statistically different for

multiple signatures, indicating that our clustering approach can indeed group catchments

with similar flow characteristics.

Climate pairs 6-8, 7-8, 6-7, 4-5 and 17-18 are not statistically different on any of the

signatures. If there are statistical differences to be found, either these differences manifest

in flow characteristics not captured in the chosen signatures, or we lack climate-specific

(high membership) flow records to construct an image of how a typical flow pattern for each

representative climate looks. It is unlikely that the signatures are poorly chosen because

they are adequate to distinguish between all other climate pairs (Figure 2.7d). Lack of

climate-specific flow records is a likely explanation in the case of representative climate 18

(only 4 catchments with membership > 0.1; Figure 2.7c) and 17 (only 1 catchment has mem-

bership > 0.1; Figure 2.7c). Similarly, climates 6, 7 and 8 are close together in climate space

and membership degrees of all catchments to each of these three representative climates

are quite similar (Figure 2.7c). It is likely that the 1103 catchments lack the diversity

that would allow the signatures to distinguish better between these three representative

climates. This same explanation might be applied to climates 4 and 5. The alternative to

these explanations is that there are no statistical differences between the typical flows

of these representative climates; i.e. our assumption that the typical flow regime should

be different between these representative climates, because the catchments associated

with each climate have different hydro-climates, is false. However, given the success of the

method with other climate pairs that are close together in climate space (e.g. 10-14, 11-12,

1-2), lack of climate-specific flow records seems the more likely explanation.

Even though the Köppen-Geiger classification has more climate classes than our

climate-index method, analysis of signature values shows that grouping catchments by

their dominant Köppen-Geiger climate class leads to fewer distinguishable differences

in typical flow patterns (Figure 2.7). Using the average_flow signature as an example,

catchments in classes A and B seem to be sorted well according to their signature values

(Figure 2.7e.) This is not the case in classes C, D and E, where the boxplots for subclasses
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FIGURE 2.7. (a-d) Quantitative differences between grouped flows regimes using
climate clusters, (e-h) quantitative differences between grouped flows regimes
using Köppen-Geiger classes. (a, e) Value of the average_flow signature
per climate cluster/Köppen-Geiger class. Similar plots for all signatures in
Appendix A.3.2. [a] Values are calculated as a weighted average from all 1103
catchments, with weights being each catchment’s membership to a cluster.
Numbers refer to climate clusters. [e] Box plot colour refers to the legend in
Figure 2.4b. (Caption continues on next page.)

tend to overlap (e.g. for Cfa, Cfb, Dfb and Dfc, all of which include 90 catchments or more).
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FIGURE 2.7. (Continued from previous page.) (b, f) Statistical tests to determine
whether values of the average_flow signature per cluster/Köppen-Geiger class
are statistically different. Blue shades show p < 0.05, white shades show 0.05
< p < 0.10 and red shades show p > 0.10. [b] Results of an Empirical Wilcoxon
test (Appendix A.3.1) used with cluster grouping. [f] Regular Wilcoxon test
used with Köppen-Geiger grouping. (c, g) Membership degree of catchments
(x-axis) to climate cluster/Köppen-Geiger classes (y-axis). [c] Darker shades
show that a catchment belongs more strongly to a given cluster, and thus
contributes more to the average cluster signature value. [g] All memberships
to Köppen-Geiger classes are 1. (d, h) Bottom-left shows the lowest p-value
from all 16 signatures, i.e. the largest significant difference between two
groups. The number in each cell shows for which signature this lowest p-
value is found (see Table 2.1 for numbering). Top-right grey shading shows for
how many out of 16 signatures we find a significant difference (p < 0.05). See
Appendix A.3.3 for p-values of the individual signatures that were used to
create the top-right grey shading. [d] Results of cluster grouping. [h] Results
of Köppen-Geiger grouping.

A Wilcoxon test confirms that statistically significant differences occur less frequently for

the classes C, D and E than for classes A and B (Figure 2.7f). Using all signatures, we

can find statistically significant differences in signature values between most Köppen-

Geiger classes (Figure 2.7h). Where we do not, we likely lack enough catchments in our

dataset for that subclass to make proper statistical inferences (i.e. Cwb, Cfc, Dwc; Figure

2.7g). However, in many cases in classes C, D and E we only find statistically significant

differences in a few out of all 16 signatures (compare grey shades in Figure 2.7d and

Figure 2.7h). This supports the idea that the temperate (C), continental (D) and polar (E)

Köppen-Geiger classes are not well suited to grouping hydrological flow regimes.

2.4.3 Beyond climate grouping and towards a continuous
representation of climates

Figure 2.8a shows the results of treating each catchment as ungauged in turn and using

a climatic similarity approach to estimate the flow regime of this “ungauged” catchment.

Comparing the effectiveness of Köppen-Geiger classes and our climate clusters, the clusters

are somewhat more effective for estimating typical flow regimes. However, it is not our

intent to advocate replacing one set of climate groups with another. Avoiding groups/-

clusters and using hydro-climatic similarity only, can have strong benefits compared to

the classes/clusters approach. Using just 5 climatically similar basins to estimate the

“ungauged” flows shows a significant increase in the number of basins where KGE values of
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FIGURE 2.8. Estimating flow regimes through various definitions of climatic
similarity, treating all 1103 catchments as if they were ungauged in turn.
(a) Overview of sorted KGE values for estimated typical flow regimes, based
on various similarity metrics. KGE values below 0 are not shown for clarity.
(b-d) Geographical location of catchments and KGE value for estimated flow
regime for each. Catchments with KGE < 0 shown in grey. [b] Estimation
of “ungauged” catchment as the weighted daily mean of the regimes in
the 5 climatically most similar catchments. [c] Estimation of “ungauged”
catchment as the daily mean of the regimes in the same Köppen-Geiger class.
[d] Estimation of “ungauged” catchment as the daily mean of the regimes in
the same climatic cluster.

the estimated regime exceeds 0. Quality of the flow estimates does depend on the number

of samples used: using climate-weighted records from 1102 catchments to estimate each

“ungauged” catchment leads to worse results than using either Köppen-Geiger classes or

climate clusters. In these cases, most catchments are dissimilar from the “ungauged” one

and these flow records dilute the estimate through sheer numbers (even if any individual

catchment has a low weight). Using a small number of climatically similar basins over-

comes this issue (within this data set, climatic similarity consistently outperforms climate

clusters when fewer than 150 catchments are used to estimate any “ungauged” regime –

the best results are obtained when 3-10 climatically similar catchments are used).

A similar pattern is revealed when climatic similarity is used to estimate signature

values for “ungauged” catchments (Figure 2.9). Climatic similarity of a few catchments to
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FIGURE 2.9. Cumulative Distribution Functions of absolute errors in signature
value estimation. Signatures are estimated by treating each catchment as
ungauged in turn and using climatic similarity to find donor catchments.
Signature values from the donor catchments are averaged to estimate the
signature’s value in the “ungauged” catchment. Climatic similarity is ex-
pressed as belonging to the same Köppen-Geiger class (orange), the same
climate cluster (light green), or as Euclidean distance in climate index space
expressed by the Im, Im,r and fs indices. In the latter two cases, the estimated
signature value for the “ungauged” catchments are based on distance-based
weighting of all catchments (red) or the five catchments that are climatically
the most similar to the “ungauged” catchment (dark green).

the target catchment generally gives the lowest errors across the ensemble of catchments.

However, there is considerable spread in performance between the various signatures.

Estimates of signatures associated with the magnitude of various parts of the water balance

(e.g. average flow, q5, q95) and duration and frequency of high/low/no flow events seem

to benefit the most from using index-based similarity over other options. Improvements

are smaller for signatures related to timing (t50, t25_75) and rate of change (rising limb

density, slope of the flow duration curve). Using climatic similarity of a few basins to

estimate signatures also occasionally results in a higher occurrence of larger errors than

other methods (e.g. for the skew signature). There is a delicate balance between using all

available catchments (weighted by climatic similarity) and using just a few climatically
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very similar catchments to create estimates. Using more catchments decreases the risk of

selecting a small number of climatically similar but structurally (in terms of vegetation,

geology, etc.) different catchments as donors, but also has the potential to dilute the

quality of estimate through the sheer number of dissimilar basins included. Using fewer

catchments can be very accurate due to the absence of dissimilar basins in the estimate, but

leaves one vulnerable for differences in the catchment structure which this approach does

not account for. In general, results seem to indicate that using climatic similarity expressed

through indices is a promising avenue for catchment classification. With refinement and

introduction of catchment characteristics into the procedure, this approach to transfer

knowledge between gauged and ungauged catchments can potentially be a powerful tool

for prediction in ungauged basins.

2.5 Discussion

This work presents a hydrologically-motivated alternative to traditional climate classi-

fication schemes, accounting for gradual changes in climate and the influence that has

on flow regimes and streamflow signatures. This addresses two criticisms of traditional

classification schemes used for hydrology, namely that their underlying motivation is

not hydrological and the subjective nature of the number of classes and their distinct

boundaries. Although we define 18 representative climates, these are intended as a com-

munication device only, to enable straightforward comparison between our method and

the Köppen-Geiger classification. Section 2.4.3 shows that clear benefits can be gained by

using a continuous hydro-climatic spectrum instead.

We find that three simple climate indices, that quantify a location’s average aridity

(Im), the seasonal range of water-versus-energy availability (Im,r) and the fraction of

precipitation that occurs as snowfall ( fs), are good indicators for finding similar hydrological

regimes on a continuous scale. To further illustrate this, Figure 2.10 shows the degree to

which all catchments belong to representative climates 16, 15, 9 and 8 respectively, and

how the typical flows that are strongly associated with each cluster look. From climate

16 to 15 to 9, the index values indicate progressively more arid climates, with increasing

aridity seasonality and constant (nearly zero) snowfall. The corresponding streamflow

regimes become lower on average as a result of increasing average aridity, with lower

low flows resulting from the increase in aridity seasonality. From cluster 9 to 8, aridity

and seasonality remain constant, but snowfall increases. The corresponding streamflow

regimes in climate 8 are similar to those in climate 9 (both on average and during low

flows) but have a much sharper high flow peak as a result of snow accumulation and

melt processes. This reinforces the hypothesis that gradual changes in climatic conditions
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lead to gradual changes in seasonal streamflow patterns and can be of importance during

catchment classification and catchment similarity studies. Most catchment characteristics

can be described on a continuous scale (e.g. area, elevation, slope, porosity, conductivity,

degree of vegetation cover, leaf area index) and these results suggest that climate should

be treated in the same way, rather than using discrete classes.

FIGURE 2.10. (a-d) Membership degree [0,1] of catchments to clusters 16, 15,
9 and 8 respectively (shading) and the catchment-averaged values for the
three climate indices that describe aridity (Im), seasonality of aridity (Im,r)
and fraction of precipitation as snowfall ( fs). (e-h) Typical streamflow in
catchments with climates similar to representative points 16, 15, 9 and 8
respectively (flows shaded by their degree of membership to the cluster) with
the weighted median (black) and 25th and 75th percentile (red).

Our findings are in line with earlier work on the relation between seasonal streamflow

patterns and climate [3, 4, 29] and with work on the suitability of the Köppen-Geiger

classification for mapping global flow regimes [133]. An important difference is that both

Berghuijs et al. [29] and Haines et al. [133] create climatic classes by grouping flow regimes,

whereas this work uses streamflow data only to evaluate the appropriateness of our climate

indices in relation to hydrologic regimes. The specific climate indices we have chosen are

slightly different from those used in Berghuijs et al. [29] and Addor et al. [4], but they

are intended to capture the same climatic aspects (aridity, seasonality and snow). Both

those studies are regional, focussing on the contiguous USA and our results indicates

that their general findings (i.e. that 3 climate indices can be used in defining hydrologic
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similarity) might be applicable on the global scale as well. Haines et al. [133] present a

global classification of river flows based on monthly streamflow data and find considerable

spread in how their proposed regimes relate to Köppen-Geiger classes, similar to our

results. Haines et al. [133] also compare their result to an earlier study by Beckinsale

[26], who adapted the Köppen-Geiger classification to apply to river regimes, and find that

“many of the ‘different’ regimes proposed by Beckinsale are in practice found not to be

significantly different at the world scale” [133]. This is a consequence of their choice to cap

the number of possible regime classes, such that all classes contained a significant (but

unspecified) number of observed flows and were consistent with known geographic features.

Analysing river flows on a continuous spectrum, such as proposed in this work, rather than

using discrete groups would avoid this problem and allow rarely occurring regimes to be

somewhere on this spectrum as well. However, we emphasize that our work is not intended

as a river regime classification scheme (which would necessarily involve accounting for a

catchment’s characteristics as well), but rather presents a hydrologically-relevant way of

accounting for the influence of global climates in such a catchment classification.

2.5.1 On geographical proximity of the catchments

Geographical proximity of catchments could explain similarity between typical flows as

well as climatic similarity, but the GRDC catchments are spread out enough in climatic

and geographical space that this plays only a small role. Typical correlation lengths for

hydrologic similarity are in the order of 100 to 200 km [e.g. 63, 122, 305]. Within the

GRDC data set, approximately 1.3% of catchment pairs are within this distance from

one another. This can explain certain similarities in flow patterns per climate cluster

(Figure 2.5), because geographically close catchments are likely to have high membership

degrees to the same representative climate(s). However, nearly all representative climates

include catchments with high degrees of membership from at least two continents and all

climates contain catchments that are far enough apart to ignore spatial correlation (see

Appendix A.4). In Figure 2.11, the typical flows in representative climate 15 are separated

by continent (columns) and degree of membership (rows). Within a column, flows are

relatively similar in pattern and size, which could be explained by relative geographical

proximity (although the catchments still span several 100s of kilometres). Across columns

however, especially above 0.50 membership degree, the flows on each of the four continents

are remarkably similar. This reinforces the idea that similar climatic conditions lead to

relatively similar flow patterns.
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FIGURE 2.11. Flows from GRDC catchments that have climate cluster 15 as
their main cluster (i.e. their highest degree of membership to any cluster is
to cluster 15) separated by continent (columns) and degree of membership
(rows). Flow shading corresponds to degree of membership of each individual
catchment to cluster 15.

2.5.2 On the choice of climate indices

Our climate indices express the annual average water and energy budget, the seasonality

of water and energy availability and the fraction of precipitation that occurs as snowfall.

These indices relate to similar climatic attributes as earlier regional studies in the US

[3, 4, 29] have used but we use different equations for aridity and the seasonality of aridity.

Our choices are motivated by both practical concerns and a need to find indices that confer

relevant information on a global scale. Indices on a bounded interval are easy to visualise

(in the case of our 3D climate index space, Figure 2.2a) and straightforward to normalize

to a [0,1] interval. The latter is useful for clustering analysis and regionalisation, both

within this study and for potential later work. Traditionally, aridity is often given as a

dryness index PET / P [e.g. 4, 29, 58] with range [0,∞ >. We adopt a moisture index

[102, 319] instead that expresses the same information but on a bounded interval [-1,1]

and thus fits our criteria better. We have chosen to use the term “seasonality of aridity”

over “precipitation seasonality” as is used in Berghuijs et al. [29] and Addor et al. [4].

The precipitation seasonality metric is based on an expression of local P and PET time
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series as sinusoidal functions and finding the difference between the timing of the P and

PET peak. This approach was originally developed in the context of snow modelling [347]

and thus assumes that PET follows a distinct summer-winter pattern due to temperature

seasonality. This assumption is appropriate in the context of the US but less so towards

the equator. Furthermore, precipitation seasonality only confers information about timing

and not relative volumes of P and PET. Therefore, we have opted to use the within-year

range of our monthly moisture index as a seasonality metric instead. This metric conveys

information about the possible states of water availability a location can go through, which

is relevant information on a global scale (although it has its own limitations, see section

2.5.3).

2.5.3 On study limitations

This study has several limitations which can be improved upon in later work. First, we

investigate the relation between climate and streamflow patterns by comparing averaged

monthly climate values over a 30-year period and median daily streamflow values. This ap-

proach smooths out outliers in both climate and streamflow data, but ignores interannual

variability. The results shown in this work form a good basis to investigate interannual

variability from. Second, the number of catchments could be increased. The GRDC catch-

ments were selected for their global nature and availability of daily flow records, but this

still leads to an under representation of African and Asian river systems. Additionally, to

keep as many catchments for the analysis as possible, we have not set an upper bound to

catchment size (provided that the catchment boundaries are known). It is possible that in

large catchments not every part of the catchment contributes equally to overall runoff. The

catchment-average climate that we use might thus not be representative of the climate in

the runoff generating part of large catchments. A larger database of river basins would

allow us to restrict the analysis to smaller catchments where this issue is unlikely to play

a role. Third, the seasonality of aridity metric (Im,r, eq. 2.3) can be improved. The metric

measures the range between the lowest and highest monthly aridity value but this range is

not necessarily symmetrical around the average aridity (Im, eq. 2.2) value. There is thus a

certain amount of non-uniqueness for each combination of Im and Im,r values. For example,

Im = 0 and Im,r = 1 can theoretically mean “this location is on average neither arid nor

wet, but reaches a very arid state at some point during the year”, “it is neither arid nor

wet on average, but has a large water-surplus at some point” and everything in between.

Extremely asymmetrical occurrences are unlikely though, because this would require

nearly balanced precipitation and potential evapotranspiration all-year round, apart from

a single extremely dry/rainy month. The impact of this effect is currently hard to judge but
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might be investigated through an increased number of catchments. Another limitation of

the Im and Im,r indices is that (unlike the sine curve approach of Milly, [219]) they do not

allow us to reconstruct the monthly times series of climate. Other choices of climate indices

could lead to improvements, but the results already look promising: by comparing just

three simple indices, we are able to locate catchments with similar seasonal flow patterns

and flow regimes. The climate index values can be used to define a quantitative measure of

“climatic similarity” between catchments in an easier, more succinct way than is possible

with earlier climate classification schemes.

2.6 Conclusions

Hydrology needs its own structured way to quantify climates, acknowledging that climates

vary gradually on a global scale, that distinct boundaries between climate classes do not

represent reality well, and that climate descriptors should explicitly including those climate

aspects that drive changes in hydrologic regimes. Until now, climate classification in hydrol-

ogy has either used classification schemes from other disciplines (e.g. the Köppen-Geiger

scheme) or used ad hoc methods (e.g. a within-study selection of metrics such as aridity or

streamflow elasticity). In this work, causal factors (climate) and streamflow response are

intentionally separated, meaning that the classification scheme presented here is based

on only climatic information and can be evaluated with independent streamflow data. We

define the hydro-climate on a global scale, using three dimensionless indices that describe

each location’s aridity, the seasonal changes in aridity and the fraction of precipitation

that occurs as snowfall. Using 1103 catchments, we show that typical streamflow regimes

and streamflow signature values correlate strongly with the local hydro-climate. Grad-

ual spatial changes in climatic conditions are accompanied by gradual changes in flow

regimes. In a climate classification context, using these three indices is a better way to

identify hydrologically similar catchments than the Köppen-Geiger classification. This is

partly because the Köppen-Geiger scheme is not hydrologically based and does not capture

the hydrologically relevant nuances of colder climates properly, and partly because the

Köppen-Geiger scheme uses discrete climate classes. The gradual changes in climatic

and streamflow conditions are not adequately captured using discrete classes. Instead,

it is more useful to view the global hydro-climate as a continuous spectrum on which

every catchment is located. Regionalisation of typical streamflow patterns and streamflow

signature values tends to be better when a small number of climatically similar basins

(i.e. close together in the climate space described by our climate indices) is used instead

of donors chosen based on either Köppen-Geiger or climate cluster grouping. Using the

work shown here, a catchment’s climate can be described with three simple numbers,
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which allows easier knowledge transfer between catchments and can form the basis of a

catchment classification method.
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GLOBAL PRECIPITATION MODALITY

This chapter has been published as a research article in International Journal of Climatol-

ogy. Slight modifications have been made to better fit the general layout of this thesis. We

acknowledge the comments from Wouter Berghuijs and three anonymous reviewers, that

helped to clarify and improve this chapter.

Citation: Knoben, W. J. M., Woods, R. A. and Freer, J. E. (2019). Global bimodal precip-

itation seasonality: A systematic overview. International Journal of Climatology, 39(1),

558–567, https://doi.org/10.1002/joc.5786
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Author’s note: this chapter addresses an open question concerning the hydrologic climate

classification presented in Chapter 2. The default interpretation of our climate seasonality

metric Im,r is an assumption of one wet season and one dry season per year. In regions with

bimodal rainfall regimes (two wet and dry seasons per year), this assumption would be

incorrect. Because the within-year distribution of precipitation can influence within-year

streamflow patterns and water availability, this might be an important factor to consider

in any hydrologic classification study. However, information on precipitation modality is

scattered across a large number of regional studies. We attempted to addresses the two-part

question: “(1) How common and where are regions with more than a single rainfall season

per year on a global scale and (2) should this be accounted for in hydrologically-informed

classification schemes?”

We identified that two rainfall seasons per year occur on a small, but not insignificant

fraction of the land surface. However, we could not locate streamflow data from regions with

strong bimodal rainfall seasonality and thus could not investigate the relationship between

bimodal rainfall and streamflow patterns. We can therefore answer the first part of our

research question but must leave the second part for future work. Our investigation into

the global occurrence of bimodal rainfall regimes is published as a stand-alone paper in the

International Journal of Climatology, where it builds logically on earlier work published in

the same journal [30]. The two papers deal with within-year climate patterns only and the

relationship with streamflow is not discussed in either. This chapter presents our paper in

its peer-reviewed form with only minor alterations relating to spelling and grammar. Its

relevance to the thesis as a whole is further discussed in Chapter 6.

Abstract

Global precipitation patterns lead to differences in seasonal distributions of rainfall be-

tween locations, in the form of alternating dry and wet seasons. Many locations experience

a single wet and dry season per year, but some studies report the occurrence of two wet and

dry seasons per year. This bimodal rainfall pattern is commonly associated with locations

within the tropics but is reported outside the tropics as well. However, this information is

fragmented and studies of bimodality are mainly restricted to monthly rainfall totals. Here

we use a gridded global data set and simple harmonic analysis to provide a systematic

overview of global bimodal rainfall and rain-day frequency. We find a good agreement

between the various regional studies concerning bimodal precipitation and our global

overview, showing that bimodal rainfall occurs on approximately 7% of the global land

surface. In the tropics, regions of bimodal rainfall totals (P) and regions of bimodal rain-day
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frequency (N) tend to overlap due to the presence of dry seasons that have zero precipita-

tion. Outside the tropics P and N are more independent which leads to complex within-year

patterns of precipitation intensity. A secondary outcome of our results is an improved

low-dimensional global parametrisation of monthly rainfall regimes. Our results provide

the first gridded global overview of bimodal rainfall patterns and show the usefulness of

simple mathematical approaches for detecting patterns in large data sets.

3.1 Introduction

Within-year climate patterns are a driving force behind environmental response in many

locations. For example, the seasonal distribution of annual rainfall is important for large

scale water resources planning and climate change impact assessment, because the sea-

sonal availability of water influences society’s need for reservoirs, flood defences, irrigation

schemes, ecosystem management plans, etc. Seasonal precipitation patterns are compli-

cated because they result from the interaction of large-scale climate factors with local

topography [e.g. 67, 139, 260, 308]. Precipitation patterns vary from non-existent in arid

regions, to having several alternating dry and wet seasons. We define this as a location’s

modality (unimodal being one wet and dry season per year; bimodal meaning two of each).

This study investigates the global occurrence of bimodal precipitation (P) patterns and the

accompanying number of rainfall events (N, days per month with P ≥ 0.1mm, hereafter

referred to as “rain-day frequency”).

Early attempts to characterize rainfall seasonality rely on scattered station observa-

tions and include the use of a seasonality index in Africa, Australia and the US [238] and

harmonic analysis on a global scale [146]. The seasonality index is unable to detect the

differences between unimodal and bimodal regimes, but harmonic analysis can make this

distinction. Later regional studies document bimodal precipitation patterns at a higher

level of detail, here summarized by geographic region. The scattered nature of information

makes it difficult to assess if, and unlikely that, this literature review covers all global oc-

currences of bimodal rainfall regimes. The tropics are relatively well-documented, although

studies use different time periods, data sets, definitions and methods. Most observed rain-

fall patterns here are not bimodal, but either unimodal, constant or non-existent. Bimodal

precipitation patterns outside the tropics seem similarly rare, although information on

these regions is even more fragmented. We did not locate any global study showing regions

of bimodal rain-day frequency in the literature, though this too has occasionally been

documented in local studies [e.g. 202, 294]. Note that different authors assign different

meanings to ’bimodal’. The term is either used to refer to alternating wetter and drier

seasons or to the occurrence of two rainfall peaks within a single wet season. Additional
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ambiguity stems from the lack of consistency in the definition of ’wet’ and ’dry’ seasons. For

example, the Pacific slope of the mountains of Panama experiences ”a rainy season from

late April-early May to late November, and a dry season in December-April, during which

2 [precipitation] maxima are witnessed in June and October” [260]. These precipitation

peaks are reportedly 5 months apart but are considered to belong to a single rainfall

season. The distinction between wet and dry seasons tends to be a relative assessment per

location, depending on a study’s purpose and method. In the short literature review in the

following section, the term ’bimodal’ is used to refer to alternating wetter and drier seasons

(as reported in the cited publications). Two rainfall peaks within a single wet season are

mentioned as such.

Bimodal precipitation in Latin and South America: Bimodal monthly precipita-

tion patterns in Meso- and tropical South America are limited to the western Andean

cordillera, central Colombia, the Venezuelan Andes, the Eastern Guyana Highlands [260]

and certain Guyana coastal regions [56]. The remaining regions have chiefly unimodal

precipitation patterns [e.g. 14, 234, 260]. Precipitation over Mexico and Central America

follows a dry winter, wet summer pattern. The summer season has a marked drop in

precipitation during July and August known as the midsummer drought, but these months

are still significantly wetter than the dry winter months [201, 338]. This is also the case

for Caribbean islands north of approximately 17oN [14]. Hsu & Wallace [146] also detect

bimodal seasonality in central and north-eastern Argentina. Africa: Herrmann and Mohr

[139] investigate the African continent and find bimodal precipitation patterns in east

Somalia, Ethiopia, Kenya and South-Sudan, confirmed by Owiti and Zhu [246]. Bimodal

precipitation also occurs in coastal Côte d’Ivoire, Ghana and central Madagascar, along

with dual peaks in a single wet season in adjacent regions [139]. Regions with one wet

season with two peaks also occur scattered around the equator [139]. Soliman [308] reports

bimodal rainfall in southern Egypt. Asia: The tropical area of India is chiefly unimodal

with a rainy season from July to September [247], although the south-eastern regions

receive their main rains from October to December [68]. Western Sri Lanka has bimodal

precipitation [203]. Chang et al. [67] find mainly unimodal patterns in South-East Asia.

Exceptions are the Malaysian peninsula, North-East Borneo and certain small islands on

the equator. Oceania: Precipitation patterns in northern Australia are unimodal [259].

Extratropics: Examples of bimodal precipitation regimes outside the tropics include west-

ern Arizona in the USA [138], the Pyrenees region in southern Europe [266], central Egypt

[308] and the Indus delta in Pakistan [264]. Sayemuzzaman and Jha [277] report examples

of major-minor wet seasons in coastal North Carolina. Keables [168] reports two wet peaks

during summer in the Upper Midwest USA, within a single wet season. Tang and Reiter

[313] further mention complex multi-modal (up to four annual peaks) rainfall patterns
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over the North American plateau, stretching from the Canadian Rocky Mountains south to

the Mexican border. Herrmann and Mohr [139] report bimodal rainfall in select regions in

South Africa, Botswana, Namibia and Mozambique, in addition to scattered regions with

two rainfall peaks in a single wet season. Global: the findings of Hsu & Wallace [146] are

generally confirmed by the regional studies cited above.

A variety of methods are used to determine whether bimodal rainfall occurs, including

visual assessment of time series [e.g. 14], harmonic analysis [e.g. 67, 246] and rule-based

data analysis [e.g. 139], depending on the size of the study area. For large study areas,

simplified representations of global climate are often used to reduce data dimensionality.

To this effect, harmonic analysis has been used to describe precipitation seasonality in the

USA [107] and the tropics [67, 119, 246]. Several other studies use sinusoidal curves to

describe monthly climate variables on a regional [e.g. 219, 259] or global scale [30]. These

studies calibrate a single harmonic with a 1-year period and assess how accurately this

periodic function describes the original data. This approach has the advantage of compactly

summarizing a climate variable’s seasonality in three numbers with a clear physical inter-

pretation: the mean value (corresponding to the monthly mean), the amplitude (describing

the seasonality) and the phase (timing of the annual maximum). The studies that use sine

curves apply these with a period of 12 months, giving a single peak per calendar year. Milly

[219], and Berghuijs and Woods [30] suggested that a period of 6 months might be more

appropriate for regions that experience bimodal rainfall patterns, but the effectiveness of

this approach is so far unknown.

This paper builds on the framework presented in Berghuijs and Woods [30] to create

a systematic and objective overview of global bimodal precipitation (P) and rain-day

frequency patterns (N), by comparing independent, truncated sinusoidal functions with

12-month and 6-month periods in their capability to reproduce observed monthly P and N.

When a curve with a single peak is more accurate than a curve with two annual maxima,

we define the local climate as unimodal (i.e. having one drier and one wetter season).

Similarly, when the curve with two peaks is more accurate than the curve with a single

peak, we define the local climate as bimodal. Using the relative accuracy of two simple

mathematical descriptions to define modality, we can avoid relying on subjective definitions

of dry and wet seasons and avoid the use of empirical rules-based analysis.

3.2 Data

This study uses precipitation (P) and rain-day frequency (N) data directly obtained from

the CRU TS v3.23 dataset [137], which contains monthly climate values for both variables

for the period 1901-2014 on the planet’s land areas (except Antarctica). It is based on
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station observations combined with synthetic climatology and interpolated to a 0.5o lati-

tude/longitude resolution. The study period is defined as 1984-2014, averaged into a typical

year (e.g. the average January is based on the 30 monthly January values from years

1984-2014). This balances data quality (number of observations on which the gridded data

is based declines sharply further away from the present [137]), the influence of interannual

variability (due to using a relatively long period) and the influence of climate change (by

using the most recent data).

We use four additional data sets of varying resolution to assess the robustness of

our conclusions with respect to uncertainty in the climate data: Global Precipitation

Climatology Centre (GPCC, 1984-2013, 0.5ox0.5o resolution [283]), Global Precipitation

Climatology Project (GPCP, 1984-2014, 2.5ox2.5o resolution [5]), Terrestrial Precipitation:

1900-2014 Gridded Monthly Time Series (TP, 1984-2014, 0.5ox0.5o resolution [207]) and

Multi-Source Weighted-Ensemble Precipitation (MSWEP, 1984-2014, daily data aggregated

to monthly scale, 0.25ox0.25o resolution [25]).

3.3 Methods

This study uses sinusoidal functions to approximate monthly averaged precipitation (P) and

rain-day frequency (N) data of all global land cells on a 0.5o latitude/longitude resolution.

Each cell’s P data is approximated with two independent sine curves, with a 12-month

period (one annual peak) and 6-month period (two annual peaks) respectively. We quantify

each curve’s accuracy with an objective function defined as the average monthly error

expressed as a percentage of the mean [30]. We assume that the sine curve with the lowest

objective function value is the more appropriate description of the grid cell’s climate, i.e. if

the sine curve with period 6 months has a lower error than the 12-month period sine, we

assume that the rainfall is bimodal. We apply the same procedure to the rain-day frequency

data. A measure of the robustness of our conclusions follows from applying the sine-fitting

method described above to 29 overlapping 3-year time windows in the 1984-2014 range

and quantifying for how many periods each cell is classified as bimodal.

3.3.1 Sinusoidal functions

We use truncated sinusoidal functions that cannot reach physically unrealistic negative

values to approximate monthly climate data [30]:
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P̂(t)= max
(
0, P̄

(
1+Cr(δP )+δP sin

(
2π

t+3− sP

τ

)))
(3.1)

Cr(δP )=−0.001δ4
P +0.026δ3

P −0.245δ2
P +0.2432δP −0.038 (3.2)

P̂(t) is approximated monthly precipitation [mm], P̄ the observed mean precipitation

[mm], Cr(δP ) an empirically derived correction factor which ensures that the mean of the

truncated curve P̂(t) stays equal to P̄, δP the fraction seasonal precipitation amplitude [-]

and sP the precipitation peak phase shift [months], which is shifted by an additional +3

months. The peak of a curve with sp = 0 thus occurs in January, making non-zero sp values

easier to interpret. τ is the curve’s period [months]. The functions for rain-day frequency N

(number of days per month with P ≥ 0.1mm) are defined similarly:

N̂(t)= max
(
0, N̄

(
1+Cr(δN )+δN sin

(
2π

t+3− sN

τ

)))
(3.3)

Cr(δN )=−0.001δ4
N +0.026δ3

N −0.245δ2
N +0.2432δN −0.038 (3.4)

These formulations necessarily mean that both peaks in the bimodal curve have the

same amplitude. This limits the potential accuracy of our formulation to describe the data

in locations where the climate is asymmetrical (e.g. when two annual dry seasons are of

unequal length or severity). However, this limitation is required to keep the degrees of

freedom the same between unimodal and bimodal formulations. Without this requirement,

the accuracy metrics of both curves cannot be compared in a fair and meaningful way.

3.3.2 Calibration and evaluation

Parameters expressing the mean of the sine curve (P̄, N̄) are calculated directly as the

mean of the data. Parameters δ (seasonal amplitude) and s (peak shift) are obtained

through calibration by minimizing objective functions (eq. 3.1 and 3.3 respectively) using a

multi-start Nelder-Mead simplex search method [188, 228]. The parameters are calibrated

twice, once with seasonal length τ= 12 [months] (from now called ”unimodal sine”) and

once with τ= 6 [months] (”bimodal sine”).

This study concerns the typical seasonal pattern of climate variables. Therefore, the

objective functions express the average error per month as a percentage of the mean [30].

This gives an overall impression of the sine curve’s accuracy rather than focussing on a

specific aspect such as getting the highest or lowest month captured accurately:
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XP = 1
12

t=12∑
t=1

|P̂(t)−P(t)|
P̄

(3.5)

XN = 1
12

t=12∑
t=1

|N̂(t)−N(t)|
N̄

(3.6)

XP shows the average simulated precipitation error [-] relative to the mean precipita-

tion P̄. P̂(t) are estimates of data P(t) obtained using sine curves. The objective function

for N is analogous to P. We compare the accuracy of the calibrated unimodal and bimodal

curves through simple subtraction (e.g. ∆XP = XP,τ=12 − XP,τ=6) and interpret positive

values to indicate the presence of a bimodal climate regime, because the bimodal curve

better fits the data. These findings are compared to literature to judge the suitability of

our method. We quantify our findings for both climate variables, assess the sensitivity of

our conclusions to the choice of data period and comment on possible improvements to our

scheme.

3.4 Results

Sine curves describing mean monthly precipitation totals (P, eq. 3.1) and rain-day frequency

(N, eq. 3.3) are calibrated to fit observed monthly data using objective functions that

minimise the average monthly error of each sine curve (eq. 3.5, 3.6 respectively). Using a

seasonal duration τ= 12 (one peak per calendar year), the average global P error is 0.18 [-],

median 0.15 [-], with standard deviation 0.10 [-] which is comparable to the findings in

Berghuijs and Woods [30]. The average global N error is 0.12 [-], median 0.097 [-], with

standard deviation 0.098 [-]. In both cases larger errors occur mostly in locations with low

annual precipitation (P < 240 mm/year, N < 30 days/year) or locations with hyperseasonal

regimes (i.e. where the seasonal range in P or N is larger than the mean). Changing the

seasonal duration to τ = 6 (two peaks per calendar year) results in improved accuracy

of P approximations for 7.9% and 6.7% land cells in and outside the tropics respectively.

Increased accuracy for N with τ= 6 is obtained for 8.5% of tropical and 8.9% of extratropical

cells respectively (Table 3.1).

Figure 3.1a and Figure 3.1b shows the best objective function value obtained for P

and N respectively, selecting the lowest option from unimodal and bimodal curves. Large

errors occur mainly in drier areas where small absolute errors can be large relative to the

mean. Figure 3.1c and 3.1d show the differences between unimodal and bimodal objective

functions. A seasonal duration τ= 12 is the more accurate option for most cells, but distinct

areas with bimodal P and N are visible (areas with positive values, here bounded in red).
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Table 3.1: Fraction of global grid cells where each combination of unimodal and bimodal P
and N is most appropriate. Bimodal precipitation is slightly more common in the tropics
than outside. Storm frequency shows no significant differences inside and outside the
tropics.

Global Tropics Non-tropics
P P P
τ= 12 τ= 6 Σ τ= 12 τ= 6 Σ τ= 12 τ= 6 Σ

N

τ= 12 0.87 0.039 0.91 0.89 0.021 0.91 0.87 0.043 0.91
τ= 6 0.055 0.032 0.087 0.026 0.059 0.085 0.065 0.024 0.089
Σ 0.93 0.071 0.92 0.079 0.94 0.067

Figure 3.1e and 3.1f show how often each cell is classified as bimodal when the average

climate of overlapping 3-year sub-periods is used, rather than the average climate of the

full 1984-2014 period. Darker areas show more stable bimodality while light shading

indicates that a bimodal sine outperforms the unimodal sine in only a fraction of the 29

sub periods. It is therefore likely that in the darker areas the seasonal pattern is indeed

bimodal. In the lighter areas conclusions about the climate’s modality are more sensitive

to the choice of data period, possibly because the seasonal signal is occasionally obscured

by interannual variability.

Bimodal rain and rain-day frequency areas tend to overlap in the tropics (5.9% of

cells, Table 3.1). Alternating rain and no-rain seasons is a hypothesis that can explain

this overlap in the tropics, because this would lead to similar within-year distributions

of both variables (non-zero N values being conditional on non-zero P values). Outside

the tropics zero-rain months are less common and bimodal regions overlap less (2.4% of

cells), indicating that the within-year distributions of both variables can be very different.

Furthermore, the appropriateness of either climate description changes gradually in space.

For locations further away from the equator, the difference between unimodal and bimodal

sines is smaller than for locations close to the equator. Stronger climate seasonality in

the tropics is a possible explanation, which can be investigated through the sine curve

parameter values (Figure 3.2).

Figure 3.2e and 3.2f show the peak shift parameter in months away from January and

are therefore represented on a circular colour scale. For areas with a seasonal length of 12

months, parameter values sP and sN of -6 and +6 months are equivalent. Within the black

lines a seasonal length of 6 months is more accurate and here sP and sN values of -6, 0 and

+6 months are equivalent. The locations where bimodal precipitation patterns occur cannot

be explained through any obvious patterns in the sine curve parameter values, and the

seasonal pattern is governed solely by the chosen seasonal length (τ) of the fitted curves.
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FIGURE 3.1. Calibration results from fitting sinusoidal functions to monthly
averaged precipitation (P, left column) and rain-day frequency data (N, right
column). Certain locations in the Sahara Desert show no objective function
values as a mathematical artefact of there being no rainfall and no rain-days
in the assessed period. (a, b) Lowest objective function value found for P and
N respectively. (c, d) Difference between objective function values Xτ=12 and
Xτ=6 for P and N respectively: lower (higher) values suggest that a seasonal
length of 12 months (6 months) is more appropriate than the alternative. (e,
f) Fraction of 3-year sub periods in the 1984-2014 data period in which a
seasonal length of 6 months is more accurate than a seasonal length of 12
months.

However, the parameters do show that areas with larger objective function differences

(Figure 3.1a, 3.1b) coincide with more extreme climates. These include arid and highly

seasonal precipitation regimes in Africa (low P̄, high δP ), strongly seasonal P and N in

India (high δP and δN values) and regions with a high number of rain events in Argentina
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FIGURE 3.2. Parameter values for sine curves describing monthly average precip-
itation (P) and rain-day frequency (N), with areas where a seasonal length of
6 months is more appropriate than 12 months bounded in black. (a) Mean
monthly P [mm], calculated from data; the scale is capped at 400mm to better
highlight regional differences (0.06% of cells have values > 400mm/month).
(c) P seasonality as a dimensionless multiplier of mean P; the scale is capped
at 3 to better highlight regional differences (12.4% of cells have values >
3, predominantly in the extremely arid regions). (e) Timing of the P peak
given in months away from January. (b) Mean monthly N [events/month],
calculated from data. (d) N seasonality as a dimensionless multiplier of mean
N, the scale is capped at 3 (5.8% of cells have values higher than 3, again
predominantly in the very arid regions). (f) Timing of the N peak given in
months away from January.

(high N̄ values). Peak timing parameters sP and sN are similar for most regions in the

Southern Hemisphere, meaning P and N distributions are roughly in phase and thus the

59



CHAPTER 3. GLOBAL PRECIPITATION MODALITY

number of rainfall events goes up as monthly rainfall volumes increase. In the Northern

Hemisphere P and N are more independent and the two distributions can be out of phase

(e.g. Northern Europe). An increase in monthly rainfall totals thus does not necessarily

lead to an increase in rainfall days, but might cause changes in the average rainfall per

event.

3.5 Discussion

Previously, information about global bimodal precipitation was scattered across many

different studies. This study uses gridded global climate data and simple mathematical

analysis to create a systematic global overview of the location of bimodal precipitation

regimes. To assess the sensitivity of our conclusions to data uncertainty, we have repeated

the analysis with four additional precipitation datasets. Across all data sets, the same

regions are consistently identified as having bimodal rainfall climates (Figure 3.3). Figure

3.3c is a straightforward comparison of the CRU TS and GPCC data sets, showing that re-

sults are consistent for the majority of grid cells. The tropical locations generally align well

with investigated literature, except for a region of Africa centred on the equator. Herrmann

and Mohr [139] classify this region as “humid” instead of bimodal. This definition of humid

climates however depends on the minimum monthly rainfall in relation to the monthly

temperature and not on the pattern of the monthly precipitation values, which has distinct

wetter and drier (relative to the wet months) periods in this region. There are no other

obvious instances within the tropics where our method indicates a bimodal rainfall regime

but the available literature does not (deviations where our method indicates no bimodal

regime but the literature does are discussed in a later section). Outside the tropics we

see various cases where the bimodal sine curve is mathematically slightly more accurate

than the unimodal sine (e.g. several locations in southern South America, large areas in

the South-East USA, most of Greenland, certain Balkan areas and large regions of South-

ern Russia and Kazakhstan). However, the seasonal pattern in these areas is relatively

asymmetrical and furthermore subject to strong interannual variations (as evidenced by

Figure 3.1e, which shows that conclusions for these areas can change depending on the

data period used). Combining the information about the accuracy of both curves with

information about the sine curve parameters shows that in these regions the differences

in accuracy between both curves are small (|Xτ=12 − Xτ=6| < 0.1), but the accuracy of both

is quite good (XP < 0.25; compare figures 3.1a and 3.1c). From the parameter values

we can deduce that these areas experience relatively high rainfall (figure 3.2a) and low

seasonality (figure 3.2c). The seasonal pattern occurs on top of a high baseline rainfall,

and the seasonal fluctuations in the pattern are thus relatively small compared to the
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overall signal. For certain locations regional studies report bimodal regimes where one wet

season has distinctly higher rainfall than the other wet season (i.e. Caribbean islands [14];

Malaysian peninsula and several Indonesian islands [67]; scattered regions on the African

continent [139]). Our method shows no clear improvement of bimodal sine curves over

unimodal sines for these locations because our very simple bimodal sine curves are unable

to replicate this specific behaviour. These regions show in our results as areas where the

accuracy of both sine functions is similar (figure 3.1c, d) and low (figure 3.1a, b), indicating

that neither curve represents the seasonal pattern well (see also panels b and c in figure

3.5, where the asymmetry of the wet seasons causes the unimodal sine to be more accurate

than the bimodal sine, but the objective function values show that both are inaccurate

for this specific case). More complex mathematical formulations might have the required

degrees of freedom to describe these regimes more accurately but will necessarily have

to sacrifice parsimony for improved accuracy. The 2-month long midsummer drought in

Mexico and Central America , and similar patterns in other regions such as equatorial

Africa, do not show up as bimodal in our results. In these cases, the stronger signal is the

single wet season as described by the unimodal curve, and the double peaks within this

single season are relatively minor fluctuations.

Figure 3.4 gives visual examples of the extent to which sine curves can capture the

within-year variability, by comparing the accuracy of unimodal and bimodal curves for P

and N at five different percentiles of Xτ=12 − Xτ=6. The leftmost plots show that for certain

locations the bimodal sine curve gives only a marginal improvement over the unimodal

sine and that for other cases neither sine curve is a very appropriate description of the

local climate. The actual errors between simulated and observed values are quite low

for these specific instances and the climate might be considered constant instead of uni-

or bimodal. The rightmost plots are in the top 2.5% of improvements and show that a

bimodal sine curve can be good approximation of seasonal patterns. The unimodal sine is

unsuitable for these cases, being either a straight line (N) or completely missing the peak

events in both magnitude and timing (P). The middle columns show examples where a

bimodal sine is more appropriate than a unimodal sine, but unable to capture the within-

year variability properly. These cases provide a visual example of bimodal sines correctly

detecting a bimodal regime but lacking mathematical freedom to simulate the seasonal

pattern accurately.

However, even if this method is a rough approximation of local climates, comparing the

accuracy of unimodal and bimodal curves gives insight into how climates change gradually

in space on a global scale. We can interpret the difference in accuracy (Figure 3.1c, 3.1d)

from negative to positive as a unimodal regime being more likely, to a bimodal regime

being more likely. This implies that a gradual change occurs between two extremes, with
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FIGURE 3.3. Stability of results under different precipitation data sets. Plot a, b,
d, e and f show objective function differences between calibrated unimodal
and bimodal sine curves for different data sets. (a) CRU TS data, 1984-
2014, 0.5°x0.5° resolution, (b) GPCC data, 1984-2013, 0.5°x0.5° resolution,
(c) overlap between CRU TS results and GPCC results, (d) GPCP data,
1984-2014, 2.5°x2.5° resolution, (e) MSWEP data, 1984-2014, 0.25°x0.25°
resolution, (f) TP data, 1984-2014, 0.5°x0.5° resolution.

regimes in the middle that are neither clearly unimodal nor bimodal and/or where both

mathematical formulations are inadequate. Figure 3.5 shows a longitudinal cross section of

eastern equatorial Africa, where the climate gradually changes from asymmetrical bimodal

(39olon; the dry seasons have different lengths and the rainfall peaks have different

heights) to more symmetrical bimodal (40.5olon) to nearly unimodal rainfall (42olon). For

the first case, limitations in the bimodal sine curve formulation (fixed amplitude, 6-month

period) make it unable to outperform the unimodal sine curve in objective function terms,

even though the bimodal sine curve gives a better general idea of the rainfall seasonality.

As the observed pattern shifts to a more symmetrical bimodal regime (+40.5o to +41.5olon)

the bimodal sine clearly outperforms the unimodal sine. Further east the rainfall regime

slowly shifts to being more unimodal (one of the precipitation peaks gradually becomes

lower) and the unimodal sine becomes a more appropriate choice, as is reflected by its

improved objective function value. Even though the asymmetry in bimodal regimes is not

captured, this example shows that gradual changes in dominant climate patterns can be

detected with this method.
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FIGURE 3.4. (a-e) 0.025th, 0.25th, 0.50th, 0.75th and 0.975th percentile respectively
of locations where a bimodal sine curve is a better approximation of local
rainfall regime than a unimodal curve is. (f-j) Similar plots for local rain-day
frequency patterns. The leftmost plots indicate regions where both curves
have similar accuracy; bimodal curves become more accurate compared to
unimodal curves in the columns to the right.

This work provides insight in the sequence of dry and wet seasons on a global scale,

and the relative importance of these intra-annual variations compared to the baseline

signal. Strong intra-annual precipitation variability can be seen in much of the Southern

Hemisphere (Figure 3.1c, 3.1d), expressed as one of our mathematical formulations being

much more accurate than the other. In these regions, the rain-day frequency pattern

tends to be correlated with the precipitation (total) pattern, implying that the number of

rain-days and precipitation total are conditional on one another. This is less so for much of

the Northern Hemisphere, where the intra-annual precipitation variability is relatively

small compared to the baseline (mean precipitation) and the rain-day frequency follows

a more independent seasonal pattern. As a low-dimensional parametrisation of monthly

rainfall regimes, these mathematical functions are an objective way to determine the

strength of modality, they show spatial changes in climatic seasonality as a gradual change

instead of a jump between categories and create the possibility to attach physical meaning

to the functions’ parameters. This make them a useful tool in any large-scale climate study.

For example, these methods can be applied to investigate whether global rainfall regimes

experience shifts from unimodal to bimodal, and whether this occurs as a result of natural

variability or if trends can be found.
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FIGURE 3.5. Longitudinal cross-section of East Africa, showing average precipita-
tion regimes. (a) Objective function difference between calibrated unimodal
and bimodal sine curves. The black box indicates the locations where the fol-
lowing plots zoom in on. (b-i) Average precipitation regime (bars), calibrated
unimodal sine curve (blue) and bimodal sine curve (red). Objective function
(XP ) values for both curves are given in the legend and data bars are coloured
proportionally to which curve approximates the data more accurately. The
images show a precipitation regime that gradually shifts from asymmetrical
bimodal (b & c) to approximately symmetrical bimodal (f) to nearly unimodal
(i).

3.6 Conclusions

This study provides a systematic global overview of where bimodal precipitation (P) regimes

occur, along with information on bimodal rain-day frequency (N), based on gridded climate

data. Before, this information was scattered throughout various regional studies using dif-

ferent data, methods and definitions. This work aims to introduce a measure of objectivity

by using simple sinusoidal functions to describe monthly rainfall and rain-day frequency

data, using formulations that allow for either one or two peaks per year. Comparing the

average monthly error obtained by both formulations indicates whether a unimodal or

bimodal climate regime is more likely for a given location. Globally, bimodal precipitation

occurs in approximately 7.1% of grid cells, divided into 7.9% of tropical cells and 6.7%
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of non-tropical cells. These results mostly confirm findings from regional studies, except

one case due to definitions used in the regional study and several cases where the annual

climate pattern is asymmetrical in either peak height or the respective length of dry and

wet season(s), which is more complex than our simple formulations can describe. Overall,

the spatial transition between unimodal and bimodal climates is gradual (e.g. north- and

southwards of equatorial Africa and in northern Guyana), and our simple approach can

detect these patterns. Sensitivity analysis shows that for areas in the transition zones

between unimodal and bimodal (e.g. in north-eastern Kenya and northern Borneo), nat-

ural variability over a few years can cause the climate to switch back and forth between

unimodal and bimodal. Within the tropics, the modality of rain-day frequency N tends to

overlap with the modality of P, due to the occurrence of alternating dry and wet seasons

with zero or low rainfall during the dry period. Outside the tropics, modality of P and N is

more independent, which leads to complex changes in precipitation intensity during the

year.
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4
MULTI-MODEL COMPARISON FRAMEWORK

This chapter is currently under review as a model description paper to Geoscientific Model

Development. Slight modifications have been made to better fit the general layout of this

thesis. This chapter is the result of a collaboration with Dr. Murray Peel and Dr. Keirnan

Fowler, who acted as co-supervisors during Wouter Knoben’s visit to the University of

Melbourne.

Citation: Knoben, W. J. M., Woods, R. A., & Freer, J. E. (2018). Modular Assessment of

Rainfall-Runoff Models Toolbox (MARRMoT) v1.0: an open-source, extendable framework

providing implementations of 46 conceptual hydrologic models as continuous space-state

formulations. Geoscientific Model Development, under review. https://doi.org/10.5194/gmd-

2018-332

Abstract

This paper presents the Modular Assessment of Rainfall-Runoff Models Toolbox (MAR-

RMoT): a modular open-source toolbox containing documentation and model code for 46

existing conceptual hydrologic models. The toolbox is developed in Matlab and works with

Octave. Models are implemented following several good practices for model development:

definition of model equations (the mathematical model) is kept separate from the numeri-

cal methods used to solve these equations (the numerical model) to generate clean code

that is easy to adjust and debug; the Implicit Euler time-stepping scheme is provided as

the default option to numerically approximate each model’s Ordinary Differential Equa-

tions in a more robust way than (common) Explicit schemes would; threshold equations
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are smoothed to avoid discontinuities in the model’s objective function space; and model

equations are solved simultaneously, avoiding physically unrealistic sequential solving of

fluxes. Generalized parameter ranges are provided to assist with model inter-comparison

studies. In addition to this paper and its Supporting Materials, a User Manual is provided

together with several workflow scripts that show basic example applications of the toolbox.

The toolbox and documentation are available from https://github.com/wknoben/MARRMoT

(DOI: 10.5281/zenodo.2482542). Our main scientific objective in developing this toolbox is

to facilitate the inter-comparison of conceptual hydrological model structures which are in

widespread use, in order to ultimately reduce the uncertainty in model structure selection.

4.1 Introduction

Rainfall-runoff modelling is useful to extrapolate our hydrologic understanding beyond

measurement availability [38, 45]. We can challenge and improve our understanding of the

way catchments function through model-based hypothesis testing [37, 74, 106, 173, 174]

and simulate the impact of changes in climatic conditions and catchment characteristics

such as land use [23, 100, 176, 249, 290, 333]. Many different modelling approaches are

possible, ranging from lumped, empirical, deterministic bucket-style models to distributed,

process-oriented, stochastic, 3D physics-based models [45]. Each of these approaches has

its own advantages and drawbacks, concerning the level of spatial detail, amount of model

’realism’ in terms of processes represented, input data requirements and computational

time. The toolbox presented in this paper uses deterministic, spatially lumped bucket-style

models, also referred to as conceptual hydrological models. Note that this definition of a

conceptual model is different from the definition used by authors discussing the modelling

process, where the conceptual model is a step between having a mental, perceptual model

of a catchment and the collection of equations referred to as a mathematical/procedural

model [e.g. 45, 72, 128].

Every application of a rainfall-runoff model is complicated by various aspects of uncer-

tainty [e.g. 47, 248, 249]. Uncertainty is introduced during measurement of model input

variables such as precipitation [e.g. 244] and temperature [e.g. 22] and derived variables

such as potential evapotranspiration [e.g. 12, 242, 244]. Uncertainty is also present in

measurements against which model output is compared, such as streamflow [e.g. 92, 213],

water table depth [e.g. 114] and water quality [e.g. 214]. Values of model parameters can

be uncertain due to dependency of ’optimal’ parameter values on climatic conditions during

model calibration [e.g. 80, 110], due to the choice of calibration algorithm [16] or due to the

performance metric used [e.g. 96, 129]. Finally, the choice of model structure (i.e. the collec-

tion of equations and their internal connections that make up the model) itself is a source
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of uncertainty [11, 80, 104, 106, 185, 325]. Currently, a wide variety of models are available.

They may be different in spatial and temporal resolution, or include different processes, be

deterministic or stochastic, might be based on top-down or bottom-up philosophies, or be

different in some other way. This paper contributes to the investigation of model structure

uncertainty of lumped, deterministic conceptual models. We hope to make progress towards

answering a core question in hydrologic modelling: out of the overwhelming number of

available models, which one is the most appropriate choice for a given catchment?

Conceptual models tend to have low data requirements (catchment-averaged forcing

instead of spatially explicit) and are less computationally intensive than spatially explicit

models. They are used in both scientific and operational settings [254]. A wide range of con-

ceptual model structures exists, e.g. SACRAMENTO [60, 225], TOPMODEL [46], SIMHYD

[70], the TANK model [310] and many more, but there is no clear basis to choose between

the different models [45]. Models are different both in their internal structure (i.e. which

storages are represented and how they are connected) and in their choice of flux equations

(i.e. whether and how any given flux is quantified with a mathematical equation). Choosing

the right model for a catchment where hydrological responses are measured is difficult

because achieving a ’good’ value on a performance metric is a necessary but not sufficient

condition to determine whether a model produces the ”right results for the right reasons”

[173]. Different model structures can achieve superficially similar performance metrics, but

might reach this point by wildly different internal dynamics [88, 121, 254]. Therefore, good

simulation metrics do not necessarily tell us which model structure is more appropriate

for this catchment. Choosing a suitable model structure when the catchment is ungauged

is even more challenging. This model structure uncertainty is largely unquantified, even

for existing models with a long legacy of ’successful’ (often defined as having achieved a

high value for some performance metric) applications. However, comparison of different

models can be an expensive task if each model needs to be set up individually. Model

inter-comparison studies are further complicated by the fact that documented computer

code is unavailable for many model structures.

In recent years multi-model frameworks have received considerable attention. These

provide a standardized framework in which several models are presented, or users can

construct new models, or both. This reduces the time cost of a model comparison study,

allows fair comparison of different model structures in a test case and allows the investi-

gator to isolate choices in the model development process. Examples include the Modular

Modelling System (MMS) [191], the Rainfall-Runoff Modelling Toolbox (RRMT) [331], the

Framework for Understanding Structural Errors (FUSE) [78], a fuzzy model selection

framework [20], SUPERFLEX [103, 161], the Catchment Modelling Framework (CMF)

[184] and the Structure for Unifying Multiple Modelling Alternatives (SUMMA) [75, 76].
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These frameworks are either limited to a small number of existing models (e.g. MMS,

RRMT), use a pre-defined internal organization of stores (FUSE), consist of generic model

elements (i.e. stores, fluxes and lags) that are not easily recognizable as existing models (e.g.

CMF, SUPERFLEX), or are more physics-based and thus difficult to use with conceptual

models (e.g. SUMMA).. Thus, despite these many existing frameworks, there is a need

for a new framework that provides a user-friendly, standardized way to construct and

compare existing, widely-used conceptual models, without constraining the allowed model

architecture a priori.

This paper introduces the Modular Assessment of Rainfall-Runoff Models Toolbox

(MARRMoT) to fill a gap in the current selection of multi-model frameworks. MARRMoT

provides an open-source, easy-to-use, expandable framework that currently includes 46

different conceptual model formulations. This provides all the benefits of a multi-model

framework: models are constructed in a modular fashion from separate flux equations,

which allows easy modification of provided models and expansion of the framework with

new models or fluxes; good practices for numerical model solving are implemented as

standard options; and all MARRMoT models require and provide standardized inputs and

outputs. The large number of models in the framework facilitates studies that lead to

more generalizable conclusions about model and/or catchment functioning. This work also

provides a pragmatic overview of the wide variety of different flux equations and model

structures that are currently used, facilitating studies and discussion beyond direct model

comparison. Due to the code being open source, transparency and repeatability of research

is encouraged, additions to the framework are possible, and the community can find and

correct any mistakes. Finally, MARRMoT is provided with extensive documentation about

the models included, the conversion of flux equations to computer code, recommendations

for generalized parameter ranges for model sensitivity analysis and/or calibration, a User

Manual explaining framework set-up, functioning and use, and several example workflow

scripts that allow use of the framework even with minimal programming experience.

4.2 MARRMoT design considerations

MARRMoT takes inspiration from earlier modular frameworks (e.g. FUSE [78], FLEX

[103]) and uses modular code with individual flux equations as the basic building blocks.

Multi-model frameworks benefit from modular implementation because this simplifies

programming of the framework and makes it easier to (i) re-use components of a model in a

different context, including cases where the same basic equation is used by multiple models;

and (ii) add new options to the framework [78]. MARRMoT follows several other good

practices for model development which are briefly described in the following sub-sections.
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4.2.1 Separation of model equations and equation solving

First, MARRMoT uses a distinct separation of model equations (ODEs) and the numerical

approach used to solve these equations. In the theoretical process of developing a new

hydrological model, the modeller ideally goes through several distinct steps [e.g. 45, 72, 128].

To start, the modeller develops a mental, perceptual model of catchment behaviour based

on observations and/or other knowledge (i.e. expert opinion). Next, this model is simplified

into an abstraction that shows the connection of the most important fluxes and storages

(also termed a conceptual model, but this is a distinctly different meaning than when

applied to a bucket-type hydrologic model). These relations are then formalized as Ordinary

Differential Equations and their constitutive functions in a mathematical model. Finally,

creating computer code to solve these equations sequentially as a time series is done with

the procedural model. In practice however, these stages are often not distinct and tend to

overlap [e.g. 164], a process referred to as ”ad hoc” modelling. Overlap of the mathematical

and procedural model can lead to altered model behaviour and difficulty with parameter

estimation [72, 160, 164]. A clear separation between model equations and the code used

to solve those equations gives computer code that is easier to understand and update with

new time-stepping schemes or flux equations, relative to code where the model equations

are interwoven with the numerical scheme.

4.2.2 Robust numerical approximation of model equations

Second, MARRMoT gives the possibility to choose a numerical method to approximate the

ODEs in discrete time steps. Currently, a fixed-step Implicit Euler method is recommended

as default, and an Explicit Euler method is provided for result matching with previous

studies. Many implementations of hydrologic models use the Explicit Euler method to

approximate storage changes [285, 297]. The Explicit Euler method relies on storage

values at the start of a time step to estimate flux sizes in the current time step: FLUX(t)

= f(STORE(t-1)). This method is easy to implement and fast to compute, but has several

disadvantages: it has low accuracy and only conditional stability, which can lead to large

numerical errors and amplification of such errors under certain conditions [72, 160, 285].

Implicit methods such as Implicit Euler instead rely on an iterative procedure that relates

flux size to storage at the end of a time step: FLUX(t) = f(STORE(t)). These methods require

more intensive iterative computation, but avoid the aforementioned issues even when

implemented with fixed time step sizes [167, 285]. Higher-order numerical approximation

methods are currently not provided in MARRMoT but can be included in a straightforward

manner. Note that fixed time step size refers to the use of a single time step size throughout

a simulation (e.g. hourly, daily), and does not prescribe the time step size.
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4.2.3 Smoothing of threshold discontinuities in model equations

Third, MARRMoT removes threshold discontinuities in model equations through logis-

tic smoothing [78, 163]. Hydrologic processes are often characterized by thresholds, e.g.

snowmelt starts when a certain temperature is exceeded, and saturation excess flow oc-

curs when the soil is saturated. Introducing threshold behaviour into hydrologic models

leads to discontinuities in the model’s objective function, which can complicate parameter

estimation when small changes in parameter values may lead to large changes in objective

function value or in the gradient thereof [163]. Smoothing model equations avoids these

discontinuities but also involves a fundamental change to the model equations. Kavetski

and Kuczera [163] recommend logistic functions to smooth threshold equations that closely

resemble the original threshold function but are continuous throughout the function’s

domain. MARRMoT smooths storage-based thresholds with a logistic function [78]:

Qo =Q in
(
1−Φ(S,Smax,ρS,ε)

)
(4.1)

Φ(S,Smax,ρS,ε)= 1

1+ e
S−Smax−ωε

ω

(4.2)

Where Qo and Q in are flux output and input respectively and Φ(..) the smoothing

operator. S and Smax are current and maximum storage respectively, ω represents the

degree of smoothing according to ω= ρS ∗Smax, and ε is a coefficient that ensures that S

does not exceed Smax. ρS and ε can be specified by the user, or used with default values

of 0.01 and 5.00 respectively [78]. Temperature-based thresholds are smoothed with a

different logistic function [163]:

Ps = PΦ(T,T0,ρT ) (4.3)

Φ(T,Tt,ρT )= 1

1+ e
T−T0
ρT

(4.4)

Where Ps is precipitation as snow, P incoming precipitation and Φ(..) the smoothing

operator. T and T0 are the current and threshold temperatures respectively, and ρT is the

smoothing parameter with default value 0.01.

4.2.4 Simultaneous solving of model equations

Fourth, MARRMoT solves all model equations simultaneously rather than sequentially.

Operator-splitting (OS) numerical approximations integrate fluxes sequentially and can be

useful in cases such as large systems of partial differential equations, where computational
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speed would otherwise be a limiting factor [103]. Sequential calculation of model fluxes

is common practice in many hydrologic models (e.g. SACRAMENTO and GR4J) but this

approach assumes that fluxes occur in a pre-determined order. It is preferable to integrate

model fluxes simultaneously to avoid ”physically unsatisfying assumption[s]” [103, 271].

MARRMoT follows this recommendation, barring certain cases where the model is divided

into two distinct parts due to a delay function, in which case simultaneous solving of the

first and second part of the model is impossible.

4.3 MARRMoT

MARRMoT provides Matlab code for 46 conceptual models following the model development

practices outlined in Section 4.2. This section provides a summary of the framework because

it is infeasible to discuss every individual model here. References to the Appendices guide

the interested reader to a more in-depth discussion of each model and its implementation

in MARRMoT. In addition to this chapter, the MARRMoT documentation includes the

following:

• Appendix B.2 - Model descriptions. This section contains descriptions of all 46 models

in a standardized format. Each description includes a short introduction to the model,

a list of parameters, a model schematic and a discussion of the ODEs and constitutive

functions that describe the model’s storage changes and fluxes.

• Appendix B.3 - Flux equation code. This section contains an overview of the 105

different flux equations used in MARRMoT, and their implementation as computer

code.

• Appendix B.4 - Unit Hydrograph overview. This section contains an overview of the 7

different Unit Hydrograph routing schemes used in MARRMoT.

• Appendix B.5 - Parameter ranges. This section contains an overview of recommended

parameter ranges for the 46 models based on published literature about hydrologic

process and model application studies. The ranges are standardized across models, so

that similar processes use similar parameter ranges. Use of these parameter ranges

is optional.

• User Manual (available from the MARRMoT Github page): This document helps a

user set up MARRMoT for use in either Matlab or Octave, outlines the inner work-

ings of the standardized models, provides several workflow examples and provides

examples on how to create a new flux equation or model.
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4.3.1 General MARRMoT outline

Figure 4.1 shows the set-up of the MARRMoT framework and what the framework requires

(i.e. data, model options, etc.) and provides for a given modelling study. Each model has

its own separate model function, which contains both the numerical implementation of

the model (i.e. the ODEs and fluxes that make up this model, as given in Appendix B.2,

B.3 and B.4) and the necessary code to handle user input, run the model to produce a

time series and generate output. The user is expected to provide the following inputs:

time series of climate variables, initial values for each model store, choice of numerical

integration method and settings for Matlab solvers, and values for each model parameter.

Note that the solver selection relates to time-stepping numerics, not parameter selection

and optimisation. Optionally, MARRMoT’s provided parameter range guidance (Appendix

B.5) can inform the choice of parameter values. Parameter ranges have been standardized

as much as possible across all models, such that similar processes use the same range of

possible parameter values across models (e.g. this ensures that all models that have an

interception component with a maximum capacity can use the same range, 0-5mm, for their

respective interception capacity parameter). Each model generates a time series of total

simulated flow and total simulated evaporation as default output. Optionally, users can

request variables with time series of storages and internal fluxes, as well as a summary of

the main water balance components. The User Manual provides several workflow examples

that showcase possible uses of MARRMoT: the examples cover (i) application of a single

model, with a single parameter set to a single catchment, (ii) random parameter sampling

from provided parameter ranges for a single model, (iii) application of three different

models to a single catchment, and (iv) calibration of a single parameter set for a single

model.

The basic building blocks inside each model function are flux functions. Each flux

function describes a single flux, for example evaporation from an interception store, water

exchange between two soil moisture stores or baseflow from groundwater. Flux functions

are kept separate from the model functions, and each model calls several flux functions as

needed. This allows for consistency across models (if errors are present in any flux function,

at least they are the same in all models), easy implementation of new flux equations

and facilitation of studies that are specifically interested in differences between various

mathematical equations that all represent the same flux or process. The inputs required,

and output returned by each flux function varies. Appendix B.3 provides a full overview of

the mathematical functions used to represent fluxes in each model description, relevant

constraints, numerical implementation of each flux in MARRMoT and a list of models that

use each flux function). Various models use a Unit Hydrograph approach to delay flows
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Parameter_ranges_for_model_1 (function)

Parameter_ranges_for_model_2 (function)

...

model_1 (function)

model_2 (function)

...

Each model is a unique selection
and arrangement of fluxes and 
implemented as a separate function 
within the framework

model_m (function)
 
Each model function performs the following tasks:

o Handle function inputs
- Climate data
- Parameters
- Initial conditions for stores

o Initialize storage and flux vectors
o Specify model fluxes
o Initialize solver settings

- Numerical scheme
- Root-finding method

o Run the time-series
- Model setup

 Specify ODE’s at time = t
 Create numerical ODE approximation

- Model solving
 Solve numerical ODE approximation 
 Check solver accuracy, re-run if needed

- Update states and fluxes at time = t
o Generate outputs

Parameter_ranges_for_model_m (function)
 
parameter_1 = [u,v]
Parameter_2 = [w,x]
…
parameter_o = [y,z]

Climate 
observations 

(P, T, PET)

Initial 
storage 
values

Time-stepping 
and solver 

settings

Model parameter 
values (sampled, 

optimized)

Observed flow, fluxes, storages, 
water balance

flux_1

flux_2

...

flux_n

Each model is accompanied by a file 
that specifies parameter ranges that 
have been standardized across all 
models (e.g. maximum interception 
depth is [0,5] mm in each model with 
interception). Use of these ranges is 
optional. The ranges can be used for 
parameter sampling or calibration, if 
they are combined with a sampling 
scheme (e.g. Monte Carlo) or 
optimization algorithm.

model_1: simulations

model_2: simulations

...

model_m: simulations of 
flow, fluxes, storages, 
water balance

Model inputs & settings

MARRMoT 

Modelling study

Model outputs

FIGURE 4.1. Schematic overview of the MARRMoT framework. MARRMoT pro-
vides 46 conceptual models implemented in a standardized way (part below
the dotted line). Each model is a unique collection and arrangement of fluxes,
but the coding set-up of each model is the same. Inputs required to run a
model are time series of climate variables, settings for the numerical ap-
proximation scheme, values for the model parameters (which can optionally
be sampled or optimized using provided, standardized ranges), and initial
conditions for each model store. The model returns time series of simulated
flow, fluxes and storages and a summary of the simulated water balance.

within the model and/or simulate flow routing. Appendix B.4 provides a full overview of

Unit Hydrographs currently implemented in MARRMoT.
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4.3.2 Summary of included models

Table 4.1 shows which models are currently implemented in MARRMoT and the main

reference(s) for each. Some of the models have a long history of application, others are part

of model comparison or development studies. MARRMoT development was not guided by a

specific modelling objective (e.g. droughts, floods) and the current selection of model struc-

tures mainly aims for variety in the range of model structures. The User Manual provides

guidance on changing and expanding the framework and, due to its open nature, these

additions can be shared with the wider community. Each model is internally different from

the others, either through using different configurations of stores and their connections, or

through using different flux equations, or both. Models with sequential numbering (e.g.

mopex1, mopex2) are part of the same study and tend to be similar but more elaborate as

the number increases. Detailed model descriptions can be found in Appendix B.2.

Figure 4.2 provides a summarized overview of the model differences, expressed through

the number of stores, number of parameters and hydrological processes represented.

Models use between 1 and 8 stores, and between 1 and 23 parameters. The number of

parameters tends to increase with the number of stores, but exceptions exist. Most models’

stores are used to track moisture availability (i.e. across all models 162 stores are used,

155 of which track moisture availability); deficit stores are much rarer (i.e. only 7 out of

162 stores are used to track moisture deficit). Soil moisture storage is the most commonly

modelled concept, occurring in every model. Routing stores (e.g. ”fast flow routing”) are

included in 18 models, groundwater stores in 13 models, snow storage in 12, interception

in 10, unit hydrograph routing also in 10, surface depression storage in 2 and channel

storage in 1 model. However, these numbers should not be seen as representative of all

conceptual models, because our model overview is necessarily incomplete and some of our

models are part of model development studies (where a model is modified until satisfactory

performance is obtained). These studies skew the number of stores in certain categories.
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Table 4.1: MARRMoT models and function names

ID Name Main reference(s) MARRMoT function

1 Traditional bucket model [158] m_01_collie1_1p_1s
2 Wetland, FLEX-Topo [274] m_02_wetland_4p_1s
3 Unnamed [158] m_03_collie2_4p_1s
4 Unnamed [19] m_04_newzealand1_6p_1s
5 IHACRES [84, 199] m_05_ihacres_6p_1s
6 Unnamed [95] m_06_alpine1_4p_2s
7 GR4J [255, 271] m_07_gr4j_4p_2s
8 Unnamed [20] m_08_us1_5p_2s
9 Unnamed [309] m_09_susannah1_6p_2s

10 Unnamed [309] m_10_susannah2_6p_2s
11 Unnamed [158] m_11_collie3_6p_2s
12 Unnamed [95] m_12_alpine2_6p_2s
13 Hillslope, FLEX-Topo [274] m_13_hillslope_7p_2s
14 TOPMODEL [50, 78] m_14_topmodel_7p_2s
15 Plateau, FLEX-Topo [274] m_15_plateau_8p_2s
16 Unnamed [19] m_16_newzealand2_8p_2s
17 Penman drying curve [251, 331] m_17_penman_4p_3s
18 SIMHYD [70] m_18_simhyd_7p_3s
19 Unnamed [101] m_19_australia_8p_3s
20 GSFB [224, 350] m_20_gsfb_8p_3s
21 FLEX-B [106] m_21_flexb_9p_3s
22 VIC [78, 194] m_22_vic_10p_3s
23 LASCAM [303] m_23_lascam_24p_3s
24 Unnamed [349] m_24_mopex1_5p_4s
25 TCM [222] m_25_tcm_6p_4s
26 FLEX-I [106] m_26_flexi_10p_4s
27 TANK model [310] m_27_tank_12p_4s
28 XINANJIANG [351] m_28_xinanjiang_12p_4s
29 HyMOD [57, 330] m_29_hymod_5p_5s
30 Unnamed [349] m_30_mopex2_7p_5s
31 Unnamed [349] m_31_mopex3_8p_5s
32 Unnamed [349] m_32_mopex4_10p_5s
33 SACRAMENTO [60, 225] m_33_sacramento_11p_5s
34 FLEX-IS [106, 233] m_34_flexis_12p_5s
35 Unnamed [349] m_35_mopex5_12p_5s
36 MODHYDROLOG [69, 71] m_36_modhydrolog_15p_5s
37 HBV-96 [197] m_37_hbv_15p_5s
38 TANK model - SMA [310] m_38_tank2_16p_5s
39 MCRM [222] m_39_mcrm_16p_5s
40 SMAR [236, 312] m_40_smar_8p_6s
41 NAM [232] m_41_nam_10p_6s
42 HYCYMODEL [115] m_42_hycymodel_12p_6s
43 GSM-SOCONT [281] m_43_gsmsocont_12p_6s
44 ECHO [282] m_44_echo_16p_6s
45 PRMS [192, 205] m_45_prms_18p_7s
46 CLASSIC [85] m_46_classic_12p_8s



78 CHAPTER 4. MULTI-MODEL COMPARISON FRAMEWORK

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

1

4

4

6

4

4

4

6

6

6

6

6

6

5

5

5

7

7

7

7

8

8

8

8

8

8

9

10

10

10

10

11

23

12

12

12

12

12

12

12

15

15

16

16

16

18

Number of parametersOriginal model that is the basis of 
the MARRMoT implementation

1

2

3

4

5

6

8

7

Traditional bucket model 
Wetland, FLEX-Topo

Unnamed
Unnamed

IHACRES
Unnamed

GR4J
Unnamed
Unnamed
Unnamed 
Unnamed 
Unnamed 

Hillslope, FLEX-Topo
TOPMODEL

Plateau, FLEX-Topo
Unnamed

Penman drying curve 
SIMHYD

Unnamed
GSFB

FLEX-B
VIC

LASCAM
Unnamed

TCM
FLEX-I

TANK model
XINANJIANG

HyMOD
Unnamed
Unnamed 
Unnamed 

SACRAMENTO
FLEX-IS

Unnamed
MODHYDROLOG

HBV-96
TANK model - SMA

MCRM
SMAR
NAM

HYCYMODEL
GSM-SOCONT

ECHO
PRMS

CLASSIC

1 
st

o
re

2 
st

o
re

s
3 

st
o

re
s

4
 s

to
re

s
5

 s
to

re
s

6
 s

to
re

s
7

8

FIGURE 4.2. Overview of MARRMoT models. Models are sorted vertically by
number of stores (1 at the top, 8 at the bottom). The columns show broad
categories of hydrologic process that can be represented by a model. Coloured
circles indicate the model has a store dedicated to the representation of this
hydrological process (squares indicate a deficit store). The bar plot on the
right shows each model’s number of parameters. Colouring refers to the
number of parameters.



4.4. 46 MODEL APPLICATION TEST CASE

4.4 46 model application test case

To demonstrate the potential of the framework, we calibrated all 46 MARRMoT models to

flow observations at Hickory Creak near Brownstown, Illinois (USGS ID: 05592575). This

catchment was randomly selected from the CAMELS data set [4]. The catchment is small

with an area of approximately 115 km2, located at 176 m.a.s.l. at latitude 38.9o. It has a

strong seasonal cycle with temperatures varying between -20oC in extreme winters, up

to nearly 30oC in summers. Average annual rainfall is approximately 1117mm, 6.4% of

which occurs as snowfall. The runoff ratio is around 29% of precipitation. The flow regime

is flashy (baseflow index is 0.18) and ephemeral (no flow is observed 18% of the time), High

flows (95th percentile flow is 3.7mm/d) are more common in winter and spring, while low

flows (5th percentile flow is 0mm/d) are more common in summer and autumn. Soils are a

mixture of silt (60%), clay (24%) and sand (16%).

PET input was estimated using climate data included in CAMELS and the Priestley-

Taylor method [261]. Model calibration uses the time period 1989-1998, model evaluation

uses the period 1999-2009. Initial states are found by iteratively running each model with

data from the year 1989, until model states reach an equilibrium. The calibration algorithm

is the Covariance Matrix Adaptation Evolution Strategy (CMA-ES) [136], using the Kling-

Gupta Efficiency [129] as the objective function. CMA-ES optimizes a single parameter set

per model using MARRMoT’s provided parameter ranges. Note that parameter optimiza-

tion and sampling are currently not part of the provided tools but connecting MARRMoT

to various calibration algorithms or Monte Carlo sampling strategies is straightforward

(the User Manual provides several basic workflow examples).

Figure 4.3a shows KGE values during calibration and evaluation for each model.

Each result is coloured to indicate the number of calibrated parameters. The number of

model parameters seems unrelated to model performance and several models with higher

numbers of parameters are outperformed by the simplest 1-parameter bucket model. After

analysing the components present in most successful models (not shown), we can speculate

that a saturation excess mechanism is key to achieve satisfactory calibration efficiency

values in this catchment, and that this catchment’s flashy behaviour could be related to

rainfall events on soil with low available storage.

Figure 4.3b shows values for two common hydrologic signatures, calculated for time

series of simulated flow by each model (blue/yellow dots, shade showing the KGE value

during calibration) and for observations (red dot). These signatures are calculated for

the calibration period. There is significant scatter around the observed signature values

and models with ”good” calibration efficiency (darker shades) are not necessarily closer

to observed signature values than models with lower calibration performance. From this
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FIGURE 4.3. Example of MARRMoT application to Hickory Creek near Brown-
stown (USA). (a) model performance during calibration (1989-1998) and
evaluation (1999-2009) periods. Each dot represents a single model and is
coloured according to the model’s number of calibrated parameters. (b) Com-
parison of simulated average flow and no-flow frequency signature values
and observed values for those signatures (red dot bisected with lines).

we can conclude that even though certain model structures can achieve ”high” values for

a given objective function, there is no guarantee that the simulated flow series have the

same statistical properties as the observed time series the models were calibrated against.

Furthermore, this shows that a saturation-excess model can achieve high efficiency values,

but that the full hydrologic behaviour in this catchment is likely more nuanced than a

single runoff generation mechanism.

This test case highlights the power of multi-model comparison frameworks: from two

simple plots we have deduced a plausible important runoff mechanism in this catchment,

found that this mechanism alone cannot satisfactorily explain the catchment’s hydrologic

behaviour, and that a higher number of model parameters does not necessarily result in

more realistic or better performing models. Further investigation of the model structures

and their performance could lead us to more insights about hydrologic behaviour and

inter-model differences, but that is beyond the scope of this test case.

4.5 MARRMoT considerations

4.5.1 Reliance on imperfect methods

MARRMoT uses built-in Matlab root-finding methods to solve the ODE approximations on

every time step. Currently, fzero is the default option for models with one store and fsolve is

the default in multi-store models. lsqnonlin is used as a slower but more robust alternative

if the former methods are not sufficiently accurate (compared to a user-specified accuracy

tolerance). In most cases, this set-up performs within acceptable bounds of accuracy.
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However, for special cases (e.g. very small maximum storage values), the root-finding

method might return solutions that are outside the bounds of expected model behaviour

(e.g. storages values below 0, storages higher than their maximum capacity or complex

numbers), even if ”realistic” solutions also exist. Additional constraints must be introduced

into the flux equations to prevent this behaviour, because in a large-sample study these

issues are difficult to troubleshoot if they occur during the sampling of several thousands

of combinations of models and catchments. This involves a fundamental change to model

equations necessitated by the use of these solvers. More robust solvers such as lsqnonlin

allow specification of bounds to the solution space but are less computationally efficient.

The current trade-off favours constraints implemented into the fluxes and default use of

faster root-finding methods over the more elegant, but much slower, solution provided by

lsqnonlin. Further optimization of the root-finding methods is considered outside the scope

of this version of MARRMoT.

4.5.2 Speed versus readability

Several considerations during MARRMoT design have been heavily influenced by readabil-

ity and user-friendliness over computational efficiency. Implementing fluxes as anonymous

functions rather than regular functions leads to reduced computational speed but increased

clarity of the code.

Matlab was chosen out of similar concerns. Fortran or similar compiled languages

would grant significant speed-ups but reduce user-friendliness.

4.5.3 Correspondence between MARRMoT and original publications

During MARRMoT development, we have tried to stay close to the original publications

that introduced the models. Differences are unavoidable however, due to our criteria of

creating a uniform framework. Most changes have to do with spatial discretisation, where

we reduced the level of detail in a model to make all 46 models lumped.

For certain models (e.g. SACRAMENTO [60, 225]) model code and numerical implemen-

tation are so interwoven that far-reaching changes were required to make these models

fit into this generalized framework. For all models, it is likely that the use of the default

Implicit Euler scheme will provide different results to previous studies that use the (much

more common) Explicit Euler scheme. Furthermore, the smoothing of model equations will

also cause differences to arise with previous studies. We strongly recommend readers to

compare the original publication of each model with the version given in this toolbox, to

place results from the MARRMoT models in a proper context of earlier work with these

models.
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4.5.4 Parameter optimization and sampling

MARRMoT provides model code and recommended parameter ranges but does not include

any parameter optimisation, parameter sampling or sensitivity analysis methods. This is a

conscious choice because these methods continue to be developed and keeping a latest, state-

of-the-art version of each packaged in the MARRMoT distribution is infeasible. We refer the

reader to e.g. Arsenault et. al. [16] for a recent discussion of various optimization methods,

to e.g. Beven and Binley [44] for a recent discussion of GLUE-based uncertainty analysis

and to Pianosi et. al. [257] for a recent publication of an open-source sensitivity analysis

toolbox. Application of any of these methods with MARRMoT models is straightforward.

The User Manual provides workflow examples for parameter sampling and parameter

calibration, which can be used as a starting point to integrate parameter optimization,

sampling or sensitivity analysis methods.

4.5.5 Possible extensions

Lists of contemporary relevant hydrologic models are hard to come by. Such a list would

always be incomplete because new models and model variants continue to be developed.

As such, there is no reason to assume that the current 46 models in MARRMoT showcase

all possible lumped conceptual hydrologic models. Likewise, although MARRMoT includes

a wide variety of flux equations, this list should not be assumed to be complete. The

MARRMoT User Manual therefore provides detailed guidance on creating new model and

flux functions, and the code’s location and licensing on Github allows these new models to

be shared freely. Extensions to the framework are thus possible and encouraged.

Currently lacking in the code is the possibility to use adaptive time stepping. Fixed-step

Implicit Euler approximations are sufficiently accurate for most applications [72, 160, 285]

but adaptive time-stepping can provide additional benefits [78, 161, 285]. Our initial

assessment is that it would be relatively straightforward to replace the current fixed-step

time-stepping implementation with adaptive time-stepping (see e.g. Clark and Kavetski

[72] for further reading on adaptive time-stepping).

4.6 Code availability and dependencies

MARRMoT is provided under the terms of the GNU General Public License

version 3.0. MARRMoT code and User Manual can be downloaded from

https://github.com/wknoben/MARRMoT (DOI: 10.5281/zenodo.2482542). Additional

documentation can be found in the Supplementary Materials to this paper. MARRMoT has

been developed on Matlab version 9.2.0.538062 (R2017a), with the Optimization Toolbox
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Version 7.6 (R2017a). The Octave distribution has been tested with Octave 4.4.1 and

requires the ”optim” package. See the User Manual for some detail regarding running

MARRMoT in Octave.

4.7 Conclusions

This paper introduces the Modular Assessment of Rainfall-Runoff Models Toolbox (MAR-

RMoT). This modelling framework is based on a review of conceptual hydrologic mod-

els. Across these models, over 100 different flux equations and 7 different Unit Hydro-

graphs (UHs) are used. These are implemented as separate functions and each model

draws from this library to select the fluxes and UHs it needs. This results in stan-

dardized implementations of 46 unique, lumped model structures. The framework is

implemented in Matlab, can be used in Octave, and is provided as open source software

(https://github.com/wknoben/MARRMoT; DOI: 10.5281/zenodo.2482542). Requirements

for running a model are simple: (i) time series of precipitation, potential evapotranspira-

tion and optionally temperature, (ii) initial storage values, (iii) settings that specify the

numerical integration method (currently provided are Implicit Euler (recommended) and

Explicit Euler) and Matlab solver behaviour, and (iv) values for the model parameters

(these can be sampled or optimized from parameter ranges provided as part of MARRMoT).

MARRMoT comes with documentation that describes (i) each model and its equations,

(ii) the conversion from model equations to computer code, (iii) the implementation of 7

different types of Unit Hydrographs, and (iv) the references used to inform standardized

parameter ranges,. The User Manual provides guidance on navigating the Matlab func-

tions in which each model is implemented, several examples of how the framework can

be used (with workflow scripts that show the Matlab code required for these analyses),

information on how to create new models or flux functions, and several small modifications

that can speed up the model code by disabling certain output messages from Matlab’s

built-in solvers. The main purpose of MARRMoT is to enable multi-model comparison

studies and objective testing of model hypotheses. Additional benefits can be gained from

the framework’s documentation, which provides an easy-to-navigate comparison of 46

unique conceptual hydrologic models. MARRMoT is provided to the community in the

hopes that it will be useful and to encourage a growing trend of open and reproducible

science.
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LARGE-SAMPLE MODEL COMPARISON

This chapter is based on a draft manuscript that will be submitted as a research article to

Water Resources Research.

Citation: Knoben, W. J. M., Freer, J. E., Peel, M. C., Fowler, K. J. A. & Woods, R. A. (in

prep). Exploring conceptual model structure uncertainty through a large-sample approach:

Comparative analysis of 36 models across 559 catchments. To be submitted to Water

Resources Research.

Abstract

Choosing an appropriate model is a critical aspect of any modelling study. Previous studies

have shown that the choice of model structure, i.e. a model’s selection of states and fluxes

and the equations used to describe them, has an important impact on model performance.

This work investigates differences in performance of 36 lumped conceptual model struc-

tures, used for daily streamflow simulation in 559 catchments across the United States.

Model performance is quantified using three different objective functions based on the

Kling-Gupta Efficiency that focus on high flows, low flows and a combination of high and

low flows respectively. Each model is calibrated for every combination of catchment and

objective function with a Covariance Matrix Adaptation Evolution Strategy (CMA-ES),

using a 10-year calibration period. Model performance is evaluated using a separate 10-

year period. We find that adequate model performance can be achieved in most catchments

for each objective function, but that no single model is capable of this. Instead, nearly

every model is both one of the best choices in certain catchments and one of the worst in
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other catchments. In most catchments, several models achieve performance very similar

to that of the best model for that catchment, resulting in high levels of model structure

uncertainty. This is especially apparent when an objective function is used that focusses

on high flows, in which case models obtain very similar efficiency values. With objective

functions that focus on low and combined flows, larger differences between model struc-

tures are seen and the better model structures can be more clearly identified. We find no

relation between model performance during calibration or evaluation periods and number

of model parameters, nor is there evidence of increased risk of overfitting for models with

more parameters. However, we do find that certain structures seem better suited to certain

objective functions and we formulate several hypotheses to investigate why this might be

the case. We attempt to relate model performance to catchment attributes such as climate,

geology, topography, soil type and streamflow signatures and report that the clearest link is

between model performance and streamflow signatures. This indicates that certain models

are inherently better suited for certain flow regimes, but the relation between flow regimes

and catchment attributes, and the relationship between catchment attributes and model

performance, remains elusive. Due to the intensive computational demands inherent to

large-sample studies such as this, calibration results of all models (parameters, simulated

model storages and fluxes, and obtained efficiency values, as well as source code) will be

made available for further investigation once calibration of the final 10 models completes.

5.1 Introduction

There is an ongoing debate in hydrology whether a ”one model fits all” approach is realistic,

based on the assumption that the fundamental hydrological processes are the same every-

where [e.g 103, 198, 255, 273]. The assumption that this is true has led to development

of various hydrological models which are now applied across a wide range of catchments

(see e.g. discussion of the GR4J model in [103] and consider more recent applications

of this model in 142 catchments in the US [245]). This assumption is contrasted at the

coarser catchment scale by the concept of ”uniqueness of place” [34]; the idea that in a

practical sense every catchment is unique because there are limits to our understanding of

fundamental processes and the availability of sufficiently detailed measurements. As a

result of this uniqueness, many hydrological models have been developed that all aim to

represent the dominant processes in a given catchment [e.g. 298] but, importantly, these

models tend to include different hydrologic processes or use different equations for the

same processes. In theory, we should be able to use a single model based on fundamental

hydrologic principles, but in practice there are many different models available that all

represent a certain view of what constitutes these fundamental hydrologic processes (often
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informed by the hydrologic conditions in the catchment(s) where the model was originally

developed). Choosing an appropriate model out of all possible options is critical if the model

is to be used for prediction, especially if the prediction conditions (e.g. expected climatic

forcing) are different from the conditions used to develop the model and/or calibrate any

model parameters [173].

Within the sub-set known as conceptual models (i.e. bucket-type models) that is the

focus of this thesis, some models employ a low-parameter, process-aggregated approach (e.g.

GR4J: 4 parameters, fluxes represent aggregated results of all possible processes [255]).

Others follow a process-explicit approach (e.g. MODHYDROLOG: 15 parameters, fluxes

represent e.g. interception, infiltration, surface storage, groundwater-channel exchanges

[69, 71]). Many models are somewhere in between (e.g. VIC: 10 parameters, fluxes represent

interception but also an aggregated runoff contributing area [194]). The choice of model

structure to use is one of the main sources of uncertainty in a modelling study [e.g.

11, 80, 104, 106, 185, 325] but between-model differences are currently not well understood

[65, 128].

Large-sample modelling studies can increase our understanding of model functioning

and the need for them has been discussed often [e.g. 11, 82, 111, 144, 190, 198, 254, 293,

299]. The consensus seems to be that assessing a single model’s performance under a wide

range of different conditions can either lead to increased understanding through model

failure or improve our confidence in the model’s abilities. Comparing the performance of

different models for a given catchment can lead to increased understanding of hydrologic

similarity and between-model differences. Studies that follow these approaches usually

compromise on either the number of models or the number of catchments. For example,

Franchini and Pacciani [111] uses 1 catchment and 7 models; Euser et al. [98] works with

2 catchments and 11 models; Seiller et al. [293] uses 2 catchments and 20 models; Nijzink

et al. [233] uses 3 catchments and 4 models; Lidén and Harlin [195] uses 4 catchments and

1 model; De Boer-Euser et al. [88] works with 5 catchments and 8 models; Krueger et al.

[185] uses 6 catchments and 72 models; and Bell et al. [28] and Moore and Bell [222] work

with 9 catchments and 10 models. This is a logical result of large-sample studies that need

to balance ”depth with breadth” [130], in order to keep analysis and visualization of results

manageable. There are studies that use both a larger model and larger catchment sample

(e.g. Perrin et al. [254] uses 19 models in 429 catchments and Van Esse et al. [325] uses

13 models in 237 catchments). However, especially in these larger samples, investigating

every interesting individual case is infeasible and instead lessons must be learned from

emergent patterns across the full sample [144].

Large-sample emergent patterns can provide unique insights in how well models

function across a variety of different catchment types and provide insight in hydrologic

87



CHAPTER 5. LARGE-SAMPLE MODEL COMPARISON

similarity between different places. Ideally, these findings are generalisable, because this

allows the modelling of ungauged catchments through regionalisation approaches. This

requires (i) an appropriate model choice for the gauged catchment, and (ii) a thorough

understanding of what makes catchments hydrologically similar and thus how appropriate

it is to transpose a model from a gauged to ungauged catchment. However, as mentioned

earlier, finding an appropriate model for a given catchment is not straightforward, nor is

accurately defining hydrologic similarity. Hydrology currently lacks a complete catchment

classification scheme [209, 334] but certain aspects of hydrologic similarity are well studied.

It is well known that climate plays a dominant role in determining streamflow statistics

across large scales [29, 58, 179, 219] and climatic conditions have been linked to conceptual

model performance as well [e.g. 86, 195, 218, 325, 326]. Less is known about the influence

of catchment characteristics such as geology, vegetation and topography on streamflow

regimes and by extension on model performance. Large-sample results [3, 241] suggest

that catchment attributes are of lesser importance than climatic conditions in determining

certain hydrological signatures, but small-scale results suggest that knowledge of local

catchment attributes is critical for model development and improvement [105, 190], and

that hydrologic behaviour might vary in response to climatic and landscape gradients

[62]. Recent development of large-scale hydro-climatic data sets [4, 8] makes it possible to

investigate the relation between model performance and catchment characteristics on a

large scale.

Given the current incomplete knowledge on between-model differences and the avail-

ability of large-sample data sets, an opportunity exists to study similarities and differences

in the behaviour of multiple different models across a wide variety of places, and inves-

tigate whether emergent patterns in the relationship between catchment structure and

model structure exist. The aim of this chapter is to explore model performance and model

structure uncertainty in a wide range of different catchments and relate these findings to

catchment attributes such as climate, topography and streamflow signatures. We simulate

streamflow in 559 non-human impacted catchments across the United States, using 36

unique model structures from the multi-model framework developed in Chapter 4. Models

are used in a lumped (catchment-averaged) fashion. On a per-catchment basis, we quantify

model structure uncertainty in terms of different KGE metrics. On a per-model basis, we

investigate whether certain models are inherently better suited for certain performance

metrics (e.g. with a focus on high flow simulation) or certain regions (e.g. in terms of climate

or catchment attributes). The results presented here contribute to answering several open

research questions posed by Clark et al. [78]:

• What are the differences between model structures when using different evaluation
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criteria?

• Is the trade-off between objective functions the same for different model structures?

• Are some models inherently better than others at reproducing certain parts of the

hydrograph?

• Is it possible to identify model structures that are best suited for different climates

or catchment types?

• Are relations between model performance and model structure consistent across

basins?

5.2 Data and models

5.2.1 CAMELS catchment data

This study uses the CAMELS data set [4], which provides time series of meteorological

variables and streamflow [229], and tables with catchment attributes for 671 catchments in

the contiguous United States. Following recommendations for practical application [4, 229],

we perform several basic data checks and remove those catchments with large (>10%)

discrepancies between catchment area as used for averaging of the meteorological time

series and area as published by the USGS [323] or the higher resolution GAGES II data

set (provided as part of the CAMELS data set). We use preliminary screening [e.g. 206] to

remove those catchments that fall outside the energy-limit and water-limit on the Budyko

curve. This leaves 559 catchments for use in this study, distributed across the contiguous

US (Figure 5.1). We use the years 1989-2009 in this study, because these are sufficiently

long to calibrate and evaluate the models, without being impacted by too many missing

streamflow observations [4, 229]. Streamflow records are complete during this period for

546 catchments. For the remaining 13 catchments, days with missing streamflow values

are ignored during the calculation of objective function values. Missing values account for

0.013%, 0.25%, 0.41%, 1.1%, 1.2%, 1.2%, 1.2%, 2.9%, 3.3%, 3.4%, 3.6%, 4.1% and 4.8% of

all observations in these catchments.

The provided meteorological time series [229] contain daily values of precipitation

[mm/d], snow water equivalent, [kg/m2], minimum and maximum air temperature [oC],

duration of daylight period [sec/day], incident shortwave radiation [W/m2] and daily

average water vapour pressure [Pa]. Three different forcing products are provided, and

for each product the time series are available as catchment-averaged values, separated by

elevation band, and per hydrological response unit. This study investigates lumped models
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Figure 5.1: Selected catchments from CAMELS data set, after removing those catchments
with uncertain area estimates (>10% differences between two geo-spatial data sets and the
USGS reported value) and water balance errors. (a) Geographical location and reason for
exclusion from this study. (b) Catchment area distribution of the 559 selected catchments.
(c) Aridity index against 1 - runoff ratio for the 559 selected catchments.

(catchments are treated as a single entity) and thus uses catchment-averaged forcing data.

We follow Newman et al. [229] and Addor et al. [4] in using the Daymet product, which is

based on the highest spatial resolution of all three products (1km x 1km compared to 12km

x 12km for Maurer and NLDAS products) and is more likely to provide accurate data for

smaller catchments and locations with complex topography. Time series of daily potential

evapotranspiration (PET) are estimated using the Priestley-Taylor method [261]:

PET = αPT

λ

s(Rn −G)
s+γ (5.1)

Where αPT is the Priestley-Taylor coefficient [−], λ is the latent heat of vaporization of

water [MJ/kg], s is the slope of the saturation vapor pressure-temperature relationship

[kPa/oC], Rn is the net radiation [MJ/m2/d], G is the soil heat flux [MJ/m2/d], and γ

is the psychometric constant [kPa/oC]. We assume G to be zero and assume a reference

crop albedo of 0.23 (short grass) in our calculations. λ, s, Rn and γ are calculated using

the Daymet variables, the day of year, catchment-average latitude and elevation, and

various equations for the constituent radiation terms [7, 212]. αPT is set to 1.26, which

is an average value for evaporation under saturated (energy-limited) conditions and thus

appropriate for estimating potential evapotranspiration [261]. Negative estimates of PET
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occasionally occur when outgoing longwave radiation exceeds net incoming shortwave

radiation, and Rn thus reaches negative values. These negative values are corrected to

zero.

Data for each catchment is divided into two 10-year periods covering 01-Jan 1989 to

31-Dec 1999 and 01-Jan 2000 to 31-Dec 2009 respectively. Average climate characteristics

are approximately constant during these periods with the exception of regions with high

mean precipitation (P̄ ≥ 5mm/d, precipitation has decreased somewhat) and regions with

low mean temperatures (T̄ ≤ 5oC, temperatures have increased). Estimated potential

evapotranspiration rates are approximately constant between the two periods (Figure C.1).

5.2.2 MARRMoT modelling framework

This study uses the Modular Assessment of Rainfall-Runoff Models Toolbox (MARRMoT)

v1.0 [178]. MARRMoT contains model code for 46 unique conceptual model structures

within a uniform framework. This has the main advantage that the implementation of

models and fluxes is consistent and any differences in simulation are thus solely due to

differences in model structure (i.e. the choice of states and processes to include in the

model, and the choice of equations to represent them). The MARRMoT models are all

based on published literature and cover a wide range of possible structures, from the

traditional 1-parameter overflow bucket model to structures with up to 8 stores or 23

parameters. The toolbox is provided with literature-based parameter ranges for each

model. These aim to standardize the parameter ranges as much as possible, so that models

have the same amount of parameter-freedom (e.g. in the case of interception capacity, all

models that simulate the interception process use a range of 0-5 mm). These ranges are

optional but no changes to them were deemed necessary. The differential equations that

express each model’s changes in storage(s) with time are numerically approximated with

a fixed-step Implicit Euler method, which uses the same step size as the forcing data.

This provides better accuracy and stability compared to the more common Explicit Euler

method [167, 285].

Due to time constraints and the intensive computational demands of the Implicit Euler

approximation method coupled with the large sample of catchments, not all MARRMoT

models could be used in this work. At the time of writing, calibration has completed for 36

of the models. These results will be made publicly available for further analysis and will

be updated as the remaining models finish calibration. Figure 5.2 provides an overview of

the 36 models for which results are currently available and used in this work.
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Figure 5.2: Summary of the 36 models used in this work (adapted from Knoben et al. [178],
Figure 2). Models are sorted by the number of stores first (indicated in the left column) and
by their number of parameters second (bars in right column). Model ID refers to a constant
identifier that is used in the MARRMoT documentation and subsequent analysis in this
work. The middle part of the figure gives an overview of processes each model’s store(s) is
intended to represent. Note that MARRMoT model implementations can deviate from the
source models they are based on. See the MARRMoT documentation for details.
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5.3 Method

5.3.1 Model set-up

This study uses the Covariance Matrix Adaptation Evolution Strategy (CMA-ES) [136] to

optimize model parameters, using data from the period 1989-1998. Model performance

is evaluated using data from 1999-2009. CMA-ES is a single-objective optimizer that

compares favourably to various other methods for finding the global optimum of difficult

functions and in rugged objective function landscapes [135, 136]. The algorithm has seen

successful application in hydrology [e.g. 16, 110], as well as many other fields [134]. The

algorithm is allowed to run until either the change in objective function or the change in

parameter values drops below a threshold of 1E-3 (absolute change in either value), which

we consider an acceptable compromise between accuracy and speed. We use three objective

functions based on the Kling-Gupta Efficiency (KGE) [129]:

KGE = 1−
√

(r−1)2 +
(
σsim

σobs
−1

)2
+

(
µsim

µobs
−1

)2
(5.2)

Where subscripts obs and sim refer to observed and simulated time series of flow

respectively, r is the linear correlation coefficient between observed and simulated flow, σ

denotes the standard deviation of flows and µ the mean of flows. We aim to compare model

performance for a variety of flow conditions, therefore our choice of objective functions

emphasizes higher flows, lower flows and a combination of both. The objective functions

used are (O1) the KGE calculated on time series of flow, KGE(Q), (O2) the KGE of inverse

flows, KGE(1/Q) (shown to be more appropriate than a log transform to emphasise low

flows, [e.g. 262, 272] and (O12) the mean of KGE(Q) and KGE(1/Q). For inverse flows, we

avoid problems with zero flow values by adding a constant e to observed and simulated

flows before the transformation is performed [262]. Following Pushpalatha et al. [262], e is

set at 1% of the mean observed flow.

Model warm-up periods are used to reduce the impact of (uncertain) initial conditions

on model performance. Recent studies have attempted to provide guidelines for warm-up

period length in conceptual models [172, 263] but these studies are limited in number

of models (1 and 2, respectively) and catchments (18 and 1 respectively) and therefore

difficult to generalise to a large-sample study such as this. Instead of using a fixed number

of warm-up days, we determine the initial storages in an iterative procedure by letting

the model repeat year 1 of the data period until the stores reach an equilibrium for the

1st day of the year (<1% change in storage value(s) between runs). Storage values might

not converge for certain parameter sets (e.g. when a store of unlimited depth has very low

outflow), in which case the procedure is stopped after 50 iterations.

93



CHAPTER 5. LARGE-SAMPLE MODEL COMPARISON

5.3.2 Analysis of results

Given the size of this sampling study, we must necessarily limit our analysis to a few

key questions. The analysis is divided into three distinct parts. First, we investigate

model structure uncertainty on a per-catchment basis. Next, we investigate inter-model

differences using aggregated efficiency values. Finally, we synthesize our findings about

catchments and models, and attempt to relate inter-model differences to structural uncer-

tainty in the catchments. Each aspect is detailed in the following sections.

5.3.2.1 Quantification of model structure uncertainty

In the first part, we attempt to quantify conceptual model structure uncertainty on a

per-catchment basis. There are no universally agreed metrics to quantify model structure

uncertainty but using differences in objective function values is a common approach [e.g.

106, 141, 344]. Therefore, we define high model structure uncertainty as cases where

several models achieve similar efficiency values, which makes it difficult to choose the most

appropriate model and thus makes the structural uncertainty high. Cases where different

models achieve very different efficiency values are examples of low structural uncertainty,

because the choice of the most appropriate model is straightforward. To quantify model

structure uncertainty, we report the maximum evaluation efficiency per catchment and

the difference in efficiency values between the best model and the 10th percentile model

(i.e. with 36 models we compare performance between the 1st and 32nd model). This gives

some idea of how well the data in a catchment can be modelled by a variety of models

and how large the variation of efficiency values in the model sample is, without being too

sensitive to very poorly performing models. We also calculate Cumulative Distribution

Functions (CDFs) of the number of models that fall within 0.01, 0.05, 0.10 and 0.25 KGE

value [-] from the best model for each catchment. For comparison, we also give the number

of models per catchment that outperform the standard (albeit low) benchmark that is the

mean flow (i.e. KGE = 1−p
2 , equivalent to Nash-Sutcliffe Efficiency (NSE) = 0). These

metrics give better insight into the number of models that have similar performance for

each catchment, compared to the first approach which shows variation in the model sample

as a whole.

5.3.2.2 Model inter-comparison

In the second part, we investigate differences between individual models across the 559

catchments and 3 objective functions. Earlier studies have found that models with a higher

number of parameters are at risk of being overparametrised, a scenario in which the

94



5.3. METHOD

model has more degrees of freedom (i.e. parameters) than can be robustly estimated from

the data [254]. This can lead to parameter equifinality and overcalibration. Parameter

equifinality refers to cases where different parameter sets lead to the same objective

function value during calibration. However, there is no guarantee that these parameter sets

lead to similar objective functions values during evaluation. Overcalibration (also called

overfitting) refers to cases where the model is calibrated to noise in the calibration data

[40, 284, 295]. Both parameter equifinality during calibration and model overfitting can

lead to a performance reduction during model evaluation, due to differences in parameter

sensitivity and differences in data noise respectively (note that model performance can

also improve during evaluation, but we focus mostly on the decline of model performance).

Additionally, model performance might change as a result of changes in climatic forcing

and/or catchment conditions between calibration and evaluation periods. Models with

highly identifiable parameters are particularly at risk if the distribution of ’good’ parameter

values is slightly different between calibration and evaluation periods (i.e. a narrow range

of parameter values leads to high efficiency values, but this narrow range is different

between both periods). We investigate whether certain models are more consistent in terms

of efficiency values between calibration and evaluation, and how the number of model

parameters relates to these results. Additionally, we perform exploratory analysis aimed

at finding out whether certain models are inherently better than others at reproducing

different parts of the hydrograph (expressed through the three objective functions) and

whether the trade-off between objective functions is the same for different model structures.

To investigate (1) whether models with more parameters are better at fitting calibration

data than models with fewer parameters, (2) whether the number of parameters affects

the stability of model performance and (3) whether certain models perform better for

certain objective functions, we compare the distributions of model performance values of

all models. We do this visually on a per-model basis, with histograms of KGE values during

calibration, evaluation and the change between both periods. We then investigate whether

this relates to the number of parameters in each model by quantifying the presence and

statistical probability of trends in the median value of these distributions with a Mann-

Kendall test [120, 169, 204]. Because both histograms and the Mann-Kendall test use

aggregated metrics (respectively they use distributions and probabilities associated with

median model performance), we lose information on model performance per catchment.

Therefore we perform this assessment on model performance ranks as well, which allows

us to investigate whether certain models are inherently better than others, and if these

findings vary for different objective functions.
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5.3.2.3 Relation between model structure performance and catchment
attributes

The CAMELS dataset provides catchment attributes spread across six main categories:

climate, geology, topography, soil, land cover and streamflow [4]. We attempt to use these

descriptors to clarify the relation between model performance and catchment type. However,

efficiency values cannot directly be compared between places [see e.g. 279, although this

paper discusses Nash-Sutcliffe Efficiency, their points apply to KGE values as well]. We

are thus limited to investigating the relative performance of each model compared to

other models in our study by using model ranks instead of efficiency values. Furthermore,

hydrology currently doesn’t have a way to formally classify catchments [209, 334]. We

therefore don’t know which catchments are supposed to be similar and where we thus might

expect similar performance for any given model. We thus compare model ranks directly to

the catchment attributes given in the CAMELS data for want of a better alternative. We

visually investigate the relationship between model ranking and catchment attributes on

a per-model basis with scatter plots. We summarize and quantify these findings through

Spearman rank correlations.

5.4 Results

5.4.1 Quantification of model structure uncertainty

Figure 5.3 shows the maximum achieved evaluation efficiency for each objective function in

each catchment and the previously described measure of model structure uncertainty. Both

the maximum efficiency values and structure uncertainty are subject to strong spatial

organization (note the differences between both coasts and the central US), although

exceptions to the pattern exist. In the majority of catchments, at least one model out of 36

is able to achieve reasonable objective function values (Figure 5.3a, 5.3c, 5.3e; note that

this is not necessarily the same model everywhere) and both spatial patterns and KGE

distributions are roughly similar for the three objective functions. Note that the definition

of ”reasonable” objective function values relies on a subjective assessment of adequacy

associated with certain efficiency values (see e.g. [155] for a ranking of efficiency values

from ”unsatisfactory” (NSE < 0.3) to ”very good” (NSE ≥ 0.7) but the metric itself does not

contain any inherent justification for these terms. We chose the term ”reasonable” because

in nearly every catchment at least one model improves on the traditional benchmark

obtained from the mean flow, i.e. KGE = 1−p
2 ≈−0.41 (functionally equivalent to NSE =

0). However, maximum evaluation efficiency varies considerably across the 559 catchments.

For the high flow objective function, maximum efficiency (i.e. what the best model out of 36
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achieves) ranges from -0.11 to 0.93. This range is -0.74 to 0.96 for the low flow objective

function and -0.15 to 0.91 for the combined flow objective function. In geographical terms,

maximum model performance tends to be low in the central US (plains areas east of the

Rocky Mountains) and certain parts of the south west (Figure 5.3a, 5.3c, 5.3e). These areas

share a tendency to be very arid (see Figure 3c in Addor et al. [4]).

Figure 5.3: Overview of maximum model efficiency for three objective functions (left column)
and a measure of model structure uncertainty defined as the difference in efficiency between
the best (model 1) and the 10th percentile model (model 32). Note that axes are capped
at [0,1] (figures a, c, e) and [0,2] (figures b, d, f) for clarity; efficiency values for 1/3/1
catchments are cut off in figures a/c/e, and lumped into the 2+ category for 7/225/172
catchments in figures b/d/f.

Large differences exist between the three objective functions in the extent of model

structure uncertainty (Figure 5.3b, 5.3d, 5.3f). With the high flow objective function, model
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structure uncertainty is relatively high in all catchments (i.e. models perform similarly,

making it hard to distinguish between them). The difference between models that work

well and those that work less well is much larger for the low flow and combined objective

functions, suggesting that more models struggle with accurate representation of recessions

and/or low flow periods. Interestingly, there is no obvious relation between maximum model

performance and magnitude of model structure uncertainty. This indicates that in some

regions all models perform equally well or poorly, irrespective of how high (in KGE terms)

this performance is. Model structure uncertainty tends to be lower in the Rocky Mountains

(Figure 5.3b, 5.3d, 5.3f, it is easy to distinguish the better and worse performing models

here) and this can be explained by many models not having a snow routine. In case of the

low (Figure 5.3d) and combined flow objectives (Figure 5.3f) differences between models are

large outside the Rocky Mountains as well. There are no obvious physical characteristics

shared between these catchments, but the streamflow regimes in these regions tend to be

baseflow-dominated and non-flashy (analysis not shown for brevity). Many models struggle

to achieve high KGE values for these regimes but Figures 5.3c and 5.3e show that this is

not impossible, only that an appropriate model structure must be used.

Figure 5.4 shows summary plots of the number of models that fall within certain

performance thresholds. Curves that stay closer to the bottom indicate that fewer models

are 0.01/0.05/0.10/0.25 or less KGE value away from the best model in a given catchment.

For example, in Figure 5.4a the orange line indicates that in approximately 350 catchments,

no model is less than 0.01 KGE value away from the best model, while in the remaining 200

catchments at least 1 and up to 8 models have performance that is less than 0.01 KGE away

from the best model for each catchment. These plots show that model structure equifinality

can be a real issue (confirming findings by e.g. Perrin et al [254]): in approximately

200/150/100 catchments (high/low/combined flow objective) there are at least two and up to

eight/seven/four model structures that have virtually identical performance during model

evaluation (difference <0.01 KGE from the best model). Similarly, it is also clear that the

KGE score obtained from mean runoff is not a particularly taxing benchmark, because the

majority of model structures manage to beat this benchmark in nearly every catchment

(interestingly though, there are several catchments where the mean flow is very difficult

to beat, showing that the severity of this benchmark is catchment-dependent; this will

be touched upon in Chapter 6). Both findings combined indicate that achieving efficiency

values above the traditional mean runoff benchmark is by no means a guarantee of having

used a catchment-appropriate model structure, nor that achieving a ”high” efficiency value

during evaluation (for a given definition of ”high”) means that the only appropriate model

has been found. Without additional model falsification tests it is impossible to identify a

single clearly most appropriate model in the vast majority of catchments studied here.
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Figure 5.4: Summary plots showing the number of models that fall within certain per-
formance thresholds. The red line shows the number of models in each catchment that
outperform the traditional benchmark that is the mean runoff (KGE = 1−p

2 = −0.41,
analogous to NSE = 0). The other lines show the number of model structures that are
within 0.01, 0.05, 0.10 and 0.25 KGE value of the best performing model for each catchment.
Note that catchments are sorted independently for each CDF and that lines thus should
not be compared on a per-catchment basis.

5.4.2 Model inter-comparison

The second research question, which focuses on differences between model structures, is

answered in two parts: the first investigates the relationship between model performance

and number of parameters, the second investigates the relative suitability of models for

different objective functions.

5.4.2.1 Number of parameters does not adequately explain differences
between models

Figure 5.5 summarizes the performance of all 36 models during high flow simulation

(KGE(Q) objective function), sorted by the number of calibrated model parameters. Con-

trary to expectations, a higher number of model parameters does not necessarily lead

to higher efficiency values during calibration (Figure 5.5a, darker shades indicate more

parameters; see Figure 5.2 for more details about each model). In fact, several of the

models with lower distributions of calibration efficiency ranges (e.g. m21, m26) have a

relatively high number of free parameters (9 and 10 respectively). Both simpler (e.g. m07, 4

parameters) and more complex models (e.g. m35, 15 parameters) show higher distributions

of efficiency values during calibration. Figure 5.6a shows the median model performance

during calibration as well as aggregated median model performance per number of free

parameters. A Mann-Kendall test shows that there is a tendency for models with a higher

number of parameters to perform better during calibration (relatively large and positive
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Z-value). However, this trend is not particularly significant (p = 0.11). Additionally, this

trend is in a large part the result of the poor performance of the 1-parameter model.

Removing this model from the analysis gives Z = 0.94 with p = 0.35.

Model performance during evaluation of the high flow metric (Figure 5.5b) shows a

similar pattern: there are certainly differences between the ranges of efficiency values

obtained by different models, but this seems unrelated to the number of parameters each

model has. A Mann-Kendall test shows that models with a higher number of parameters

tend to have better median evaluation values at a reasonably significant p-value (Z = 1.97,

p = 0.05, Figure 5.6b). However, here too the poor performance of the 1-parameter model

strongly affects this trend (Z = 1.36, p = 0.18 when m01 is removed from the analysis).

Overall, evaluation efficiency ranges are somewhat lower than calibration ranges, which

indicates either a change in catchment conditions that the models insufficiently account

for (e.g. change in climatic forcing), or a degree of overcalibration (i.e. the models are

calibrated to a certain amount of data noise). Analysis of each model’s performance change

from calibration to evaluation period (Figure 5.5c) shows that, whichever is the cause,

all models suffer from this problem approximately equally. Figure 5.5c also shows that

performance decline during evaluation is not a given, and in approximately a quarter of all

catchments model performance instead increases during evaluation (note that these are

not necessarily the same catchments for each model). The number of parameters does not

seem to relate to the performance change any model experiences (Mann-Kendall results:

Z =−1.07, p = 0.28, Figure 5.6c) and the number of parameters might thus not be a useful

way to summarize model structures.

These conclusions are the same for the low flow (KGE(1/Q)) and combined flow

(1
2 [KGE(Q)+KGE(1/Q)]) objective functions (see Supporting Information, Figure C.2-

C.5). However, models m21 and m26 that were highlighted as having low efficiency values

during calibration with the high flow metric, achieve much better efficiency ranges when

the models are calibrated using the low flow metric (Figure C.2a). This suggests that

(certain aspects of) model structures directly affect how well or poorly the model performs

for certain objective functions. Additionally, the histograms showing low flow performance

(Figure C.2) are more flat and spread out than those showing high flow performance (Fig-

ure 5.5). This shows that model performance is not consistent between different objective

functions. Adequate model performance for a given objective function is no guarantee of

adequate performance for a different objective.
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Figure 5.5: Summary of model performance during high flow simulation (KGE(Q)) in all
559 catchments. Models are sorted by number of parameters, with the model with the
most parameters at the top (shown in brackets after each model ID). Coloring and model
IDs match those used in Figure 5.2. Each histogram is based on 559 values. Red lines
show the 25th, 50th (thick line) and 75th percentiles. Bin widths have been set at 0.03
KGE [-] through trial-and-error, settling on this value because it shows the distributions in
a sufficient, but not overly high, level of detail. (a) Calibration efficiency. (b) Evaluation
efficiency. (c) Difference in efficiency between calibration and evaluation period.

5.4.2.2 Model suitability for different objectives

We use model ranks to compare model performance on a per-catchment basis (Figure

5.7). For all models, the distribution of calibration ranks (Figure 5.7a) are similar to their

distribution of evaluation ranks (Figure 5.7b) and there appears to be no relation between

a model’s number of parameters, whether it will rank high or low in either calibration or

evaluation, and the model’s change in relative rank between calibration and evaluation

periods (Figure 5.7c). Some of the ranking distributions during calibration and evaluation
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Figure 5.6: Overview of median model performance across 559 catchments (open circles)
and median aggregated model performance per number of calibrated parameters (red dots)
for the high flow (KGE(Q)) objective function. Statistics are shown for (a) the calibration
period, (b) the evaluation period, and (c) the robustness of model performance given as
KGEval −KGEcal . Mann-Kendall statistical tests using aggregated model performance
show the relative strength and direction of trends (Z-value, negative values indicate
downward trend whereas positive values indicate an upward trend) and the associated
probability level (p).

cannot be satisfactorily summarized with the median, nor any other single value (e.g.

the hourglass-shaped distributions of m37, m34, m12). This prevents the meaningful

use of the Mann-Kendall test in these cases. The median does seem an appropriate

metric to summarize the models’ change in rankings (Figure 5.7c) and a Mann-Kendall

test here confirms the lack of any trends related to the number of model parameters

(Z = 0.36, p = 0.72). These findings also apply to the low flow objective function (Figure

C.6; Mann-Kendall test on low flow rank change: Z =−0.36, p = 0.72) and to the combined

flow objective function (Figure C.7; Mann-Kendall test on combined flow rank change:

Z =−0.18, p = 0.86).

The model rankings (Figure 5.7, C.6, C.7) show that certain models have strong ten-

dencies to perform well/poorly for certain objective functions (see e.g. m21, m22 and m26,

that tend to rank low during high flow simulation but high during low flow simulation;

compare Figure 5.7, C.6). Model ranks are summarized in Figure 5.8a, showing how often

each model ranks in the top and bottom 3. Models that do not rank in the top or bottom

3 are indicated in green. The plot shows that no single model is clearly the best choice

everywhere, because virtually all models appear in both the top and bottom 3 ranks for

at least one of the 559 catchments. Exceptions are model m01 which does not rank in the

top 3 for the low and combined flow objective functions; models m18 and m22 which do

not rank in the bottom 3 for the combined flow objective function; and model m28, which
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does not rank in the bottom 3 for the high and combined flow objective functions. That

said, there are certainly models with more well-rounded performance than other models

show. Figure 5.8b shows per objective function the 90th percentile model efficiency during

evaluation. We can distinguish several model categories: (1) models that perform well on

all three objective functions (i.e. the top-right corner with dark blue dots); (2) models that

perform well for high flows but less so for low flows (i.e. models in the lower centre); (3)

models that perform well for low flows but less so for high flows (i.e. models in the upper

left corner); and (4) models that perform well on the two single objectives but lose some

performance on the combined objective (i.e. models close to the 1:1 line with lighter colours).

These patterns start to form around the 50th percentile performance and are relatively

consistent up to the 95th percentile (Figure C.8, C.9).

It is noteworthy that model m28 is consistently one of the best, if not the best, per-

forming model at very different percentiles (m28 is not the single best model everywhere

though, as Figure 5.8a and C.9 show). The model has a unique feature not seen in any

other model, namely a double parabolic curve that is used to represent the fraction of

the catchment that contributes to free drainage [153]. We can speculate that this gives

the model a unique capability that allows it to perform well in a wide variety of catch-

ments. An obvious example of the impact of model structure choices is given by the model

ranks that show an hourglass pattern (e.g. m37, m35, m34, m06; Figure 5.7a, 5.7b). These

models all include a snow routine, which in certain catchments places them in top 10

models, whereas in less snow-dominated catchments their relative performance can vary.

As another example, models m21, m26 and m22 show similar high performance on the

low flow objective (Figure 5.8b; top left) and share a structural feature: all three include

a store that represents the fraction of the catchment contributing to runoff which then

drains into a linear reservoir. This construction is also seen in model m13, m28, m29 and

m34, all of which show relatively high performance on the low flow objective function.

However, while it is possible that this combination allows a model to perform well during

low flow simulation, there are many other models without this particular arrangement of

stores that also do well on this objective. There is thus a certain non-uniqueness in which

arrangements of stores and flux equations allow a model to do well on these objectives.

Furthermore, we can only use the results shown in this work as an opportunity to explore

possible hypotheses about model behaviour. Our experimental set-up does not allow us

to test them to either falsify or strengthen our ideas. Further investigation requires a

more thorough examination of model differences and similarities, a detailed formulation of

hypotheses and the construction of appropriate new models to perform these tests, which

is beyond the scope of this work.
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Figure 5.7: Summary of model ranking during high flow simulation (KGE(Q)) in all 559
catchments. Rank 1 is assigned to the model with the highest efficiency value in a given
catchment. Models are sorted by number of parameters, with the model with the most
parameters at the top (shown in brackets after each model ID). Colouring and model
IDs match those in Figure 5.2. Each histogram is based on 559 values. Note that each
histogram is scaled relative to its own maximum, meaning that absolute heights should
not be compared between different rows. Red lines show the 25th, 50th (thick line) and
75th percentiles. (a) Calibration ranking. (b) Evaluation ranking. (c) Difference in ranking
between calibration and evaluation period.
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Figure 5.8: (a) Summary of model ranks during evaluation, showing the number of times
each model is in the top 3 and bottom 3 for each objective function. Blue shades are used for
top 3, red shades for bottom 3 counts. Zero counts are shown in green. (b) Model efficiency
trade-off during evaluation of all three objective functions at the 90th percentile of model
performance; i.e. the lowest model performance per model, per objective function in the
top 10% of catchments. Model 01 falls outside the shown ranges, with KGE : O1 = 0.57,
KGE : O2 =−1.67 and KGE : O12 =−0.88.
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5.4.3 Relation between model structure performance and catchment
attributes

We use scatter plots and correlation analysis to investigate the relationship between model

ranks and the catchment attributes provided as part of the CAMELS data set. Scatter

plots of model ranks for the high flow objective function (not shown for brevity) indicate

that empirical relationships exist between model ranks and certain types of catchments.

An obvious relation exists between models that include a snow component and catchments

where a larger fraction of the annual precipitation occurs as snowfall. In these snow-

dominated catchments, the snow models perform better than models without the capability

to simulate snow accumulation and melt. Figure 5.9 summarizes the relationships between

model ranks and catchment attributes using the Spearman rank correlation coefficient.

This figure only includes catchments where less than 10% of annual precipitation occurs

as snowfall. This clarifies any relations beyond snow, which are much harder to see in a

correlation figure based on all catchments (Figure C.10). The strongest correlations for

most models can be found with streamflow signatures. This suggests that certain models

perform better or worse depending on the flow pattern they are attempting to simulate.

Beyond snow, the link between model performance and climate conditions or catchment

attributes is less well-defined. Using model ranks obtained during low flow evaluation

(Figure C.11, C.12) and combined flow evaluation (Figure C.13, C.14) also shows that

model ranks correlate most strongly with streamflow signature values, and much less so

with catchment attributes used here. Generally speaking, model ranks during low flow

simulation have lower correlations with catchment attributes (Figure C.11, C.12) than

the ranks during high flow simulation (Figure 5.9, C.10). Correlations with catchment

attributes are strongest for the combined flow objective (Figure C.13, C.14). It is possible

that the multi-objective approach of the combined objective function puts greater demands

on the model structure and thus relations between model performance and streamflow

regimes become more pronounced.

Models can be relatively neatly grouped together based on their correlations with

various attributes. In Figure 5.9 (high flow objective), models m17 to m22 seem to perform

similarly well for extreme flow types, i.e. zero/low flows and high flows (for a description of

these signatures, see Addor et al. [3]). Cursory examination of the model documentation

shows that most of these models have a component that allows precipitation to bypass

the soil moisture routine and directly contribute to runoff. Similarly, models m09, m04

and m11 share a general layout that consists of three different flow pathways (saturation

excess, non-linear interflow and baseflow) coupled with a soil moisture threshold that

must be exceeded before interflow occurs. These models seem to perform relatively better
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in wetter catchments with occasional very high flows. Finally, models m21, m26, m28

and m34 perform relatively better in baseflow-dominated catchments without flashy

streamflow behaviour. These particular models share a structural feature that consists

of a soil moisture routine that simulates a variable contributing area, which then drains

into a linear reservoir. This particular feature might also contribute to better relative

performance of these models during low and combined flow simulation (Figure C.12, C.14).

Note that these hypotheses were developed after the models were calibrated, evaluated,

ranked relative to one another and grouped by their correlation with catchment attributes.
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Figure 5.9: Spearman rank correlation between model ranks obtained during high flow
objective function evaluation and CAMELS catchment attributes. Models are ranked from
best to worst, with rank 1 indicating the best model. Only catchments where less than
10% of annual precipitation occurs as snowfall are included in this figure. A similar figure
including all 559 catchments can be found in the Supporting Information (Figure C.10).
Only correlations with p-value < 0.05 are shown. Marker size corresponds to the strength
of the correlation, as does the intensity of the colours. Models are sorted manually in
an attempt to place models with similar correlation patterns close together. Example
interpretation: see the dark purple dot for the combination of model 01 and baseflow index.
This indicates a strong positive correlation. Thus, as the baseflow index of catchments
increases, model 01 tends to be ranked higher, i.e. worse. From a model perspective this is
a sensible result, because model 01 only contains a saturation excess flow mechanism and
no interflow or baseflow mechanism.
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5.5 Discussion

5.5.1 Synthesis

Large-sample analysis such as this study can provide unique insights into our ability

to model a wide variety of catchments and how models differ from one another in a

practical sense. We show that a reasonable model can be found for nearly every catchment

and objective function (Figure 5.3a, c, e), but that there are large differences in model

structure uncertainty between different catchments and objective functions (Figure 5.3b,

d, f). Structure uncertainty is high for high flow simulation (many models have similar

performance to the best model in a given catchment, a comparable finding to the results

of Perrin et al. [254]) and is much lower for the low flow and combined objectives (fewer

models do well in any given catchment). Both maximum model performance and model

structure uncertainty are subject to geographical organization, indicating that for certain

types of catchments, achieving higher KGE values is difficult for many models.

Two catchment features stand out as strongly influencing whether a model will perform

well for a given location. The first is the obvious requirement of a snow component in snow-

dominated catchments (Figure C.10), although the complexity of this snow routine does

not seem to influence performance much. Most models in our sample only include a very

basic degree-day-model using a single temperature threshold for snowfall and snow melt.

Model m37 uses a more complex snow routine that accounts for retaining and refreezing of

liquid water in the snow pack, but that does not seem to give this model much of an edge

over simpler alternatives (see e.g. Figure 5.5 and 5.7). The second feature relates to the

variability of the streamflow regime. Differences between the models in our sample become

apparent in catchments with higher BFI and Q5 values (relative to the other catchments).

Models that simulate a variable contributing catchment area linked to a linear reservoir

seem to do better for these flow regimes than other models in our sample (Figure 5.9).

In contrast, these models do poorly in catchments where the flow regime is less constant

and more prone to extremes. Generally, our results suggest that model structures strongly

dictate which flow regimes a model is able to simulate properly.

The number of model parameters however has little to do with the range of performance

each model achieves across the 559 catchments (Figure 5.5, C.2, C.3). Given that the models

use the same data, same coding framework, same numerical implementation and same

calibration algorithm, the only other source of differences is the model structure (i.e.

the choice of processes and equations). Surprisingly, model performance change during

evaluation seems unrelated to the number of parameters (Figure 5.5, C.2, C.3) and thus

must be due to either differences in model structures or changes in climate or catchment
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conditions between both periods. This contrasts with findings by Perrin et al. [254], who

claim an inverse relation between model robustness (defined in their paper as the decrease

of mean model performance between calibration and verification periods) and number of

model parameters. This pattern is not visible in our sample (Figure 5.5, C.2, C.3) and not

found by our use of statistical tests (Figure 5.6, C.4, C.5). While overfitting (i.e. performance

loss in evaluation due to noise fitting during calibration, [e.g. 40, 284, 295]) is a clear issue

with high-degree polynomials [p. 30, 123], it seems that these principles do not apply to

our sample of conceptual hydrologic models and catchments. Our results suggest that how

the parameters are used in a structure is more important to dictate a model’s capabilities

for a given objective function than how many parameters the model has.

The conclusions presented here are generalizations, and exceptions exist. Figure 5.8a

makes clear that for virtually every combination of model and objective function, a catch-

ment can be found where that model is one of the best choices out of our sample of 36

candidates. Equally, a different catchment will exist where that model is one of the worst

possible choices (again confirming results from Perrin et al. [254]). This highlights a critical

weakness of small-sample studies: conclusions are always conditional on the sample of

models and catchments used and generalisation of findings should thus be done very

carefully. Using larger samples reduces this risk, but it is currently still difficult to quan-

tify exactly how representative any sample of models or catchments actually is. We will

however attempt this in the following section.

5.5.2 How representative are our model and catchment sample?

One of the big challenges in hydrology is knowledge transfer from well-monitored catch-

ments to ungauged ones [e.g. 54]. This relies on a measure of catchment similarity and

a formal way of describing this similarity is so far unavailable [209, 334]. Therefore, we

cannot easily say how well the catchments in this study represent the global distribution

of different catchment types. Open-source data sets of catchment attributes continue to be

developed [e.g. 4, 8] but we currently lack standardised metrics to quantify these attributes

in a hydrologically meaningful way. Even though large-scale studies are increasingly com-

mon [e.g. 24], the lack of relevant high-quality global gridded catchment attribute data sets

means that on a global scale the relationship between catchment attributes and streamflow

regimes is still mostly unknown.

However, we can comment in the range of climatic conditions used in this work. Knoben

et al. [179] defines the global hydro-climate with three dimensionless indices and shows

that catchments that have similar values for these indices tend to have similar streamflow

regimes as well (Chapter 2). The indices describe the annual average aridity (Im), expressed
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Figure 5.10: (a, b) Representativeness of the catchment sample and (c, d) model structures
used in this study. (a) Comparison between the global hydro-climate (grey dots, [179, 180])
and the hydro-climate of the catchments used in this work (coloured dots), shown in 3
different 2D planes. The colour scheme replicates that of Chapter 2. (b) 3D visualization of
the hydro-climate in catchments used in this work. (c) Percentages of streamflow obser-
vations in the model evaluation period that are bracketed by simulations from the model
ensemble, where the models are calibrated using the high flow (O1, KGE(Q)), low flow (O2,
KGE(1/Q)) and combined objective function (O12, 1

2 [KGE(Q)+KGE(1/Q)]) respectively.
(d) Summary graph showing whether models tend to underestimate or overestimate the
observations per catchment. For each daily observation Qobs(t) in each catchment, we
determined the number of model simulation Qsim(t) that are above this observation. We
then averaged this number for the full evaluation period.

as a moisture index with range [-1,1] (-1 being completely arid, +1 having zero evaporation);

the maximum range of month-to-month aridity (Im,r) based on the monthly moisture index

(range [0,2] with 0 indicating no month-to-month change in aridity and 2 indicating that

the catchment at its driest is completely arid and at its wettest has precipitation without

evaporation); and the fraction of precipitation that occurs as snowfall ( fs) based on monthly

average temperature and rainfall (range [0,1] going from no snowfall to all precipitation as

snow). Figure 5.10a shows the global distribution of these indices (grey dots) and where the

catchments used in this study fall in the 3D-space given by these climate indices (coloured

dots; CAMELS-only summary in Figure 5.10b). The catchments cover a wide range of

climatic conditions, but certain areas are under-represented. There are few catchments on

either end of the aridity scale (Im ≤−0.5 and Im ≥ 0.5). High seasonality climates are well

represented (Im,r ≥ 1) but low seasonality climates less so (Im,r < 0.5). On the snow-axis,
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moderately snow-influenced catchments ( fs < 0.4) are fairly well represented. The CAMELS

catchments used here also include snow-dominated catchments ( fs > 0.4) but these tend to

fall in the high seasonality climatic region as well. Therefore our work can be considered

applicable to temperate catchments, but care should be taken when extrapolating our

findings to climates with more extreme aridity values (e.g. deserts, tropical rain forests),

to regions with less seasonally varied aridity values (e.g. climatic transition zones on the

edges of deserts and rain forest), and to places with a less pronounced summer-winter

temperature cycle (e.g. taiga).

Ideally, model simulations in an ensemble bracket the observations because this in-

dicates that a sufficiently varied selection of models has been used [78]. Figure 5.10c

shows that for the vast majority of catchments most of the observations fall within the

range of model simulations during evaluation. However, during evaluation of the high

flow objective (O1) observations in several catchment on the west coast are not bracketed

by model simulations, suggesting that models are not sufficiently diverse or the presence

of bias in the forcing data (we have rejected several other catchments in this area due

to water balance errors, see Figure 5.1). During evaluation of the other two objectives

observations in these catchments are bracketed by model simulation, suggesting that in

these places the problem lies in the calibration procedure and not in a lack of diversity

in the models. In contrast, there are several catchments where only approximately 80%

of observations are bracketed by model simulations regardless of objective function (for

example, two catchments in western Wyoming and one catchment in western Montana).

Further investigation of such individual cases is required to determine whether the current

selection of model structures all lack a critical process or whether this is an artefact of

the calibration procedure or data quality (for an example framework that can be used to

distinguish between model structure deficiencies and calibration artefacts, see Fowler et al.

[109]).

Figure 5.10d shows for each catchment how many models on average simulate stream-

flow higher than observations. By definition, the remaining models simulate streamflow

lower than observations. The model ensemble seems relatively unbiased during low and

combined flow simulation, with approximately half of the models simulating streamflow

that exceeds observations. High flow simulation results indicate a more biased model

ensemble, showing that in certain catchments the majority of models underestimate obser-

vations (bottom left) while in other catchments the majority of models overestimate obser-

vations (top right). Additional analysis (not shown for brevity) shows that the catchments

where model ensemble seems biased (either towards underestimation or overestimation of

flows) are predominantly arid (Im <−0.25). The tendency to underestimation of flows is

caused by the high flow objective function, because with a different objective function the
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ensemble does bracket observations in these catchments. This is the case in catchments

where periods with very low flow (Q < 1 mm/d) are alternated with several medium (Q >

10 mm/d) to very high (Q > 30 mm/d) flow events. In these cases most models simulate

no flow instead of very low flow, because the calibration procedure focuses on the peaks

only. With the low flow objective function more attention is given to these low flows and

the models tend to bracket the observations better. Cases where most models tend to

overestimate flows occur in the most ephemeral catchments, where long periods of zero

flow are alternated with flood peaks that are both very high (up to 90 mm/d) and short

(lasting around 1 day). Many models struggle to replicate this extremely flashy behaviour

and it seems likely that either our chosen time-step size of 1 day provides insufficient

temporal resolution to simulate the flow response for these catchments, or that our model

ensemble lacks the appropriate structures that could simulate these flow regimes.

5.5.3 The need to select an appropriate hydrological model

It is clear that selecting the most appropriate model for any catchment is difficult, if

not impossible, within the current study set up. Performance ranges of the different

models are too similar to easily distinguish between them. This is especially the case

when the high flow objective function is used, but model structure uncertainty is high

for the low and combined objective function as well. It has been long known that simple

models (here meaning models with fewer calibrated parameters) can compete with more

complex (i.e. parameter-heavy) models in terms of model performance [e.g. 152, 254].

Overparametrisation and the inability to properly identify parameter values through

calibration to streamflow data are often cited as a reason for this [e.g. 32, 186]. As a

consequence, only models with a few parameters can be calibrated properly using just

streamflow data (properly meaning that a unique optimal parameter set can be found).

However, such simple models cannot contain all potentially relevant hydrologic processes,

because this would require more parameters than can be identified from streamflow data

alone. Yet, such detailed models are required if predictions under changing conditions are

to be made [173]. This leads to a dilemma succinctly stated in Kuczera and Mroczkowski

[186]: ”A simple model cannot be relied upon to make meaningful extrapolative predictions,

whereas a complex model may have the potential but because of information constraints

may be unable to realize it”.

Parsimonious models have distinct advantages when streamflow estimates are required

under stationary conditions; model set up, calibration and use will be fast, and data

requirements are low [254]. However, when a choice must be made between several

equally plausible model structures for prediction under changing conditions (i.e. when it is
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unknown which model is the most appropriate hypothesis about catchment behaviour),

there is no justification for selecting the model with the fewest calibration parameters

as the preferable alternative [239]. The impact of the choice of model structure can be

significant: in a climate change impact assessment across 605 catchments in the United

States, three equally plausible model structures (HBV, VIC and Sacramento-SMA) do not

even predicted the same sign of future changes in 26% of the catchments [217]. Therefore,

as many authors have noted, more in-depth tests are needed to distinguish between

different models and make a catchment-appropriate choice. Different model structures

should be considered as alternative working hypotheses [e.g. 73], which one should then

attempt to falsify by subjecting them to various tests (for a recent commentary on model

falsification, see Beven [42]). Our work shows for a wide selection of models and across a

wide variety of catchments that these procedures must become the norm. Relying only on

aggregated efficiency metrics to determine whether a model has ’adequate performance’,

without considering the performance of alternative model structures for a given catchment

is simply insufficient.

5.5.4 Study limitations

5.5.4.1 Aggregated metrics, models and data

Our results suggest that model performance is dictated by the model structure and that

certain structures, or certain arrangements of stores and fluxes, are better suited for certain

types of flow simulation. This can potentially be of use in selecting appropriate models for

a given study purpose and improving model functioning in a diagnostic setting. Still, our

analyses are based on general performance metrics that aggregate model performance into

a single efficiency score. Higher resolution diagnostics such as seasonal or time-step based

performance metrics [e.g. 83] might provide insight into why there is also considerable

overlap in aggregated model performance across our sample (see Figure 5.5).

Similarly, we use lumped models, catchment-averaged daily forcing data and average

catchment attributes. Our approach does not account for any spatial heterogeneity in

climatic inputs and spatial heterogeneity is only included in a basic way in those models

that simulate a variable contributing area. We also assume that mean catchment attributes

are a representative measure of the catchment as a whole. As mentioned, large-sample

studies must necessarily sacrifice level of detail to facilitate the increased sample size

(compare to for example model development in an experimental catchment) and lessons

must be learned from emergent patterns across the large sample. The assumptions made in

this work are not uncommon in hydrology: lumped models are often used with catchment-

averaged, daily data, and spatially explicit descriptors of catchment attributes are mostly
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unavailable. However, this lack of spatial explicitness makes it challenging to get clear

answers to our questions, and much work remains to be done.

5.5.4.2 Data and parameter uncertainty

This work focusses on model structure uncertainty and leaves both data and parameter

uncertainty unaccounted for. We have chosen to ignore parameter uncertainty due to the

large number of models and catchments involved. Accounting for parameter uncertainty

through for example GLUE-like analysis [47] would have increased computational times

and the amount of data to analyse and visualise beyond feasible limits. With respect

to parameter uncertainty, we see no clear evidence of model overfitting in our current

approach but have no information on parameter identifiability. It is possible that cases

exist where parameters are poorly identifiable during calibration, but that significant

performance differences exist between such parameter sets during model evaluation [109].

We have treated data uncertainty as a constant for all models for similar reasons. Properly

accounting for input data uncertainty is difficult, because these errors tend to vary in

time. Accounting for non-stationary errors in rainfall data is possible but computationally

intensive. Uncertainty in model evaluation data tends to be more stable in time, but also

requires additional sampling (for a recent review of data uncertainty in hydrology, see

McMillan et al. [216]). Our approach is constrained by a need to limit computational times,

but ignoring data uncertainty can force the calibration procedure to compensate for errors

in the measured rainfall-runoff relationship and not accounting for parameter uncertainty

ignores the possible failure of the calibration procedure to select the most appropriate

parameter set out of several sets with similar performance during calibration. However,

our results suggest that models can be divided into groups, where models within each

group are similarly suited towards particular flow regimes. These groups can be used to

select a small number of promising models within our ensemble. Reducing the number of

models reduces computational demands and allows investigation of parameter uncertainty

and identifiability, as well as data uncertainty on a subset of models that are representative

of the larger model sample.

5.5.4.3 Relating model performance to catchment attributes

We were unable to satisfactorily relate model performance to catchment attributes. In our

opinion, efficiency values should not be used directly because equally high KGE values are

not equally hard to achieve in different catchments [e.g. 279] and baseline performance

is not the same across catchments (Figure 5.4). This makes it difficult to quantify how

good model performance really is and better model benchmarks are needed. Lacking
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these, we used model ranks to relate relative model performance to catchment attributes.

These findings seem to indicate that certain model structures perform better or worse

depending on the streamflow regime they attempt to simulate, but the relation between

model performance and catchment attributes is inconclusive. The relationship between

catchment attributes and streamflow signatures is currently not well-understood [3] either.

This might mean that we are not using the right catchment attributes, or that different

arrangements of catchment attributes lead to similar flow patterns and thus obscure any

prevalent correlations, or that catchment-averaged values for catchment attributes lack the

required level of detail to be of use. More work is required on understanding the differences

and similarities between catchments, in terms of catchment attributes, streamflow regimes

and model performance.

5.5.4.4 Generating and testing model hypotheses

Hypothesis-based model testing has been advocated for some time [e.g. 34, 42, 73, 104, 173,

256] but few studies so far have put this approach into practice. Our results give rise to

several hypotheses about conceptual model behaviour (see Section 5.4.3), but again note

that these hypotheses were made after we calibrated, evaluated, ranked and grouped the

models. Strict testing of the hypotheses is thus necessary (i.e. comparing the performance of

two model structures that are identical apart from the element under consideration under

a wide variety of conditions) before these ideas can be used to guide model development.

Testing these is not possible in the current study framework but hopefully these results

can inform future studies on this subject. Additionally, the current results include two

subsets of models that have very similar structures and can be used to investigate the

impact of single model decision on a large scale. Models m22, m26 and m34 are all based on

the FLEX framework [103] and can be used to assess the impact of adding an interception

routine and a snow routine respectively. Models m24, m30, m31, m32 and m35 are part of

the same study [349] and can similarly be used to isolate the impact of specific modelling

decisions.

5.5.5 Fostering further work

This study presents selected results from a large-sampling study, using 36 models for

streamflow simulation in 559 different catchments, with each model being calibrated three

times for three different objective functions. In this work we trade ”breadth for depth”

[130] to explore a variety of questions. As a result, we have made several concessions to

the study method and have raised as many questions as we hoped to answer. However, the

computational demands of a large-sample studies such as this can be high. To facilitate
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further research, calibration results of all models (parameters, simulated model storages

and fluxes and obtained efficiency values) will be made available through an open-access

repository once calibration of all models is completed. The CAMELS dataset and MARRMoT

modelling toolbox are also freely available and can be found through their respective

references.

5.6 Conclusions

We calibrated 36 lumped conceptual models for streamflow simulation in 559 catchments

across the United States, using three different formulations of the Kling-Gupta Efficiency

as a performance metric. The metrics focus on high, low and combined flow simulation

respectively. Model calibration and evaluation were done using two different 10-year

periods. All results are based on model performance during evaluation, unless noted

otherwise. Here, we return to the five questions posed in the introduction and summarize

what this work contributes to answering them. Model structure uncertainty is highest

(i.e. it is hard to distinguish between models in term of performance) during high flow

simulation, but is still significant during low and combined flow simulation (Figure 5.3).

For the majority of catchments, there is little practical difference (< 0.05 KGE difference)

between the best performing model and up to 27/16/13 other models in the sample for

high/low/combined flow simulation (Figure 5.4). Histograms of model performance (Figure

5.5) show that distributions of model performance are remarkably similar during high

flow simulation, and this holds to a slightly lesser extent for low flow simulation (Figure

C.2). The largest differences in model performance can be seen during combined flow

simulation (Figure C.3). Contrary to expectations, Mann-Kendall statistical tests (Figure

5.6) indicate that the number of model parameters does not relate to the distributions of

model performance values during calibration or evaluation, nor to the change in model

performance between both periods. Histograms of model ranking relative to one another

(Figure 5.7, C.6, C.7) suggest that certain model structures are inherently better than

others at reproducing certain parts of the hydrograph. This can also be seen in summary

plots of absolute KGE values (Figure 5.8b, C.8, C.9) which suggest clear differences in

the trade-off between objective functions for different models. However, it is impossible

to find a single best model structure, because virtually every model ranks in both the

top 3 and bottom 3 of models for at least a few of the 559 catchments (Figure 5.8a). We

struggled to identify which model structures are the best suited for certain climates or

catchment types, and instead found the strongest relation between relative model rank and

streamflow signatures (Figure 5.9, C.10-C.14). This reinforces the idea that certain model

structures are better suited for simulation of certain parts of the hydrograph, as various
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aspects of the flow regime change in importance across the catchment sample. Scatter

plots of model ranks against 52 catchment attributes (not shown for brevity) confirm

significant scatter in these relations. Our catchment sample covers a significant range,

but is not representative of all possible hydro-climates (Figure 5.10a, b). Similarly, our

model ensemble seems relatively unbiased in the majority of catchments (Figure 5.10c,

d) but there is some evidence that we lack appropriate model structures (in terms of

missing processes or too crude spatial or temporal resolution) for high flow simulation in

flash-flood-dominated arid catchments. Given our catchment-averaged approach to model

use, data and analysis, more detailed investigation of between-model differences is needed

and care should be taken when applying our findings to future modelling efforts that

extend beyond the limits of our approach.
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CONCLUSIONS AND OUTLOOK

The work in this thesis all contributes to improving our ability to perform large-sample

model comparison studies. This started with investigating the global hydro-climate, so that

we might quantify how representative any given sample of catchment types is. We followed

this with a detailed investigation of conceptual model structures and the development of a

novel model comparison coding framework. We then used the framework for a large-sample

model comparison study which led to new insights about the differences between model

structures and therefore can inform future model development work. From the start, it

was obvious that addressing all concerns that currently complicate large-sample studies in

a single thesis is infeasible. Our goal has been to contribute to, rather than provide, an

answer to the question ”what is the most appropriate model for a given objective?”. We’ve

taken several steps along the road to this answer but much work remains to be done. To

facilitate this, all our results are, or will be, publicly available. Now we can only hope that

this groundwork will enable and inspire further research.

Chapter 2 Hydrologic climate classification
https://dx.doi.org/10.5523/bris.16ctquxqxk46h2v61gz7drcdz3

Chapter 3 Global precipitation modality
https://dx.doi.org/10.5523/bris.2ynd0zj7oqd1t24t6vhhh83exn

Chapter 4 Multi-model comparison framework
https://github.com/wknoben/MARRMoT

Chapter 5 Model inter-comparison study
to be decided
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6.1 Chapter summaries

Chapter 2: Hydrologic climate classification In order to select representative samples

in a given study, we first need to have some idea of the population as a whole. This means

hydrology needs an overview of the global variety of catchments, with respect to climatic

forcing and local attributes such as topography, geology, etc. High quality global data sets

of catchment attributes are currently unavailable but gridded global data does exist for

several climatic attributes. However, hydrology has no formal way to structure the climatic

forcing that underlies hydrologic response. Various climate classification systems can be

borrowed from other disciplines but these are based on different organizing principles than

a hydrological classification might need. Chapter 2 presents a hydrologically informed way

to quantify global climates, explicitly addressing the shortcomings in non-hydrological

climate classifications. Causal factors (climate) and hydrologic response (streamflow) are

separated, meaning that our classification scheme is based only on climatic information

and can be evaluated with independent streamflow data. We use theoretical understanding

of the causal relation between climatic forcing and hydrologic response to define six

climate indices. Sensitivity analysis reduces this number to three dimensionless indices

for any location. These describe annual aridity, aridity seasonality, and precipitation-as-

snow. We use these indices to create several climate groups and define the membership

degree of 1,103 catchments to each of the climate groups, based on each catchment’s

climate. Streamflow patterns within each group tend to be similar, and patterns tend to

be different between groups. Visual comparison of flow regimes and Wilcoxon two-sample

statistical tests on 16 streamflow signatures show that this index-based approach is more

effective than the often-used Köppen-Geiger classification for grouping hydrologically

similar catchments. Climate forcing exerts a strong control on typical hydrologic response

and we show that at the global scale both change gradually in space. We argue that

hydrologists should consider the hydro-climate as a continuous spectrum defined by the

three climate indices on which all catchments are positioned and show examples of this in

a regionalisation context.

Chapter 3: Global precipitation modality The new climate classification shows

that seasonality of climate can be an important control on hydrological response. Many

locations experience a single wet and dry season per year, but some studies report the

occurrence of two wet and dry seasons per year and our hydrologic climate classification

does not specifically account for this. However, different seasonal precipitation patterns

lead to differences in seasonal streamflow distributions and this might be relevant during

catchment classification. Multiple dry and wet seasons per calendar year (referred to as
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bimodal precipitation in the specific case of two dry and two wet seasons) are commonly

associated with locations within the tropics but are reported outside the tropics as well.

However, this information is fragmented and studies of bimodality are mainly restricted to

monthly rainfall totals. In Chapter 3, we use a gridded global data set and simple harmonic

analysis to provide a systematic overview of global bimodal rainfall and rain-day frequency.

We find a good agreement between the various regional studies concerning bimodal precip-

itation and our global overview, showing that bimodal rainfall occurs on approximately 7%

of the global land surface. In the tropics, regions of bimodal rainfall totals (P) and regions

of bimodal rain-day frequency (N) tend to overlap due to the presence of dry seasons that

have zero precipitation. Outside the tropics P and N are more independent which leads to

complex within-year patterns of precipitation intensity. A secondary outcome of our results

is an improved low-dimensional global parametrization of monthly rainfall regimes. Our

results provide the first gridded global overview of bimodal rainfall patterns and show the

usefulness of simple mathematical approaches for detecting patterns in large data sets. In

the context of global catchment classification, bimodal precipitation patterns are strongest

in the Horn of Africa, equatorial Africa and various smaller, scattered regions in northern

South America, Sri Lanka and southern Pakistan. However, because streamflow records

from these areas were unavailable, we must content ourselves with noting that bimodal

precipitation regimes exist without evaluating their impact on hydrologic regimes.

Chapter 4: Multi-model comparison framework In the next part of the thesis, we

searched for a framework that facilitates the inter-comparison of conceptual hydrological

model structures across a very wide range of climatic conditions. Our aim is to compare

commonly used models and improve our understanding of where and why models behave

similarly and differently, with the ultimate goal of reducing uncertainty in model structure

selection. We found that existing model comparison frameworks do not fulfil our needs.

In Chapter 4, we developed a new model comparison framework called the the Modular

Assessment of Rainfall-Runoff Models Toolbox (MARRMoT) that does work for our specific

purposes. MARRMoT is a modular open-source toolbox that contains documentation and

model code for 46 existing conceptual hydrologic models. The toolbox is developed in

Matlab and works with Octave, so it can be used in an open-source computing environment.

Models are implemented following several good practices in model development: definition

of model equations (the mathematical model) is kept separate from the numerical methods

used to solve these equations (the numerical model) which leads to clean code that is

easy to adjust and debug; the Implicit Euler time-stepping scheme is provided as the

default option to numerically approximate each model’s Ordinary Differential Equations

in a more robust way than (common) Explicit schemes would; threshold equations are
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smoothed to avoid discontinuities in the model’s objective function space; and the model

equations are solved simultaneously, avoiding physically unrealistic sequential solving of

fluxes. Generalized parameter ranges are provided to assist with model inter-comparison

studies. To encourage use of the framework, we created a large body of supporting materials

detailing (i) descriptions of the 46 models, (ii) descriptions of how each flux equation is

translated into computer code, (iii) similar descriptions for all 7 routing methods used by

the models, (iv) generalised parameter ranges with literature references to support these

choices, and (v) an extensive User Manual accompanied by several workflow scripts that

show basic example applications of the toolbox (i.e. running a model, parameter sampling,

model structure comparison and model calibration).

Chapter 5: Model structure uncertainty In the last part of the thesis, we finally

attempt to shed some light on the main research question of this work: ”what is the

most appropriate model for a given study objective?” Choosing an appropriate model is

a critical aspect of any modelling study. Previous studies have shown that the choice of

model structure, i.e. a model’s selection of states and fluxes and the equations used to

describe them, has an important impact on model performance and thus on the study’s

conclusions. Chapter 5 investigates the performance differences of 36 lumped conceptual

model structures, used for daily streamflow simulation in 559 catchments in the United

States, using the MARRMoT framework developed in Chapter 4. Calibration of the final

10 models is still ongoing, but time constraints prohibited their inclusion in this chapter.

Model performance is quantified using three different objective functions based on the

Kling-Gupta Efficiency that focus on high flows, low flows and a combination of high and

low flows respectively. Each model is calibrated for every combination of catchment and

objective function with a Covariance Matrix Adaptation Evolution Strategy (CMA-ES),

using a 10-year calibration period. Model performance is evaluated using a separate 10-

year period. We find that adequate model performance can be achieved in most catchments

for each objective function, but that no single model is capable of this. Instead, nearly every

model is both one of the best choices in certain catchments and one of the worst in other

catchments. In most catchments, several models achieve performance very similar to that

of the best model for that catchment, resulting in high levels of model structure uncertainty.

This is especially apparent during high flow simulation. During low and combined flow

simulation, larger differences between model structures are seen. We find no relation

between model performance during calibration or evaluation periods and number of model

parameters, nor is there evidence of increased risk of overfitting for models with more

parameters. However, we do find that certain structures seem better suited to certain

objective functions and we formulate several hypotheses to investigate why this might

122



6.2. OVERARCHING REMARKS

be the case. We attempt to relate model performance to catchment attributes such as

climate, geology, topography, soil type and streamflow signatures and report the clearest

link between model performance and streamflow signatures. This suggests that certain

models are inherently better suited for certain flow regimes, but the relation between flow

regimes and catchment attributes, and the relationship between catchment attributes and

model performance, remains elusive. There is enormous potential for follow-up studies,

using the results from this thesis as groundwork.

6.2 Overarching remarks

Figure 6.1 returns to the ideal model-comparison study presented in Chapter 1 (Figure

1.2) and shows how the work in this thesis contributes to the overall challenge of doing

better model comparison studies. As noted in Chapter 1, the perfect model comparison

study is currently out of reach for a variety of reasons. We have identified (i) a lack of

knowledge with respect to defining a representative sample of testing conditions, (ii) a

lack of knowledge with respect to defining a representative sample of models, and (iii) a

practical limitation with respect to accounting for data and parameter uncertainty in a

large-sample model comparison. The work in this thesis represents progress in the first

two aspects.

The hydrologic climate classification (Chapter 2) and our analysis of bimodal precipita-

tion patterns (Chapter 3) have increased our understanding of the global hydro-climate and

these findings impose limits on the possible ranges that the global hydro-climate can take.

The precipitation seasonality work (Chapter 3) also directly builds upon an open question

posed in earlier work [30, 219], namely whether precipitation modality should be included

in low-dimensional parametrisations of global climatic conditions. Many studies have quan-

tified the global climate [e.g. 30] and several have quantified global streamflow patterns

[e.g. 24]. Local assessments of the relation between climate, catchment and streamflow are

also common [e.g. 29, 219, 270, 346]. Our hydrologic climate classification goes beyond this

and provides a global overview of the relation between climate and streamflow. This work

can provide a stepping stone towards a full catchment classification, that also accounts for

the impact of the catchment on streamflow regimes.

Like other authors [e.g. 254, 293], we could not select a representative sample of models.

While theoretically we should be able to define the total model space perfectly, in practice

there are too many models and there is too little understanding of what makes them

different or similar. Our results in Chapter 5 however suggest that large-sample studies

can reveal emergent patterns in model behaviour and that it might be possible to define

groups of similar model structures based on these patterns (Figure 5.9). This provides an
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Representative sample of 
models

Representative sample of 
testing conditions

Model-comparison framework
Large-sample 

testing 
methodology

Understanding of 
model structure 

uncertainty

Data Tools Methods Results

Current options do not suit our 
needs: alternative developed in 
Chapter 4

Knowledge is lacking to define 
this sample: new insights 
gained from Chapter 5

Knowledge is lacking to define 
this sample: partly addressed in 
Chapter 2, 3

Several questions answered in  Chapter 5, 
but many questions and challenges 
remain. Data uncertainty treated as a 
constant for all models, parameter 
uncertainty ignored due to sample size

FIGURE 6.1. Overview of how the work in thesis contributes to improving our
ability to perform large-sample model structure comparison studies. Because
defining a representative sample of models is currently not possible, an
iterative procedure might be adopted where results based on a large sample
of models inform the selection of a representative model sample in future
work.

interesting solution to the ”representative model sample” problem: iterative approaches

can teach us about the existence of groups in the total model space, where certain models

with similar behaviour are found. One or a few members from each group can be selected

as representative models and used in the next model comparison iteration. Reducing the

number of models has the benefit that more in-depth analyses of inter-model differences

become possible (e.g. one can go beyond aggregated metrics, which is a key limitation of

our large-sample comparison in Chapter 5), as well as giving the opportunity to account

for data and parameter uncertainty. It is important to note though, that different model

groups emerge for different objective functions, and a representative model sample is thus

conditional on the objective function used in the first iteration of the comparison. Our

model-comparison framework presented in Chapter 4 can be a vehicle for such iterative

analysis.
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6.3 Outlook

This thesis leads to various opportunities for future research. This section outlines two

interesting research directions in detail and provides a short list of other possible projects

to conclude the section.

6.3.1 From climate to catchment classification

This thesis has made a few steps towards clarifying the link between climatic conditions

and streamflow, but the relation of either with catchment attributes is still not quantified.

Several steps can be taken to bring a hydrologic catchment classification closer.

In Chapter 2 we created a hydrologic climate classification, but did not account for

precipitation modality. We show in Chapter 3 that two rainfall seasons do occur on a

significant fraction of the land surface, but we lack streamflow data from regions where

two rainfall seasons are common. Future work can focus on evaluating the impact of

bimodal precipitation on streamflow regimes and extend our classification from Chapter 2

if that seems justified. This is of special interest in locations where bimodal precipitation

occurs due to alternating rain and no-rain seasons (e.g. the Horn of Africa), because the

impact on streamflow will be easier to see and more significant than in regions where

bimodal precipitation occurs on top of high baseline rainfall (where the precipitation

pattern is relatively less important compared to the overall higher precipitation volume,

as is the case in parts of Equatorial Africa).

Similarly, the classification in Chapter 2 does not account for precipitation intensity

because our data set lacked the temporal resolution for this (CRU-TS v2.32, monthly data

[137]). Precipitation intensity interacts with a catchment’s top layer to determine infiltra-

tion rate, ponding and overland flow. This could be an important factor for distinguishing

catchments and future work can focus on clarifying these relations. The MSWEP dataset

[25] provides 3-hourly gridded global precipitation data for the period 1979-2015 and might

provide the resolution needed for such analysis.

Newly developed sets of catchment data can also be of use in this effort. CAMELS-US

[4] and CAMELS-CL [8] include a wide variety of catchment attributes for 671 catchments

in the US and 516 catchments in Chile, respectively. Similar data sets for the UK and

Australia are being prepared [personal communication with G. Coxon and K. Fowler

respectively] and all might prove useful for catchment classification. However, there are

still various challenges to overcome. First, these data sets include attributes related to

topography, geology, soil, vegetation, human influence, streamflow signatures, and others,

but it is currently unknown which of these attributes are relevant (see e.g. Chapter 5
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or [3]) and whether we should use these attributes as they are or convert them into

more hydrologically meaningful numbers first (e.g. use soil depth in relation to annual

precipitation instead of soil depth as an absolute value) [346]. Further difficulties arise

from the fact that catchment attributes and time series of observations typically come

from a range of different data sources, meaning that uncertainties and data quality can

vary within the combined data set. It is also possible that average catchment values

are not a hydrologically meaningful way to describe catchments, all of which can lead

to difficulty with relating catchment attributes to flow regimes. It is also possible that

different arrangements of catchment attributes lead to similar streamflow regimes, or that

seemingly similar arrangements of attributes lead to different streamflow regimes [e.g.

243], which complicates finding clear relationships between the two. Second, streamflow

signatures are an increasingly common way to summarise hydrologic regimes, but we

don’t understand them well enough [3], nor are we particularly good at selecting them

[215], nor is quantifying their uncertainties [e.g. 340] common practice. Because of all the

potential non-uniqueness of relationships and the inherent uncertainties of the data being

used, unsupervised clustering approaches are probably not the best method for catchment

classification, even though these approaches are relatively common [e.g. 187, 275, 276].

Instead, using hydrologic theory [e.g. 77] to create a conceptual understanding of these

relationships and using clustering approaches only to test the validity of this understanding

would be a much stronger basis for catchment classification. This approach has worked in

Chapter 2 to clarify the relation between climate and streamflow and it is possible that

with newly available data sets a similar approach could work for the climate-catchment-

streamflow relationship.

6.3.2 The need for better benchmarks

In Chapter 4, we calibrated 36 models by optimising three different objective functions

based on the Kling-Gupta Efficiency [KGE, 129]. Although there is guidance on what

constitutes an acceptable efficiency value [223], existing standards tend to have been

developed in specific environments and are not necessarily appropriate elsewhere. Our

data set covers a wide variety of environments and the obtained efficiency values can not

directly be compared across catchments [279]. Consider the hypothetical cases in Figure

6.2. In both rows, simulated streamflow has the same variation around the observations

(2% and 10% of the mean in top and bottom row respectively). Figure 6.2d, 6.2e and 6.2f

show cases where the model captures the seasonal pattern but fails to simulate the daily

variation correctly. The KGE values in these three cases vary dramatically, due to large

differences in the correlation component r. These KGE differences are directly related to

126



6.3. OUTLOOK

100 200 300
0

2

4

6

8

10

(a)

KGE = NaN 

r = NaN 

100 200 300
0

2

4

6

8

10

(b)

KGE = -0.39 

r = -0.05 

100 200 300
0

2

4

6

8

10

(c)

KGE = -0.44 

r = -0.05 

100 200 300
0

2

4

6

8

10

(d)

KGE = 0.02 

r = 0.02 

100 200 300
0

2

4

6

8

10

(e)

KGE = 0.59 

r = 0.59 

Qobs Qsim

100 200 300
0

2

4

6

8

10

(f)

KGE = 0.99 

r = 0.99 

FIGURE 6.2. Kling-Gupta Efficiency calculations for a variety of synthetic stream-
flow cases. r, α and β are the individual components of the KGE equation,
expressing linear correlation, ratio of standard deviations and ratio of means
respectively. KGE computations in (a) result in errors because the observa-
tions are the same value on each day. This returns in undefined correlation r
and divide by zero error for ratio α.

the magnitude of the seasonal signal. We’ve shown in Chapter 2 that streamflow patterns

vary geographically as a result of variations in climate. Wet and seasonal climates, and

snow-dominated climates generally have higher and/or more defined streamflow peaks.

These peaks are direct results from seasonality in the climatic forcing and any model that

can thus transform these seasonal climatic patterns into seasonal streamflow patterns

will be able to achieve high efficiency values in these catchments. The magnitude of the

streamflow seasonality then dictates how high these efficiency values will be. In order to

compare efficiency metrics across catchments with varying seasonal streamflow patterns,

model efficiency values need catchment-specific context.

Benchmarks can provide catchment-specific context, by giving an indication of what

base efficiency value any model is expected to improve upon. Traditionally, the mean flow is

used as a comparison benchmark because this is an inherent feature of the Nash-Sutcliffe

Efficiency and gives NSE = 0 [e.g. 129]. In KGE terms, the mean flow corresponds to
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KGE = 1−p
2 ≈−0.41 (Figure 6.2a-c, exact values depend on chance correlation between

randomness in simulated flow and observations). This approach ignores that for certain

places the mean flow can be quite representative of the typical flow regime (e.g. in locations

with very low seasonal changes in the hydrograph, Figure 6.2a), whereas in other locations

it is a very poor predictor of the typical flow regime (e.g. snow-dominated catchments,

Figure 6.2c). This benchmark is thus not equally hard to beat everywhere, nor is it a

particularly challenging benchmark in many cases (see Figure 5.4).

Calls for better benchmarks are not new [e.g. 288] but progress has been slow and

with the increasing interest in large sample hydrology [130], there is a need for improved

standardisation of model evaluation. Approaches so far can be divided into data-based

and model-based benchmarks. The mean flow is a well-known data-based benchmark. The

mean-calendar-day flow (e.g. a ”typical streamflow year” created by averaging all January

1sts, all January 2nds, etc) [279] can be more suitable in catchments with a distinct seasonal

flow regime that is stable across years (in terms of volume and timing) because it captures

this seasonality as part of the baseline upon which models are expected to improve. We

will add the suggestion of a median-calendar-day flow benchmark, because typical flow

years created from median daily observations have proved useful in Chapter 2. Use of the

median smooths out year-to-year flow variations and is thus less prone to the presence of

extremes in the data. Another option is to use the Streamflow Natural Variability [231] as

a data-based benchmark. In contrast to data-based benchmarks, model-based benchmarks

generally involve defining a simple model that more complex models are expected to

improve upon. These can be simple expressions of the general rainfall-runoff relationship

[279] or fully developed rainfall-runoff models such as SWBM [240], GR4J [253] or the

Sacramento Soil Moisture Accounting model [230]. It is also possible to create model-based

lower and upper benchmarks, by using a random and calibrated parameter set respectively

[292]. The ultimate goal of any benchmark is to make clear ”what [efficiency values]

should be expected in a given catchment” [292], within the limits of what is supported

by the quality of the observation data [83], and noting that high efficiency values do not

necessarily constitute ”realistic” model behaviour [289].

Model-based benchmarks give a clear idea of which model performance can be expected

in any given catchment, but they require several (subjective) decisions before they can

be applied. Questions such as ”which model should we use as benchmark?”, ”how can

we choose the ’simplest model’ and what is an appropriate level of simplicity?”, ”which

parameters should this model use?”, ”is this model an equally hard to be beat benchmark

in different places?” need to be answered and justified. For a single-catchment study, a

model-based benchmark gives a good idea of whether using a more complex model can be

justified. In a large-sample study however, model-based benchmarks still suffer from a lack
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of transferability. Because models are not equally good everywhere, we still need a way to

interpret the benchmark model’s efficiency values in terms of what is a reasonable value for

any given catchment. Data-based approaches have the benefit of assuming nothing about

the rainfall-runoff relationship, so they avoid subjective questions about model choice

and parametrisation, but this is their main weakness as well. Because these benchmarks

do not specify any rainfall runoff relationship, their usefulness decreases under non-

stationary conditions or in locations with high interannual streamflow variability. In the

first case, the benchmark regime will gradually become less representative of the new

regime as conditions change. In the second case, the mean or median values are not a good

representation of the actual variable flow regime.

In conclusion, there is an urgent need for an an overarching methodology that allows us

to better compare model efficiency across places, but our current generation of benchmarks

does not offer an obvious best answer. In multi-model studies, a data-based benchmark

might be preferable because it avoids choosing a ’simplest’ model which is necessarily

subjective. In model improvement studies, a model-based benchmark might be preferable

because it can indicate whether increasing model complexity is justified. Both approaches

need further attention.

6.3.3 List of possible follow-up projects

• Evaluate the hydrologic climate classification in time: use the climate classification

to relate long-term changes in hydro-climate to historical records of streamflow

observations and see if our defined relationships hold.

• Evaluate the hydrologic climate classification in space: African and Asian river

systems are under represented in the GRDC dataset we used [315]. A new dataset

has become available [GSIM, 93, 127] with a wider global coverage that might be

used to evaluate our classification. GSIM only includes streamflow signatures and

does not provide continuous streamflow observations, so these tests must be limited

to comparison with our findings on streamflow signatures (Figure 2.7).

• Expand MARRMoT: addition of adaptive time-stepping [e.g. 145] could both increase

numerical performance and computational speed of all models.

• Expand MARRMoT: addition of new models that show step-wise increases in com-

plexity [e.g. 106] will allow the framework to be used for multiple working hypothesis

assessment [e.g. 73].
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• Use MARRMoT: the need for hypothesis testing in hydrology has been discussed

often [e.g. 34, 37, 42, 73, 77, 256, 273, 329] but is only occasionally applied in practice

[e.g. 106, 309]. It is possible that the effort involved in creating alternative model

structures is prohibitive. MARRMoT can be of use in making multi-model studies

accessible for a wider group of researchers and facilitate further model-comparison

studies.

• Investigate inter-model differences: in Chapter 5 we have calibrated a large number

of models for several hundreds of catchments but only assessed model differences

through aggregated efficiency metrics and model rankings. A next step can be to

assess differences in simulated fluxes from models that perform similarly well. Each

model generates at least time series of flow (Q) and evaporation (Ea). Quantifying

differences between simulated fluxes [e.g. 1] can lead us to better understand the

distribution of model structures in model space and model independence (i.e. answer

the question ”do models with similar efficiency values have similar output dynam-

ics?”). This could potentially assist in selecting appropriately different models for

ensemble prediction [344].

• Investigate model failure: our assessment of model adequacy and model failure in

Chapter 5 has only involved aggregated performance metrics (i.e. the similarity

of observed streamflow and model simulated streamflow is expressed as a single

aggregated number). This provides a certain amount of insight about how closely

simulations resemble observations, but it provides little insight into where models

deviate from observations. Time-step based diagnostics can provide the necessary

resolution to investigate whether models fail consistently under certain conditions

and improve our understanding of where models go wrong and whether this is

consistent across different model structures [83].
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This appendix has been published as Supporting Information for a research article in Water

Resources Research. Slight modifications have been made to better fit the general layout

of this thesis. We gratefully acknowledge the assistance provided by professor Jonathan

Rougier in creating the empirical Wilcoxon statistical test.

Citation: Knoben, W. J. M., Woods, R. A., & Freer, J. E. (2018). A quantitative hydrologi-

cal climate classification evaluated with independent streamflow data. Water Resources

Research, 54. https://doi.org/10.1029/2018WR022913

A.1 Introduction

These Supplementary materials are provided to support several arguments made in chapter

2 and to provide in-depth explanation of the methodology for reproducibility.

Section A.2 deals with preparation of GRDC streamflow data (available on request

from http://www.bafg.de/GRDC/). This study uses a sub set known as “Climate Sensitive

Stations Dataset (Pristine River Basins)” [316] downloaded on 16-05-2017. Outlined in

section A.2 are the steps taken to determine which catchments for which no catchment

boundary information is available should be excluded from further analysis (section A.2.1),

results of manual quality assurance (section A.2.2 and table A.1) and length of the flow

record for the catchments used in this study (section A.2.3).

Section A.3 provides details about the calculation of streamflow signatures. Section

A.3.1 explains our modifications to the standard Wilcoxon test to create an empirical

Wilcoxon test, which is used to estimate the statistical significance of differences between
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weighted grouped streamflow signature values. Section A.3.2 shows the results of individual

signature calculations.

Section A.4 shows the geographical spread of GRDC catchments, sorted by their main

clusters.

A.2 GRDC catchment and streamflow data

Out of 1182 available stations in the GRDC Pristine Basins dataset, 64 are excluded

because no boundary data is available, and the catchment area exceeds a size threshold

(section A.2.1). Table A.1 shows the results of a manual quality assurance procedure,

which leads us to exclude another 15 catchments whose data are implausible for pristine

catchments (section A.2.2). Section A.2.3 shows the length of the flow record for the 1103

catchments that are used in this study.

A.2.1 Area threshold used to exclude GRDC catchments for which the
catchment-averaged climate can not be calculated by using
catchment boundaries

Information on catchment boundaries is not available for all catchments in the GRDC data

set. If boundaries are available, we use this information to calculate a catchment-averaged

climate. Where boundaries are not available, but the catchment is small, we can use the

climate at location of the catchment’s gauge as representative of the climate in the entire

catchment. This section describes the procedure used to determine the catchment size

threshold above which we exclude the catchment from use in this study. The GRDC data

set provides the location of each catchment’s gauge [latitude and longitude coordinates]

and the size of the catchment [km2].

First, we use the square root of catchment area to find the approximate catchment

length (Figure A.1). The majority of catchments for which no boundary information is

available, have an approximated length smaller than the length of 1 grid cell as used in

the climate data, and for these no action is necessary. Next, we calculate the correlation

length of our three climate indices in the latitude and longitude direction (Figure A.2). If a

catchment’s length is too large compared to the distance until which the climate indices

are correlated, we remove the catchment from the data set. Some subjectivity is involved

in choosing a threshold level. We need to balance the total number of catchments we can

use (which favours keeping larger catchments) and ensuring climatic consistency within

the catchment (which favours keeping only small catchments). We have chosen a threshold
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FIGURE A.1. GRDC Pristine Basins without information on catchment bound-
aries, sorted by approximated catchment length (square root of catchment
area). Coloured lines indicated the approximated length of 1 to 10 grid cells
as used in the CRU TS climate data. 312 GRDC Pristine Basins have areas
smaller than 1 grid cell.

length of 3 grid cells as an appropriate middle ground. Catchments with an approximated

length larger than 3 grid cells (approximately 150 km) are removed from further analysis.

A.2.2 Quality control of flow data

All 1182 Global Runoff Data Centre locations in the “pristine basins” data set have been

visually inspected for data errors. Table A.1 shows 56 catchments that warranted further

investigation and the result of this investigation. We exclude 5 stations due to doubtful

data quality, another 5 stations due evidence of hydro power dam construction during

the study period, 3 stations due to missing catchment area values and 2 stations due

to highly implausible catchment area values. Two stations are suspected of consistent

underestimation of flows during part of the time series, and data were adjusted to better

fit the remainder of the time series (Figure A.4). For a further 19 stations we removed part

of the time series due to measurement errors (e.g. inexplicable jumps in flow at the start

of a new month/year, Figures A.5-A.9). Figure A.3 summarizes the results of the quality
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FIGURE A.2. Autocorrelation lengths in longitude (top) and latitude (bottom)
direction for three climate indices: average annual aridity (left), aridity
seasonality (middle) and fraction of precipitation as snow (right). Circles are
the approximate lengths of all GRDC Pristine Basins for which no boundary
information is available, matched up with the mean autocorrelation per grid
cell distance (red line).

assurance procedure.
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FIGURE A.3. Location and boundaries (where available) of GRDC Pristine Basins
used in this study (blue) and Pristine Basins that are removed from further
analysis for various reasons (red). Catchments for which no boundary data
is available are used if their approximated length is smaller or equal to a
climate correlation threshold and removed from the analysis if larger. The
correlation threshold length is set at 3 times the size of a grid cell on which
climate data is available, i.e. 0.5° (see section A.2.1).

FIGURE A.4. Correction of flow underestimation for two GRDC catchments (see
Table A.1 for details).
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FIGURE A.5. Correction of flow records for GRDC catchments (see Table A.1 for
details).

FIGURE A.6. Correction of flow records for GRDC catchments (see Table A.1 for
details).
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FIGURE A.7. Correction of flow records for GRDC catchments (see Table A.1 for
details).

FIGURE A.8. Correction of flow records for GRDC catchments (see Table A.1 for
details).
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FIGURE A.9. Correction of flow records for GRDC catchments (see Table A.1 for
details).
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Table A.1: GRDC pristine basins that have been investigated further, based on visual
inspection of data. Locations with extreme outlier-like peaks have been kept included
if additional sources confirmed those peaks to be floods. Extreme peaks with no outside
confirmation are treated as data errors. (Table continues on next page.)

Catchment ID Excluded? Reason

c3624250 Yes Average flow during first 10 years is 400 m3/s, then a 2-year
hiatus in measurements, average flow during last 10 years
is 2000 m3/s

c3625000 No, corrected Amazon. Days 277:458 are 0.6mm/d lower than rest of
record

c3625310 Yes Amazon, flows during middle 13 years are factor 5-10 lower
than other years

c3627811 Yes Bolivia. Very short time series with unexplained drops to
zero

c3628300 Yes Amazon. Unexplained increase in flow variability for middle
13 years

c3628400 Yes Amazon. Flow regime changes drastically due to hydro
power dam construction

c3628401 Yes Amazon. Flow regime changes drastically due to hydro
power dam construction

c3629390 No, corrected Amazon. Days 1523:2253 are 1.2mm/d lower than rest of
record

c3629800 Yes Amazon. Unexplained flow regime changes in middle of
data

c3649413 No, corrected Brazil. Sudden drop in flow values, coinciding with start of
new month. Possible procedure error. Removed 7000:end

c3649416 No, corrected Brazil. Sudden drop in flow values, coinciding with start
of new month. Possible procedure error. Removed days
7245:end

c3649440 No, corrected Amazon. Sharp decrease in data quality towards end of
series. Removed days 6491:end

c3649455 No, corrected Amazon. Sharp decrease in data quality towards end of
series. Also mentions dam construction around that period.
Removed days 6972:end

c3649461 Yes No catchment area
c3649465 Yes No catchment area
c3649610 No, corrected Amazon. Sharp decrease in data quality towards end of

series. Removed days 7245:end
c3649614 No, corrected Amazon. Sharp decrease in data quality towards end of

series. Removed days 7153:end
c3649630 No, corrected Amazon. Wonky data quality at beginning and end of series.

Removed 1:1128 and days 6635:end
c3649855 No, corrected Amazon. Sharp decrease in data quality towards beginning

of series. Removed suspect data
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Table A.1: Summary of GRDC flow data quality assurance - part 2. (Table continues on
next page.)

Catchment ID Excluded? Reason

c3649960 No, corrected Amazon river. Sharp decrease in data quality towards end
of series. Removed days 6910:end

c4102450 No Alaska. Shows 3 peaks that look like outliers in Oct-1986,
Aug-2006 and Sep-2012. News reports confirm floods at
those dates

c4115210 No Washington State. Shows peak that looks like outlier in
Feb-1996. News report confirms a flood.

c4115320 Yes Montana. Subject to heavy dam construction. Streamflow
record changes drastically for this site around 1970

c4115321 Yes Idaho. Subject to heavy dam construction (Libby dam, 1972).
Streamflow characteristics change during flow series

c4115322 Yes Idaho. Subject to heavy dam construction (Libby dam, 1972).
Streamflow characteristics change during flow series

c4118100 No Nevada. Shows a peak that looks like an outlier. USGS fact
sheet confirms a flood in Jan-1997

c4118105 No Nevada. Shows a peak that looks like an outlier. USGS fact
sheet confirms a flood in Jan-1997

c4119265 No Idaho. Shows outlier-like peak. Various sources confirm a
flood event in Jun-2008

c4123255 No Ohio. Shows outlier-like peak. Various sources confirm ex-
treme flood in Mar-1997

c4126850 No Texas. Peaks are sudden and high. Typical ephemeral
stream

c4146230 No California. Outlier-like peaks. Typical ephemeral stream
c4146380 No California. End of data looks higher than rest of series but

no reason to assume errors
c4148070 No Virginia, near NC. Outlier-like peak. No sources confirm

flood but proximity to NC and matching flood dates imply
hurricane-related flood here

c4148110 No North Carolina. Outlier-like peak. Various sources confirm
Sep-1999 flood due to hurricane

c4148125 No North Carolina. Outlier-like peak. Various sources confirm
Sep-1999 flood due to hurricane

c4148850 No Florida. Low flow variability is high (quick changes), peaks
look slower than normal rising limbs. No reason to assume
errors, historical data from 1933-2017 looks the same

c4149405 No Alabama. Outlier-like peak. News report confirms flood in
May-2003
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Table A.1: Summary of GRDC flow data quality assurance - part 3. (Table continues on
next page.)

Catchment ID Excluded? Reason

c4149411 No Mississippi.Data looks spiky but no reason to assume errors
c4149420 No Florida. Outlier-like peak. Weather source confirms flood in

Oct-1998
c4149510 No Florida. Outlier-like peak. Weather source confirms flood in

Oct-1998
c4150310 No Texas. Outlier-like peak. News report confirms extreme

flood in Oct-1998
c4207750 No British Columbia. Outlier-like peak. News report confirms

extreme flood in Oct-2003
c4213080 No, corrected Alberta. Outlier-like peak near end of data. No confirmation

found of extreme rain or flow, removed outlier
c5202057 No New South Wales. Shows outlier-like peaks. No confirmation

of extreme flow but confirmation of extreme rain in the
approximate area

c5202065 No New South Wales. Shows outlier-like peaks. No confirmation
of extreme flow but confirmation of extreme rain in the
approximate area

c6123501 No, corrected France. Flows drop to (nearly) zero towards end of data,
coinciding with start of new year. Possible procedure error.
Removed 9133:end

c6125360 Yes Catchment area too small, results in unrealistic flows
c6128702 Yes Catchment area too small, results in unrealistic flows
c6139201 No, corrected France. Flows drop to (nearly) zero towards end of data,

coinciding with start of new year. Possible procedure error.
Removed days 9133:end

c6139260 No, corrected France. Flows drop to (nearly) zero towards end of data,
coinciding with start of new year. Possible procedure error.
Removed days 9133:end

c6139280 No, corrected France. Flows drop to (nearly) zero towards end of data,
coinciding with start of new year. Possible procedure error.
Removed days 9133:end

c6139281 No, corrected France. Flows drop to (nearly) zero towards end of data,
coinciding with start of new year. Possible procedure error.
Removed days 9133:end

c6139501 No, corrected France. Flows drop to (nearly) zero towards end of data,
coinciding with start of new year. Possible procedure error.
Removed days 9133:end

c6139502 No, corrected France. Flows drop to (nearly) zero towards end of data,
coinciding with start of new year. Possible procedure error.
Removed days 9133:end
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Table A.1: Summary of GRDC flow data quality assurance - part 4.

Catchment ID Excluded? Reason

c6139850 No, corrected France. Flows drop to (nearly) zero towards end of data,
coinciding with start of new year. Possible procedure error.
Removed days 9133:end

c6139960 No, corrected France. Flows drop to (nearly) zero towards end of data,
coinciding with start of new year. Possible procedure error.
Removed days 9133:end

c6150300 Yes No catchment area
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A.2.3 Flow record length

Flow records within the GRDC Pristine Basins data set need to cover a minimum of 20

years, but these do not necessarily overlap with the study period of 1984-2014. Figure A.10

shows a histogram of the number of years within the period 1984-2014 available. 1041

catchments (94.3%) used in this study have data records longer than 20 years.

FIGURE A.10. Overview of record length of flow data for the catchments in the
GRDC Pristine River basins data set.

A.3 Significance testing and signature values

This section gives details about the empirical Wilcoxon test used (section A.3.1), streamflow

signature values for 16 signatures, based on catchment grouping by representative climate

and by Köppen-Geiger class (section A.3.2) and the statistical difference in signature values

per representative climate and Köppen-Geiger class (Section A.3.3).

A.3.1 Empirical Wilcoxon statistical test

Context

• We have calculated 16 signature values for 1103 catchments;
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• We have determined the membership of each catchment to each of the 18 possible

climate clusters;

• We want to know if there is a statistical difference between the signatures values

that are associated with each cluster.

Problem

• We need a non-parametric method because we are unsure of the distributions that

make up the signature values per climate cluster (i.e. we do not know if they are

normal, so the t-test should not be used);

• The Wilcoxon rank test is a suitable test but can only be used in cases where the

samples are unweighed (i.e. all samples belong for 100% to their respective class).

The test thus needs to be adapted.

Wilcoxon procedure

• With the Wilcoxon test, we are testing the null hypothesis µ1 =µ2 against a suitable

alternative [336], with µ1 being the mean of all observations xi=1:m and µ2 being the

mean of all observations yj=1:n;

• The unmodified Wilcoxon test consists of pair-wise comparison of all observations in

xi and yj. If xi > yj , a new variable Ux is increased by 1, if xi < yj, Uy is increased by 1.

After all pairs have been compared the p-value for obtaining a given U = min(Ux,Uy)

can be obtained from tables or otherwise, which gives a measure of the likelihood of

obtaining a given U value under the null hypothesis. If the p-value is below a certain

critical threshold, the null hypothesis can be rejected.

Solution

• Modify the Wilcoxon test to account for weighted observations and use bootstrapping

to empirically determine the null distribution;

• In this case µ1 refers to the mean of signatures values belonging to climate cluster

1, consisting of xi=1:m observations with accompanying weights wx,i=1:m. Idem for

µ2. During pair-wise comparison, Ux is increased by wx,i ∗wy, j, if xi > yj. Otherwise,

wx,i ∗wy, j is added to Uy. U = min(Ux,Uy) can now be tested against an empirical

null distribution;

• To create the empirical null distribution, xi and yj are pooled together into a single

sample, from which two new uniform random samples are drawn, with replacement,
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equal in size to xi and yj. A U-value is then determined from pairwise compari-

son of both new samples. This process is repeated N times to form an empirical

approximation of the null distribution. N is commonly set at 999 [87];

• Now the U-value of observations can be compared to the empirical distribution of

U-values under the null hypothesis, using p = r+1
N+1 , where N is the number of samples

and r is the number of samples that have a U-value below the U-value calculated for

the data [235].

Illustration of Wilcoxon test, adapted for fuzzy membership (Figure A.11)

• Distribution of weighted xi and yj as observed in the data. The y-axis is meaningless

and only used to visualise xi and yj better. The U-value for these samples is 204.4;

• Uniform random sampling with replacement of xi and yj, from a pool made up of xi

and yj. Visually, the samples are similar to one another, and very different from the

pattern seen in Figure A.11a. The U-value is 697.7;

• The average U-value after N-samples levels out at U ≈ 840 and N = 999 seems

sufficient;

• Visually comparing the U-value calculated from data with the empirical U-value

distribution shows that the null hypothesis can quite probably be rejected. The test

statistic p = r+1
N+1 = 0+1

999+1 = 0.001 confirms this.

A.3.2 Signature values

This section contains plots of the average signature value in each climate cluster (Figure

A.12) and Köppen-Geiger class (Figure A.13). Signature values are calculated using daily

flow data for each hydrological year available per catchment. This gives up to 30 annual

values per catchment (depending on number of available hydrological years), from which

the average annual signature value is calculated. Catchment membership to each climate

cluster is used to create a weighted average signature value per climate cluster.

A.3.3 Statistical difference between climate groups/classes per
streamflow signature

This section shows the results of significance testing per signature, with catchments

grouped by representative climate (significance tested with empirical Wilcoxon test, Figure

A.14) and Köppen-Geiger class (significance tested with regular Wilcoxon test, Figure

A.15).
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FIGURE A.11. Example of empirical Wilcoxon statistical test. (a) Distribution
of observed values of the average_flow signature for representative climate
16 (xi, very wet climate, low seasonality, no frost) and climate 1 (yj, very
dry climate, low seasonality, no frost). Data points correspond to all 1103
catchments with their transparency dependent on the weight with which
they belong to each cluster. The low U-value indicates a large difference in
ranks between both samples, which can also be seen from the concentration
of high weight values for both climates. (b) Uniform random re-sampling of
xi and yj, from a sample containing both. The re-sampled distributions are
more similar (spread of height weights) and this leads to a higher U-value.
(c) The average U-value of the re-sampled distribution after N samples. (d)
The resulting distribution of re-sampled U-values (bars) versus the U-value
of observations (red line). The observed U-value is very different from the
re-sampled distribution, leading to a low empirical p-value and thus a high
confidence that the H0 hypothesis µxi =µy j should be rejected.

A.4 Geographical spread of GRDC catchments per main
climate cluster

This section shows the geographical spread of GRDC catchments in the context of their

main representative climate, showing that nearly all representative climates contain flow

records from at least two continents (Figure A.16).
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FIGURE A.12. Weighted mean signature values per climate cluster, plotted at the
climate cluster centroid location. Values are the weighted mean of average
annual signature values per catchment.

FIGURE A.13. Distribution of the mean of annual signature values per GRDC
catchment within each Köppen-Geiger climate. Climate classes without flow
values are not shown.
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FIGURE A.14. Empirical p-values of differences between annual mean signatures
values per climate cluster.
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FIGURE A.15. p-values of differences between annual mean signatures values
per Koppen-Geiger climate class

FIGURE A.16. GRDC catchments (white dots) per main climate cluster (cluster
for which each catchment has the highest membership degree). Catchment-
averaged climate is used to determine membership degrees where catchment
boundary data is available (718 catchments), the climate at the outlet location
is used in the remaining cases (385 catchments).
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This appendix has been submitted as Supporting Materials for a Model description paper

in Geoscientific Model Development. Slight modifications have been made to better fit the

general layout of this thesis.

Citation: Knoben, W. J. M., Woods, R. A., & Freer, J. E. (2018). Supporting Material to

”Modular Assessment of Rainfall-Runoff Models Toolbox (MARRMoT) v1.0: an open-source,

extendable framework providing implementations of 46 conceptual hydrologic models as

continuous space-state formulations”. Geoscientific Model Development, under review.

https://doi.org/10.5194/gmd-2018-332

B.1 Introduction

These Supporting Materials contain documentation for various parts of the MARRMoT

software. Section B.2 contains model desciptions for the 46 conceptual models included in

MARRMoT. Section B.3 shows how the constitutive functions of each model are translated

into Matlab code, and which models use which of the resulting flux functions. Section B.4

shows how 7 different Unit Hydrograph approaches are coded in MARRMoT and which

models use these. Section B.5 shows an overview of generalized parameter ranges for the

46 models.
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B.2 Model descriptions

This section contains mathematical descriptions of all models that are included in the

Modular Assessment of Rainfall-Runoff Models Toolbox v1.0 (MARRMoT). All descriptions

follow the same layout (see the example model at the end of this section):

• Title: gives an informal name for the model structure followed by a unique ID;

• Introduction: gives a brief description of the model, including one or more original

reference(s), the number of stores and parameters, a list containing parameter names

and occasionally note-worthy deviations from the original model;

• Process list: a brief overview of the main processes the model is intended to represent;

• Figure: a wiring diagram that shows the names of model stores and fluxes;

• Matlab name section: gives the name of the file that contains Matlab code for this

model;

• Model equations section: a mathematical description of the model. This uses Ordinary

Differential Equations (ODEs) to describe the changes in model storage(s) and

constitutive functions that detail how individual fluxes operate.

MARRMoT models intend to stay close to the original models they are based on but

differences are unavoidable. We strongly recommend users to read the original paper cited

for each model as well as our interpretation given in this document. In many cases, more

than one version of a model exists, but these are not always easily distinguishable. There is

a certain degree of model name equifinility, where a single name is used to refer to various

different version of the same base model. A good example is TOPMODEL, of which many

variants exist based around the initial concept of topographic indices. MARRMoT models

tend to be based on older rather than newer publications for any given model (to stay close

to the "intended" model by the original author(s)) but our selection has been pragmatic to

achieve greater variety in the available fluxes and model structures in MARRMoT. The

description of each model lists the papers that form the basis of the MARRMoT version of

that model.

MARRMoT is set up to work with arbitrary user-defined time step sizes for climate

input data. For consistency of parameter values across different time step sizes, the internal

dynamics of each model are specified using the base units [mm] and [d]. The temporal

resolution of climate data is converted to [mm/d] within each model, and model output

is converted back to the user-specified time step size. Internal fluxes in each MARRMoT
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model use the base units and are in [mm/d] and parameter values are specified in the

base or derived units (e.g. [d−1] for time coefficients). These units are kept throughout this

document.

The computational implementation of constitutive functions is given in section B.3

and Unit Hydrographs are specified in section B.4. Generalized parameter ranges for all

models are given in section B.5.

Example model (model ID: nn)

The Example model (fig. B.1) is used in the MARRMoT User Manual to show how to create

a new MARRMoT model from scratch [177]. It has 3 stores and 7 parameters (UZmax,

crate, prate, klz, α, kg, d). The model aims to represent:

• Saturation excess from the upper zone;

• Two-way interaction between upper and lower zone through percolation and capillary

rise;

• A split between fast subsurface flow and groundwater recharge from the lower zone;

• Slow runoff from the groundwater;

• Triangular routing of combined surface and subsurface flows.

File names

Model: m_nn_example_7p_3s

Parameter ranges: m_nn_example_7p_3s_parameter ranges

Model equations

PE

qp

Q

LZ

UZ

G

qc

qse

qlz qf

qs

qg

Figure B.1: Structure of the Example

model

dUZ
dt

= P + qc −E− qse − qp (B.1)

E = Ep ∗ UZ
UZmax

(B.2)

qc = crate

(
1− UZ

UZmax

)
(B.3)

qse =
P, if UZ =UZmax

0, otherwise
(B.4)

qp = prate (B.5)
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Where UZ [mm] is the current storage in the up-

per zone, refilled by precipitation P [mm/d] and cap-

illary rise qc [mm/d] and drained by evaporation

E [mm/d], percolation qp [mm/d] and saturation

excess qse [mm/d]. Evaporation occurs at the po-

tential rate Ep scaled by the current storage in UZ

compared to maximum storage UZmax [mm]. Cap-

illary rise occurs at a maximum rate crate [mm/d]

if UZ = 0 and decreases linearly if not. Saturation

excess flow only occurs when UZ is at maximum

capacity. Percolation occurs at a constant rate prate

[mm/d].

dLZ
dt

= qp − qc − qlz (B.6)

qlz = klz ∗LZ (B.7)

Where LZ [mm] is the current storage in the lower zone, refilled by percolation qp

[mm/d] and drained by capillary rise qc [mm/d] and outflow qlz [mm/d]. Outflow has a

linear relation with storage through time parameter klz [d−1].

dG
dt

= qg − qs (B.8)

qg =α∗ qlz (B.9)

qs = kg ∗G (B.10)

Where G [mm] is the current groundwater storage, refilled by recharge qg [mm/d] and

drained by slow flow qs [mm/d]. Recharge is a fraction α [-] of outflow from the lower zone.

Outflow has a linear relation with storage through time parameter kg [d−1]. Saturation

excess qse, interflow q f and slow flow qs are combined and routed with a triangular Unit

Hydrograph with time base d [d] to give outflow Q [mm/d].
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B.2.1 Collie River Basin 1 (model ID: 01)

The Collie River Basin 1 model (fig. B.2) is part of a top-down modelling exercise and is

originally applied at the annual scale [158]. This is a classic bucket model. It has 1 store

and 1 parameter (Smax). The model aims to represent:

• Evaporation from soil moisture;

• Saturation excess surface runoff.

B.2.1.1 File names

Model: m_01_collie1_1s_1p

Parameter ranges: m_01_collie1_1s_1p_parameter_ ranges

B.2.1.2 Model equations

S

PEa
Qse

Figure B.2: Structure of the

Collie River Basin 1 model

dS
dt

= P −Ea −Qse (B.11)

Ea = S
Smax

∗Ep (B.12)

Qse =
P, i f S > Smax

0, otherwise
(B.13)

Where S [mm] is the current storage in the soil moisture and P the precipitation

input [mm/d]. Actual evaporation Ea [mm/d] is estimated based on the current storage S,

the maximum soil moisture storage Smax [mm], and the potential evapotranspiration Ep

[mm/d]. Qse [mm/d] is saturation excess overland flow.
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B.2.2 Wetland model (model ID: 02)

The Wetland model (fig. B.3) is a conceptualization of the perceived dominant processes

in a typical Western European wetland [274]. It belongs to a 3-part topography driven

modelling exercise, together with a hillslope and plateau conceptualization. Each model

is provided in isolation here, because they are well-suited for isolating specific model

structure choices. It has 1 store and 4 parameters (Dw, Sw,max, βw and Kw). The model

aims to represent:

• Stylized interception by vegetation;

• Evaporation;

• Saturation excess runoff generated from a distribution of soil depths;

• A linear relation between storage and slow runoff.

B.2.2.1 File names

Model: m_02_wetland_4p_1s

Parameter ranges: m_02_wetland_4p_1s_parameter_ ranges

B.2.2.2 Model equations

P

Ew

QSw

Pe Qw,sof

Qw,gw

Figure B.3: Structure of

the Wetland model

dSw

dt
= Pe −Ew −Qw,sof −Qw,gw (B.14)

Pe = max(P −Dw,0) (B.15)

Ew =
Ep, if Sw > 0

0, otherwise
(B.16)

Qw,sof =
(
1−

(
1− Sw

Sw,max

)βw
)
∗Pe (B.17)

Qw,gw = Kw ∗Sw (B.18)

Where Sw is the current soil water storage [mm]. Incoming precipitation P [mm/d]

is reduced by interception Dw [mm/d], which is assumed to evaporate before the next

precipitation event. Evaporation from soil moisture Ew [mm/d] occurs at the potential

rate Ep whenever possible. Saturation excess surface runoff Qw,sof [mm/d] depends on

the fraction of the catchment that is currently saturated, expressed through parameters

Sw,max [mm] and βw [-]. Groundwater flow Qw,gw [mm/d] depends linearly on current

storage Sw through parameter Kw [d−1]. Total flow:
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Q =Qw,sof +Qw,gw (B.19)
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B.2.3 Collie River Basin 2 (model ID: 03)

The Collie River Basin 2 model (fig. B.4) is part of a top-down modelling exercise and is

originally applied at the monthly scale [158]. It has 1 store and 4 parameters (Smax, S f c,

a, M). The model aims to represent:

• Separate bare soil and vegetation evaporation;

• Saturation excess surface runoff;

• Subsurface runoff.

B.2.3.1 File names

Model: m_03_collie2_4p_2s

Parameter ranges: m_03_collie2_4p_2s_parameter_ ranges

B.2.3.2 Model equations

P
Eb

Qse

Qss

Ev

QS

Figure B.4: Structure of the

Collie River Basin 2 model

dS
dt

= P −Eb −Ev −Qse −Qss (B.20)

Eb = S
Smax

(1−M)∗Ep (B.21)

Ev =
M∗Ep, i f S > S f c

S
S f c

∗M∗Ep, otherwise
(B.22)

Qse =
P, i f S > Smax

0, otherwise
(B.23)

Qss =
a∗ (S−S f c), i f S > S f c

0, otherwise
(B.24)

Where S [mm] is the current storage in the soil moisture and P [mm/d] the precip-

itation input. Actual evaporation is split between bare soil evaporation Eb [mm/d] and

transpiration through vegetation Ev [mm/d], controlled through the forest fraction M [-].

The evaporation estimates are based on the current storage S, the potential evapotranspi-

ration Ep [mm/d], maximum soil moisture storage Smax [mm] and field capacity S f c [mm]

respectively. Qse [mm/d] is saturation excess overland flow. Qss [mm/d] is subsurface flow

regulated by runoff coefficient a [d−1]. Total flow:
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Q =Qse +Qss (B.25)
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B.2.4 New Zealand model v1 (model ID: 04)

The New Zealand model v1 (fig. B.5) is part of a top-down modelling exercise that focusses

on several catchments in New Zealand [19]. It has 1 store and 6 parameters (Smax, S f c,

M, a, b and tc,bf ). The model aims to represent:

• Separate vegetation and bare soil evaporation;

• Saturation excess overland flow;

• Subsurface runoff when soil moisture exceeds field capacity;

• Baseflow.

B.2.4.1 File names

Model: m_04_newzealand1_6p_1s

Parameter ranges: m_04_newzealand1_6p_1s_parameter_ ranges

B.2.4.2 Model equations

Eveg

Q

Qse

Qbf

Sm
Qss

EbsP

Figure B.5: Structure of the New

Zealand model v1

dSm

dt
= P −Eveg −Ebs −Qse −Qss −Qbf (B.26)

Eveg =
M∗Ep, if S > S f c

Sm
S f c

∗M∗Ep, otherwise
(B.27)

Ebs =
S

Smax
(1−M)∗Ep (B.28)

Qse =
P, if S ≥ Smax

0, otherwise
(B.29)

Qss =


(
a∗ (S−S f c)

)b , if S ≥ S f c

0, otherwise
(B.30)

Qbf = tc,bf ∗S (B.31)

Where Sm [mm] is the current soil moisture storage which gets replenished through

precipitation P [mm/d]. Evaporation through vegetation Eveg [mm/d] depens on the forest

fraction M [-] and field capacity S f c [-]. Ebs [mm/d] represents bare soil evaporation. When

S exceeds the maximum storage Smax [mm], water leaves the model as saturation excess

runoff Qse. If S exceeds field capacity S f c [mm], subsurface runoff Qss [mm/d] is generated

controlled by time parameter a [d−1] and nonlinearity parameter b [-]. Qbf represents

baseflow controlled by time scale parameter tc,bf [d−1]. Total runoff Qt [mm/d] is:
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Qt =Qse +Qss +Qbf (B.32)
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B.2.5 IHACRES (model ID: 05)

The IHACRES model (fig. B.6) as implemented here is a modification of the original equa-

tions [84, 199, 350], which explicitly account for the various fluxes in a step-wise order.

Furthermore, IHACRES usually uses temperature as a proxy for potential evapotranspi-

ration (Ep). Here it uses estimated Ep directly to be consistent with other models. The

equations for Ea and U are set up following Croke & Jakeman [84], with the non-linearity

in U based on Ye et al [350]. THis version thus uses a catchment moisture deficit formula-

tion, rather than a catchment wetness index. Littlewood et al [199] recommends the two

parallel routing functions. The model has 1 deficit store and 6 parameters (l p, d, p, α, τq,

τs). The model aims to represent:

• Catchment deficit build-up

• Slow and fast routing of effective precipitation.

B.2.5.1 File names

Model: m_05_ihacres_6p_1s

Parameter ranges: m_05_ihacres_6p_1s_parameter_ ranges

B.2.5.2 Model equations

PEa

Q

CMD
U Uq

Us xq

xs

0

+

Figure B.6: Structure of the

IHACRES model

dCMD
dt

=−P +Ea +U (B.33)

Ea = Ep ∗min
(
1, e2

(
1− CMD

l p

))
(B.34)

U = P
(
1−min

(
1,

(
CMD

d

)p))
(B.35)

Uq =α∗U (B.36)

Us = (1−α)∗U (B.37)

Where CMD is the current moisture deficit [mm], P

[mm/d] the incoming precipitation that reduces the deficit,

Ea [mm/d] evaporation that increases the deficit, and U

[mm/d] the effective precipitation that occurs when the

deficit is below a threshold d [mm].

Evaporation occurs at the potential rate Ep until the moisture deficit reaches wiliting

point l p [mm], after which evaporation decreases exponentially with increasing deficit.

Effective precipitation U equals incoming precipitation P when the deficit is zero, and
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decreases as a linear fraction of P until moisture deficit is larger than a threshold d

[mm], after which precipitation does not contribute to streamflow any longer. U is divided

between fast and slow routing components based on fraction α [-]. Both routing schemes

are exponentially decreasing over time with lags τq [d] and τs [d] respectively. Total flow:

Q = xq + xs (B.38)
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B.2.6 Alpine model v1 (model ID: 06)

The Alpine model v1 model (fig. B.7) is part of a top-down modelling exercise and represents

a monthly water balance model [95]. It has 2 stores and 4 parameters (Tt, dd f , Smax, tc).

The model aims to represent:

• Snow accumulation and melt;

• Saturation excess overland flow;

• Linear subsurface runoff.

B.2.6.1 File names

Model: m_06_alpine1_4p_2s

Parameter ranges: m_06_alpine1_4p_2s_parameter_ ranges

B.2.6.2 Model equations

P

Ea

Q

Sn QN

PS

Sm

Qse

Qss

Pr

Figure B.7: Structure of the Alpine model

v1

dSn
dt

= Ps −QN (B.39)

Ps =
P, if T ≤ Tt

0, otherwise
(B.40)

QN =
dd f ∗ (T −Tt), if T ≥ Tt

0, otherwise
(B.41)

Where SN is the current snow storage

[mm], Ps the precipitation that falls as snow

[mm/d], QN snow melt [mm/d] based on a

degree-day factor (ddf, [mm/◦C/d]) and thresh-

old temperature for snowfall and snowmelt

(Tt, [◦C]).
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dSm

dt
= Pr +QN −Ea −Qse −Qss (B.42)

Pr =
P, if T > Tt

0, otherwise
(B.43)

Ea =
Ep, if S > 0

0, otherwise
(B.44)

Qse =
Pr +QN , if Sm ≥ Smax

0, otherwise
(B.45)

Qss = tc ∗Sm (B.46)

Where Sm [mm] is the current soil moisture storage, which is assumed to evaporate at

the potential rate Ep [mm/d] when possible. When Sm exceeds the maximum storage Smax

[mm], water leaves the model as saturation excess runoff Qse. Qss represents subsurface

flow controlled by time scale parameter tc [d−1]. Total runoff Qt [mm/d] is:

Qt =Qse +Qss (B.47)
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B.2.7 GR4J (model ID: 07)

The GR4J model (fig. B.8) is originally developed with an explicit (operator-splitting)

time-stepping scheme [255]. Recently a new version has been released that works with

an implicit time-stepping scheme [271]. The implementation given here follows most of

the equations from Santos et al [271], but uses the original Unit Hydrographs for flood

routing given by Perrin et al [255]. It has 2 stores and 4 parameters (x1, x2, x3, x4). The

model aims to represent:

• Implicit interception by vegetation, expressed as net precipitation or evaporation;

• Different time delays within the catchment expressed by two hydrographs;

• Water exchange with neighbouring catchments.

B.2.7.1 File names

Model: m_07_gr4j_4p_2s

Parameter ranges: m_07_gr4j_4p_2s_parameter_ ranges

B.2.7.2 Model equations

S

P

Es

Pn
Ps

perc

Q9

Q1

Pn-Ps

R

F(x2)

F(x2)

Q

Qr

Figure B.8: Structure of the

GR4J model

dS
dt

= Ps −Es −Perc (B.48)

Ps = Pn ∗
(
1−

(
S
x1

)2)
(B.49)

Pn =
P −Ep, if P ≥ Ep

0, otherwise
(B.50)

Es = En ∗
(
2

S
x1

−
(

S
x1

)2)
(B.51)

En =
Ep−P, if Ep > P

0, otherwise
(B.52)

Perc = x−4
1

4d
∗

(
4
9

)−4
S5 (B.53)

Where S is the current soil moisture storage [mm],

Ps [mm/d] is the fraction of net precipitation Pn [mm/d]

redirected to soil moisture, Es [mm/d] is the fraction of

net evaporation En [mm/d] subtracted from soil mois-

ture, and perc [mm/d] is percolation to deeper soil layers.

Parameter x1 [mm] is the maximum soil moisture storage.
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Percolation perc and excess precipitation Pn −Ps are divided into 90% groundwater

flow, routed through a triangular routing scheme with time base x4 [d], and 10% direct

runoff, routed through a triangular routing scheme with time base 2x4 [d].

dR
dt

=Q9 +F(x2)−Qr (B.54)

F(x2)= x2 ∗
(

R
x3

)3.5
(B.55)

Qr =
x−4

3

4d
R5 (B.56)

Where R [mm] is the current storage in the routing store, F(x2) [mm/d] the catchment

groundwater exchange, depending on exchange coefficient x2 [mm/d] and the maximum

routing capacity x3 [mm], and Qr [mm/d] routed flow. Total runoff Qt [mm/d]:

Qt =Qr +max(Q1 +F(x2),0) (B.57)
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B.2.8 United States model (model ID: 08)

The United States model (fig. B.9) is part of a multi-model comparison study using several

catchments in the United States [20]. It has 2 stores and 5 parameters (αei, M, Smax, f c,

αss). The model aims to represent:

• Interception as a percentage of precipitation;

• Separate unsaturated and saturated zones;

• Separate bare soil evaporation and vegetation transpiration;

• Saturation excess overland flow;

• Subsurface flow.

B.2.8.1 File names

Model: m_08_us1_5p_2s

Parameter ranges: m_08_us1_5p_2s_parameter_ ranges

B.2.8.2 Model equations

Sus

Ssat

P
Eus,bs

Qse

Qss Q

se

Eus,veg

Eus,ei

Esat,bs

Esat,veg

rg

Figure B.9: Structure of the

United States model

dSus

dt
= P −Eus,ei −Eus,veg −Eus,bs − rg (B.58)

Eus,ei =αei ∗P (B.59)

Eus,veg =


Sus
Sus+Ssat

∗M∗Ep, if Sus > Susf c

Sus
Sus+Ssat

∗M∗Ep ∗ Sus
Susf c

, otherwise

(B.60)

Eus,bs =
Sus

Sus +Ssat
∗ (1−M)∗ Sus

Smax −Ssat
∗Ep (B.61)

rg =
P, if Sus > Susf c

0, otherwise
(B.62)

Se =
Sus −Susf c, i f Sus > Susf c

0, otherwise
(B.63)

Susf c = f c∗ (Smax −Ssat) (B.64)

Where Sus [mm] is the current storage in the unsaturated zone, Eus,ei [mm/d] evapo-

ration from interception, Eus,veg [mm/d] transpiration through vegetation, Eus,bs [mm/d]
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bare soil evaporation and rg [mm/d] drainage to the saturated zone. Interception evap-

oration relies on parameter αei [-], representing the fraction of precipitation P that is

intercepted. The implicit assumption is that this evaporates before the next precipitation

event. Transpiration uses forest fraction M [-], potential evapotranspiration Ep [mm/d]

and the estimated field capacity Susf c through parameter f c [-]. Bare soil evaporation

relies also on the maximum soil moisture storage Smax [mm].

dSsat

dt
= rg −Esat,veg −Esat,bs −Qse −Qss (B.65)

Esat,veg = Ssat

Smax
∗M∗Ep (B.66)

Esat,bs =
Ssat

Smax
∗ (1−M)∗Ep (B.67)

Qse =
rg, if Sus ≥ Smax

0, otherwise
(B.68)

Qss =αss ∗Ssat (B.69)

Where Ssat [mm] is the current storage in the saturated zone, Esat,veg [mm/d] transpi-

ration through vegetation, Esat,bs [mm/d] bare soil evaporation, Qse [mm/d] saturation

excess overland flow and Qss [mm/d] subsurface flow. Subsurface flow uses time parameter

αss [d−1] Total flow:

Q =Qse +Qss (B.70)
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B.2.9 Susannah Brook model v1-5 (model ID: 09)

The Susannah Brook model v1-5 (fig. B.10) is part of a top-down modelling exercise designed

to use auxiliary data [309]. It has 2 stores and 6 parameters (Sb, S f c, M, a, b and r). The

model aims to represent:

• Evaporation from soil and transpiration from vegetation;

• Saturation excess and non-linear subsurface flow;

• Groundwater recharge and baseflow.

B.2.9.1 File names

Model: m_09_susannah1_6p_2s

Parameter ranges: m_09_susannah1_6p_2s_parameter_ ranges

B.2.9.2 Model equations

P
Ebs

Q

Suz

Sgw

Qr

Qb

Eveg

Qss

Qse

Figure B.10: Structure of the

Susannah Brook model v1-5

dSuz

dt
= P −Ebs −Eveg −Qse −Qss (B.71)

Ebs =
S
Sb

(1−M)Ep (B.72)

Eveg =
M∗Ep, if S > S f c

S
S f c

M∗Ep, otherwise
(B.73)

Qse =
P, if S ≥ Sb

0, otherwise
(B.74)

Qss =


(

S−S f c
a

) 1
b , if S > S f c

0, otherwise
(B.75)

Where Suz is current storage in the upper zone [mm]. P [mm/d] is the precipitation

input. Ebs is bare soil evaporation [mm/d] based on soil depth Sb [mm] and forest fraction

M [-]. Eveg is transpiration from vegetation, using the wilting point S f c [mm] and forest

fraction M. Qse is saturation excess flow [mm/d]. Qss is non-linear subsurface flow, using

the wilting point S f c as a threshold for flow generation and two flow parameters a [d] and

b [-]. Qr is groundwater recharge [mm/d].
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DSgw

dt
=Qr −Qb (B.76)

Qr = r∗Qss (B.77)

Qb =
(

1
a

Sgw

) 1
b

(B.78)

Where Sgw is the groundwater storage [mm], and Qb the baseflow flux [mm/d]. Total

flow [mm]:

Q =Qse + (Qss −Qr)+Qb (B.79)
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B.2.10 Susannah Brook model v2 (model ID: 10)

The Susannah Brook model v2 model (fig. B.11) is part of a top-down modelling exercise

designed to use auxiliary data [309]. It has 2 stores and 6 parameters (Sb, φ, f c, r, c, d).

For consistency with other model formulations, Sb is is used as a parameter, instead of

being broken down into its constitutive parts D and φ. The model aims to represent:

• Separation of saturated zone and a variable-size unsaturated zone;

• Evaporation from unsaturated and saturated zones;

• Saturation excess and non-linear subsurface flow;

• Deep groundwater recharge.

B.2.10.1 File names

Model: m_10_susannah2_6p_2s

Parameter ranges: m_10_susannah2_6p_2s_parameter_ ranges

B.2.10.2 Model equations

Sus

Ssat

P
Esat Eus

Qse

Qss

Qr

Q

serg

Figure B.11: Structure of the

Susannah Brook v2 model

dSus

dt
= P −Eus − rg −Se (B.80)

Eus = Sus

Sb
∗Ep (B.81)

Sb = D∗φ (B.82)

rg =
P, i f Sus > Susf c

0, otherwise
(B.83)

Se =
Sus −Susf c, i f Sus > Susf c

0, otherwise
(B.84)

Susf c = (Sb −Ssat)∗ f c
φ

(B.85)

Where Sus is the current storage in the unsaturated

store [mm], P the current precipitation [mm], Sb [mm]

the maximum storage of the soil profile, based on the

soil depth D [mm] and the porosity φ [-]. rg is drainage

from the unsaturated store to the saturated store [mm],

based on the variable field capacity Susf c [mm]. Susf c is

based on the current storage on the saturated zone Ssat
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[mm], the maximum soil moisture storage Sb [mm], the

field capacity f c [-] and the porosity φ [-]. Se [mm] is the

storage excess, resulting from a decrease of Susf c that

leads to more water being stored in the unsaturated zone

than should be possible.

dSsat

dt
= rg −Esat −QSE −QSS −QR (B.86)

Esat = Ssat

Sb
∗Ep (B.87)

QSE =
rg +Se, if Ssat > Sb

0, otherwise
(B.88)

QSS = (1− r)∗ c∗ (Ssat)d (B.89)

QR = r∗ c∗ (Ssat)d (B.90)

Where Ssat is the current storage in the saturated zone [mm], Esat is the evaporation

from the saturated zone [mm], QSE saturation excess runoff [mm] that occurs when the

saturated zone reaches maximum capacity Sb [mm], QSS is subsurface flow [mm] and QR

is recharge of deep groundwater [mm]. Both QSS and QR are based on the dimensionless

fraction r and subsurface flow constants c [d−1] and d [-]. Total runoff is the sum of QSE

and QSS:

Q =QSE +QSS (B.91)
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B.2.11 Collie River Basin 3 (model ID: 11)

The Collie River Basin 3 model (fig. B.12) is part of a top-down modelling exercise and is

originally applied at the daily scale [158]. It has 2 stores and 6 parameters (Smax, S f c, a,

M, b, λ). The model aims to represent:

• Separate bare soil and vegetation evaporation;

• Saturation excess surface runoff;

• Non-linear subsurface runoff;

• Non-linear groundwater runoff.

B.2.11.1 File names

Model: m_11_collie3_6p_2s

Parameter ranges: m_11_collie3_6p_2s_parameter_ ranges

B.2.11.2 Model equations

P
Eb

Qse

Qss

Ev

Q

S

G Qsg

Q*
ss

(1-λ)Qss

Figure B.12: Structure of the

Collie River Basin 3 model

dS
dt

= P −Eb −Ev −Qse −Qss (B.92)

Eb = S
Smax

(1−M)∗Ep (B.93)

Ev =
M∗Ep, i f S > S f c

S
S f c

∗M∗Ep, otherwise
(B.94)

Qse =
P, i f S > Smax

0, otherwise
(B.95)

Qss =


(
a∗ (S−S f c)

)b, i f S > S f c

0, otherwise
(B.96)

Where S [mm] is the current storage in the soil moisture and P the precipitation

input [mm/d]. Actual evaporation is split between bare soil evaporation Eb [mm/d] and

transpiration through vegetation Ev [mm/d], controlled through the forest fraction M. The

evaporation estimates are based on the current storage S, the potential evapotranspiration

Ep [mm/d] and the maximum soil moisture storage Smax [mm], and field capacity S f c
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[mm] respectively. Qse [mm/d] is saturation excess overland flow. Qss [mm/d] is non-linear

subsurface flow regulated by runoff coefficients a [d−1] and b [-].

dG
dt

=Q∗
ss −Qsg (B.97)

Q∗
ss =λ∗Qss (B.98)

Qsg = (a∗G)b (B.99)

Where G [mm] is groundwater storage. Q∗
ss mm/d] is the fraction of Qss directed to

groundwater. Qsg [mm/d] is non-linear groundwater flow that relies on the same parame-

ters as subsurface flow uses. Total runoff:

Q =Qse + (1−λ)∗Qss +Qsg (B.100)
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B.2.12 Alpine model v2 (model ID: 12)

The Alpine model v2 (fig. B.13) is part of a top-down modelling exercise and represents a

daily water balance model [95]. It has 2 stores and 6 parameters (Tt, dd f , Smax, C f c, tc,in,

tc,bf ). The model aims to represent:

• Snow accumulation and melt;

• Saturation excess overland flow;

• Linear subsurface runoff.

B.2.12.1 File names

Model: m_12_alpine2_6p_2s

Parameter ranges: m_12_alpine2_6p_2s_parameter_ ranges

B.2.12.2 Model equations

P

Ea

Q

Sn QN

PS

Qse

Qbf

Pr

Sm
Qin

Figure B.13: Structure of the Alpine model

v1

dSn
dt

= Ps −QN (B.101)

Ps =
P, if T ≤ Tt

0, otherwise
(B.102)

QN =
dd f ∗ (T −Tt), if T ≥ Tt

0, otherwise

(B.103)

Where SN is the current snow storage

[mm], Ps the precipitation that falls as snow

[mm/d], QN snow melt [mm/d] based on a

degree-day factor (ddf, [mm/◦C/d]) and thresh-

old temperature for snowfall and snowmelt

(Tt, [◦C]).
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dS
dt

= Pr +QN −Ea −Qse −Q in −Qbf (B.104)

Pr =
P, if T > TT

0, otherwise
(B.105)

Ea =
Ep, if S > 0

0, otherwise
(B.106)

Qse =
Pr +QN , if S ≥ Smax

0, otherwise
(B.107)

Q in =
tc,in ∗ (S−S f c), if S > S f c

0, otherwise
(B.108)

Qbf = tc,bf ∗S (B.109)

Where S [mm] is the current soil moisture storage, which is assumed to evaporate at

the potential rate Ep [mm/d] when possible. When S exceeds the maximum storage Smax

[mm], water leaves the model as saturation excess runoff Qse. If S exceeds field capacity

S f c [mm], interflow Q in [mm/d] is generated controlled by time parameter tc,in [d−1]. Qbf

represents baseflow controlled by time scale parameter tc,bf [d−1]. Total runoff Qt [mm/d]

is:

Qt =Qse +Q in +Qbf (B.110)
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B.2.13 Hillslope model (model ID: 13)

The Hillslope model (fig. B.14) is a conceptualization of the perceived dominant processes

in a typical Western European hillslope [274]. It belongs to a 3-part topography driven

modelling exercise, together with a wetland and plateau conceptualization. Each model

is provided in isolation here, because they are well-suited for isolating specific model

structure choices. It has 2 store and 7 parameters (Dw, Sh,max, βh, a, Th, C and Kh). The

model aims to represent:

• Stylized interception by vegetation;

• Evaporation;

• Separation between rapid subsurface flow and groundwater recharge;

• Capillary rise and linear relation runoff from groundwater.

B.2.13.1 File names

Model: m_13_hillslope_7p_2s

Parameter ranges: m_13_hillslope_7p_2s_parameter_ ranges

B.2.13.2 Model equations

P

Et+Es

Q

Sw

Pe Qse

Qh,gw

Qh,srf

Sh,gw

C

Qse,g

Qse,s

Figure B.14: Structure of the Hillslope

model

dSw

dt
= Pe +C− (E t +Es)−Qse (B.111)

Pe = max(P −Dh,0) (B.112)

C = c. (B.113)

E t +Es =
Ep, if Sw > 0

0, otherwise
(B.114)

Qse =
(
1−

(
1− Sh

Sh,max

)βh
)
∗Pe (B.115)

(B.116)

Where Sw is the current soil water stor-

age [mm]. Incoming precipitation P [mm/d] is

reduced by interception Dh [mm/d], which is

assumed to evaporate before the next precipitation event. C is capillary rise from

groundwater [mm/d], given as a constant rate. Evaporation from soil moisture E t +Es

[mm/d] occurs at the potential rate Ep whenever possible. Storage excess surface runoff
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Qse [mm/d] depends on the fraction of the catchment that is currently saturated, expressed

through parameters Sh,max [mm] and βh [-].

dSh,gw

dt
=Qse,g −C−Qh,gw (B.117)

Qse,g = (1−a)∗Qse (B.118)

Qh,gw = Kh ∗Sh,gw (B.119)

Where Sh,gw is current groundwater storage [mm]. Qse,g is the groundwater fraction of

storage excess flow Qse [mm/d], with Qse,s as its complementary part. a is the parameter

controlling this division [-]. Groundwater flow Qh,gw [mm/d] depends linearly on current

storage Sh,gw through parameter Kh [d−1]. Total flow Qt is the sum of Qh,gw and Qh,sr f ,

the latter of which is Qse,s lagged over Th days.
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B.2.14 TOPMODEL (model ID: 14)

The TOPMODEL (fig. B.15) is originally a semi-distributed model that relies on topographic

information [48]. The model(ling concept) has undergone many revisions and significant

differences can be seen between various publications. The version presented here is mostly

based on Beven et al [50], with several necessary simplifications. Following Clark et

al [78], the model is simplified to a lumped model (removing the distributed routing

component) and all parameters are calibrated. This means the distribution of topographic

index values that characterizes TOPMODEL are estimated using a shifted 2-parameter

gamma distribution instead of being based on DEM data [78, 300]. For simplicity of the

evaporation calculations, the root zone store and unsaturated zone store are combined

into a single threshold store with identical functionality to the original 2-store concept.

The model has 2 stores and 7 parameters (SUZ,max, St, Kd, q0, f , χ, φ). The model aims to

represent:

• Variable saturated area with direct runoff from the saturated part;

• Infiltration and saturation excess flow;

• Leakage to, and non-linear baseflow from, a deficit store.

B.2.14.1 File names

Model: m_14_topmodel_7p_2s

Parameter ranges: m_14_topmodel_7p_2s_parameter_ ranges

B.2.14.2 Model equations

Ea

SUZ Qv

SSZ QQb

Qof
P

Qex
Peff

Figure B.15: Structure of

the TOPMODEL

dSUZ

dt
= Pe f f −Qex −Ea −Qv (B.120)

Pe f f = P −Qof = P − AC ∗P (B.121)

Qex =
Pe f f , if SUZ = Suz,max

0, otherwise
(B.122)

Ea =
Ep, if SUZ > St ∗SUZ,max

SUZ
St∗SUZ,max

∗Ep, otherwise
(B.123)

Qv =
kd

SUZ−St∗SUZ,max
SUZ,max(1−St)

, if SUZ > St ∗SUZ,max

0, otherwise
(B.124)
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Where SUZ [mm] is the current storage in the combined unsaturated zone and root

zone, with St [-] (fraction of SUZ,max) indicating the boundary between the two and being

the threshold above which drainage to the saturated zone can occur. Pe f f [mm/d] is the

fraction of precipitation that does not fall on the saturated area Ac [-], Ea [mm/d] is

evaporation that occurs at the potential rate for the unsaturated zone and scaled linearly

with storage in the root zone, Qex [mm/d] is overflow when the bucket reaches maximum

capacity SUZ,max [mm], and Qv [mm/d] is drainage to the saturated zone, depending on

time parameter kd [d−1] and the relative storage in the unsaturated zone compared to the

current deficit in the saturated zone.

dSSZ

dt
=−Qv +Qb (B.125)

Qb = q0 ∗ e− f ∗SSZ (B.126)

Where SSZ [mm] is the current storage deficit in the saturated zone store, which is

increased by baseflow Qb [mm/d] and decreased by drainage Qv. Qb relies on saturated

flow rate q0 [mm/d], parameter f [mm−1] and current deficit SSZ . Total flow:

Q =Qof +Qex +Qb (B.127)

Qof = Ac ∗P (B.128)

The saturated area Ac is calculated as follows. First, the within-catchment distribution

of topographic index values is estimated with a shifted 2-parameter gamma distribution

[78, 300]:

f (ζ)=


1
χΓ(φ)

(
ζ−µ
χ

)φ−1
exp

(
− ζ−µ

χ

)
, if ζ>µ

0, otherwise
(B.129)

Where Γ is the gamma function and χ, φ and µ are parameters of the gamma distribu-

tion. Following Clark et al [78], µ is fixed at µ= 3 and χ and φ are calibration parameters.

ζ represents the topographic index ln(a/tanβ) with mean value λ= χφ+µ. Saturated area

Ac is computed as the fraction of the catchment that is above a deficit-dependent critical

value ζcrit:

Ac =
∫ ∞

ζcrit

f (ζ)dζ (B.130)

ζcrit = f ∗SSZ +λ (B.131)
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B.2.15 Plateau model (model ID: 15)

The Plateau model (fig. B.16) is a conceptualization of the perceived dominant processes

in a typical Western European plateau [274]. It belongs to a 3-part topography driven

modelling exercise, together with a wetland and hillslope conceptualization. Each model

is provided in isolation here, because they are well-suited for isolating specific model

structure choices. It has 2 stores and 8 parameters (Fmax, Dp, Su,max, l p, p, Tp, C and

Kp). The model aims to represent:

• Stylized interception by vegetation;

• Evaporation controlled by a wilting point and moisture constrained transpiration;

• Separation between infiltration and infiltration excess flow;

• Capillary rise and linear relation runoff from groundwater.

B.2.15.1 File names

Model: m_15_plateau_8p_2s

Parameter ranges: m_15_plateau_8p_2s_parameter_ ranges

B.2.15.2 Model equations

P

Et

Q

Pe

Qp,gw

Qp,ieo

Sp,gw

C

Su R

Pi

Pie

Figure B.16: Structure of the Plateau

model

dSu

dt
= Pi +C−E t −R (B.132)

Pi = min(Pe,Fmax) (B.133)

= min
(
max(P −Dp,0),Fmax

)
(B.134)

C = c. (B.135)

E t = Ep ∗max
(
p

Su −Swp

Su,max −Swp
,0

)
(B.136)

R =
Pi +C, if Su = Su,max

0, otherwise
(B.137)

Where Su is the current soil water storage [mm].

Incoming precipitation P [mm/d] is reduced by inter-

ception Dp [mm/d], which is assumed to evaporate

before the next precipitation event. Pe is further

divided into infiltration Pi [mm/d] based on the

maximum infiltration rate Fmax [mm/d] and infil-

tration excess Pie = Pe −Pi [mm/d]. C is capillary
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rise from ground water [mm/d], given as a constant

rate.

Evaporation from soil moisture E t [mm/d] occurs at the potential rate Ep when Su is above

the wilting point Swp [mm] (here defined as Swp = l p∗Su,max) and is further constrained

by coefficient p [-], which is between 0 and 1. Storage excess R [mm/d] flows into the

groundwater.

dSp,gw

dt
= R−C−Qp,gw (B.138)

Qp,gw = Kp ∗Sp,gw (B.139)

Where Sp,gw is current groundwater storage [mm]. Groundwater flow Qp,gw [mm/d]

depends linearly on current storage Sp,gw through parameter Kp [d−1]. Total flow Qt is

the sum of Qp,gw and Qp,ieo, the latter of which is Pie lagged over Tp days.
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B.2.16 New Zealand model v2 (model ID: 16)

The New Zealand model v2 (fig. B.17) is part of a top-down modelling exercise that focusses

on several catchments in New Zealand [19]. It has 2 stores and 8 parameters (Imax, Smax,

S f c, M, a, b and tc,bf , d). The model aims to represent:

• Interception by vegetation;

• Separate vegetation and bare soil evaporation;

• Saturation excess overland flow;

• Subsurface runoff when soil moisture exceeds field capacity;

• Baseflow;

• Flow routing.

B.2.16.1 File names

Model: m_16_newzealand2_8p_2s

Parameter ranges: m_16_newzealand2_8p_2s_parameter_ ranges

B.2.16.2 Model equations

Eveg

Q

Qse

Qbf

Sm
Qss

Ebs

P

Si

Eint
Qtf

Figure B.17: Structure of the New

Zealand model v1

dSi

dt
= P −E int −Qt f (B.140)

E int = Ep (B.141)

Qt f =
P, if Si ≥ Imax

0, otherwise
(B.142)

Where Si [mm] is the current interception

storage which gets replenished through daily

precipitation P [mm/d]. Intercepted water is as-

sumed to evaporate (E int [mm/d]) at the poten-

tial rate Ep [mm/d] when possible. Qt f [mm/d]

represents throughfall towards soil moisture.
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dSm

dt
=Qt f −Eveg −Ebs −Qse −Qss −Qbf (B.143)

Eveg =
M∗Ep, if S > S f c

Sm
S f c

∗M∗Ep, otherwise
(B.144)

Ebs =
S

Smax
(1−M)∗Ep (B.145)

Qse =
P, if S ≥ Smax

0, otherwise
(B.146)

Qss =


(
a∗ (S−S f c)

)b , if S ≥ S f c

0, otherwise
(B.147)

Qbf = tc,bf ∗S (B.148)

Where Sm [mm] is the current soil moisture storage which gets replenished through

daily precipitation P [mm/d]. Evaporation through vegetation Eveg [mm/d] depens on the

forest fraction M [-] and field capacity S f c [-]. Ebs [mm/d] represents bare soil evaporation.

When S exceeds the maximum storage Smax [mm], water leaves the model as saturation

excess runoff Qse. If S exceeds field capacity S f c [mm], subsurface runoff Qss [mm/d] is

generated controlled by time parameter a [d−1] and nonlinearity parameter b [-]. Qbf

represents baseflow controlled by time scale parameter tc,bf [d−1]. Total runoff Qt [mm/d]

is:

Qt =Qse +Qss +Qbf (B.149)

Total flow is delayed by a triangular routing scheme controlled by time parameter d

[d].
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B.2.17 Penman model (model ID: 17)

The Penman model (fig. B.18) is based on the drying curve concept described by Penman

[251, 331]. It has 3 stores and 4 parameters (Smax, φ, α, k1). The model aims to represent:

• Moisture accumulation and evaporation from the root zone;

• Bypass of excess moisture to the stream;

• Deficit-based groundwater accounting;

• Linear flow routing.

B.2.17.1 File names

Model: m_17_penman_4p_3s

Parameter ranges: m_17_penman_4p_3s_parameter_ ranges

B.2.17.2 Model equations

Srz

PEa

Q

Sdef

Cres

Et

u1

u2

qex

q12

Figure B.18: Structure of

the Penman model

dSrz

dt
= P −Ea −Qex (B.150)

Ea =
Ep, if Srz > 0

0, otherwise
(B.151)

Pex =
P, if Srz = Smax

0, otherwise
(B.152)

Where Srz [mm] is the current storage in the root zone, re-

filled by precipitation P [mm/d] and drained by evaporation

Ea [mm/d] and moisture excess qex [mm/d]. Ea occurs at

the potential rate Ep [mm/d] whenever possible. qex occurs

only when the store is at maximum capacity Smax [mm].

dSdef

dt
= E t +u2 − q12 (B.153)

E t =
γ∗Ep, if Srz = 0

0, otherwise
(B.154)

u2 =
q12, if Sdef = 0

0, otherwise
(B.155)

q12 = (1−φ)∗ qex (B.156)
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Where Sdef [mm] is the current moisture deficit, which is increased by evaporation

E t [mm/d] and reduced by inflow q12 [mm/d]. E t occurs only when the upper store Srz is

empty and at a fraction γ [-] of Ep. Inflow q12 is the fraction (1−φ) [-] of qex that does not

bypass the lower soil layer. Saturation excess u2 [mm/d] occurs only when there is zero

deficit.

dCres

dt
= u1 +u2 −Q (B.157)

Q = k1 ∗Cres (B.158)

Where Cres [mm] is the current storage in the routing reservoir, increased by u1 and

u2, and drained by runoff Q [mm/d]. Q has a linear relationship with storage through time

scale parameter k1 [d−1].
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B.2.18 SIMHYD (model ID: 18)

The SIMHYD model (fig. B.19) is a simplified version of MODHYDROLOG, originally

developped for use in Australia [70]. It has 3 stores and 7 parameters (INSC, COEFF, SQ,

SMSC, SUB, CRAK, K). The model aims to represent:

• Interception by vegetation;

• Infiltration and infiltration excess flow;

• Preferential groundwater recharge, interflow and saturation excess flow;

• Groundwater recharge resulting from filling up of soil moisture storage capacity;

• Slow flow from groundwater.

B.2.18.1 File names

Model: m_18_simhyd_7p_3s

Parameter ranges: m_18_simhyd_7p_3s_parameter_ ranges

B.2.18.2 Model equations

I

PEi
EXC SRUN

INF

INT

SMF

SMS

ET

GW

REC

BAS Q

GWF

Figure B.19: Structure of the

SIMHYD model

dI
dt

= P −E i −EXC (B.159)

E i =
Ep, if I > 0

0, otherwise
(B.160)

EXC =
P, if I = INSC

0, otherwise
(B.161)

Where I is the current interception storage [mm], P

precipitation [mm/d], E i the evaporation from the inter-

ception store [mm/d] and EXC the excess rainfall [mm/d]).

Evaporation is assumed to occur at the potential rate

when possible. When I exceeds the maximum interception

capacity INSC [mm], water is routed to the rest of the

model as excess precipitation EXC.
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dSMS
dt

= SMF −ET −GWF (B.162)

SMF = INF − INT −REC (B.163)

INF = min
(
COEFF ∗ exp

(−SQ∗SMS
SMSC

)
,EXC

)
(B.164)

INT = SUB∗ SMS
SMSC

∗ INF (B.165)

REC = CRAK ∗ SMS
SMSC

∗ (INF − INT) (B.166)

ET = min
(
10∗ SMS

SMSC
,PET

)
(B.167)

GWF =
SMF, if SMS = SMSC

0, otherwise
(B.168)

Where SMS is the current storage in the soil moisture store [mm]. INF is total infil-

tration [mm/d] from excess precipitation, based on maximum infiltration loss parameter

COEFF [-], the infiltration loss exponent SQ [-] and the ratio between current soil misture

storage SMS and the maximum soil moisture capacity SMSC [mm]. INT represents inter-

flow and saturation excess flow [mm/d], using a constant of proportionality SUB [-]. REC is

preferential recharge of groundwater [mm/d] based on another constant of proportionality

CRAK [-]. SMF is flow into soil moisture storage [mm/d]. ET evaporation from the soil

moisture that occurs at the potential rate when possible [mm/d], and GWF the flow to the

groundwater store [mm/d]:

dGW
dt

= REC+GWF −BAS (B.169)

BAS = K ∗GW (B.170)

Where GW is the current storage [mm] in the groundwater reservoir. Outflow BAS

[mm/d] from the reservoir has a linear relation with storage through the linear recession

parameter K [d−1]. Total outflow Qt [mm/d] is the sum of three parts:

Qt = SRUN + INT +BAS (B.171)

SRUN = EXC− INF (B.172)
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B.2.19 Australia model (model ID: 19)

The Australia model (fig. B.20) is part of a top-down modelling exercise designed to use

auxiliary data [101]. Some adjustments were made to the evaporation equations: these

were originally separated between vegetation and bare soil evaporation, scaled between

the unsaturated and saturated zone. This has been simplified to separation between

unsaturated and saturated evaporation only. The model has 3 stores and 8 parameters (Sb,

φ, f c, αSS, βSS, Kdeep, αBF , βBF ). For consistency with other model formulations, Sb is is

used as a parameter, instead of being broken down into its constitutive parts D and φ. The

model aims to represent:

• Separation of saturated zone and a variable-size unsaturated zone;

• Evaporation from unsaturated and saturated zones;

• Saturation excess and non-linear subsurface flow;

• Deep groundwater recharge and baseflow.

B.2.19.1 File names

Model: m_19_australia_8p_3s

Parameter ranges: m_19_australia_8p_3s_parameter_ ranges

B.2.19.2 Model equations

Sus

Ssat

P
Esat Eus

Qse

Qss

Qr

Q

rg

Gw Qbf

se

Figure B.20: Structure of the

Australia model

dSus

dt
= P −Eus − rg − se (B.173)

Eus = Sus

Sb
∗Ep (B.174)

Sb = D∗φ (B.175)

rg =
P, i f Sus > Susf c

0, otherwise
(B.176)

se =
Sus −Susf c, i f Sus > Susf c

0, otherwise
(B.177)

Susf c = (Sb −Ssat)∗ f c
φ

(B.178)

Where Sus is the current storage in the unsaturated

store [mm], P the current precipitation [mm/d], Sb [mm]

the maximum storage of the soil profile, based on the
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soil depth D [mm] and the porosity φ [-]. rg [mm/d] is

drainage from the unsaturated store to the saturated

store, based on the variable field capacity Susf c [mm].

Susf c is based on the current storage on the saturated

zone Ssat [mm], the maximum soil moisture storage Sb

[mm], the field capacity f c [-] and the porosity φ [-]. se

[mm/d] is the storage excess, resulting from a decrease

of Susf c that leads to more water being stored in the

unsaturated zone than should be possible.

dSsat

dt
= rg −Esat −QSE −QSS −QR (B.179)

Esat = Ssat

Sb
∗Ep (B.180)

QSE =
rg +Se, if Ssat > Sb

0, otherwise
(B.181)

QSS =αSS ∗ (Ssat)βSS (B.182)

QR = Kdeep ∗Ssat (B.183)

Where Ssat is the current storage in the saturated zone [mm], Esat is the evaporation

from the saturated zone [mm], QSE saturation excess runoff [mm/d] that occurs when

the saturated zone reaches maximum capacity Sb [mm], QSS is subsurface flow [mm/d]

and QR is recharge of deep groundwater [mm/d]. Both QSS and QR are based on the

dimensionless fraction r and subsurface flow constants c [d−1] and d [-].

dGw

dt
=QR −QBF (B.184)

QBF =αBF ∗ (Gw)βBF (B.185)

(B.186)

Where Gw is the current groundwater storage [mm] and QBF baseflow, dependent on

parameters αBF [d−1] and βBF [-]. Total runoff is the sum of QSE, QSS and QBF :

Q =QSE +QSS +QBF (B.187)
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B.2.20 Generalized Surface inFiltration Baseflow model (model ID: 20)

The GSFB model (fig. B.21) is originally developed for use in Australian ephemeral catch-

ments [224, 350]. It has 3 stores and 8 parameters (C. NDC, Smax, Emax, Frate, B, DPF,

SDRmax). The model aims to represent:

• Saturation excess surface runoff;

• Threshold-based infiltration;

• Threshold-based baseflow;

• Deep percolation and water rise to meet evaporation demand.

B.2.20.1 File names

Model: m_20_gsfb_8p_3s

Parameter ranges: m_20_gsfb_8p_3s_parameter_ ranges

B.2.20.2 Model equations

PEa

Q

S

DS

F

Qs

Qb

Dp

Qdr

SS

Figure B.21: Structure of

the GSFB model

dS
dt

= P +Qdr −Ea −Qs −F (B.188)

Qdr =
C∗DS∗

(
1− S

NDC∗Smax

)
, if S ≤ NDC∗Smax

0, otherwise

(B.189)

Ea =
Ep, if S > NDC∗Smax

min
(
Ep,Emax

S
NDC∗Smax

)
, otherwise

(B.190)

Qs =
P, if S = Smax

0, otherwise
(B.191)

F =
Frate, if S > NDC∗Smax

0, otherwise
(B.192)

Where S [mm] is the current storage in the upper zone, refilled by precipitation

P [mm/d] and recharge from deep groundwater Qdr [mm/d]. The store is drained by

evaporation Ea [mm/d], surface runoff Qs [mm/d] and infiltration F [mm/d]. Ea occurs
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at the potential rate Ep [mm/d] if the store is above a threshold capacity given as the

fraction NDC [-] of maximum storage Smax [mm]. Evaporation occurs at a reduced rate

scaled by maximum evaporation rate Emax [mm/d] if the store is below this threshold. Qs

occurs only if the store is at maximum capacity Smax. F occurs at a constant rate Frate if

the store is above threshold NDC∗Smax. Recharge from deep percolation only occurs if

the store is below threshold capacity NDC∗Smax and uses time parameter C [d−1] and

current deep storage DS [mm].

dSS
dt

= F −Qb −Dp (B.193)

Qb =
B∗DPF ∗ (SS−SDRmax), if SS > SDRmax

0, otherwise
(B.194)

Dp = (1−B)∗DPF ∗SS (B.195)

Where SS [mm] is the current storage in the subsurface store, refilled by infiltration

F and drained by baseflow Qb [mm/d] and deep percolation Dp [mm/d]. Outflow from

this store is given as a function of storage DS and time coefficient DPF [d−1]. A fraction

1−B [-] of this outflow is deep percolation Dp. The remaining fraction B [-] is baseflow Qb,

provided the store is above threshold SDRmax [mm].

dDS
dt

= Dp −Qdr (B.196)

(B.197)

Where DS [mm] is the current storage in the deep store, refilled by a deep percolation

Dp and drained by recharge to the upper store Qdr. Total flow:

Qt =Qs +Qb (B.198)
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B.2.21 Flex-B (model ID: 21)

The Flex-B model (fig. B.22) is the basis of a model development study [106]. It has 3 stores

and 9 parameters (URmax, β, D, Percmax, Lp,Nlag, f , Nlag,s, K f , Ks). The model aims to

represent:

• Infiltration and saturation excess flow based on a distribution of different soil depths;

• A split between fast saturation excess flow and preferential recharge to a slow store;

• Percolation from the unsaturated zone to a slow runoff store.

B.2.21.1 File names

Model: m_21_flexb_9p_3s

Parameter ranges: m_21_flexb_9p_3s_parameter_ ranges

B.2.21.2 Model equations

SR

UR FR

Q

Peff

RfEur

Ps

Rs

Qs

Qf

Ru Rf,l

Rs,l

Figure B.22: Structure of the Flex-B model

dUR
dt

= Ru −Eur −Rp (B.199)

RU = (1−Cr)∗Pe f f (B.200)

Cr =
[
1+ exp

(−UR/URmax +1/2
β

)]−1

(B.201)

Eur = Ep ∗min
(
1,

UR
URmax

1
Lp

)
(B.202)

Ps = Percmax ∗ UR
URmax

(B.203)

Where UR is the current storage in the

unsaturated zone [mm]. Ru [mm/d] is the

inflow into UR based on its current storage

compared to maximum storage URmax [mm]

and a shape distribution parameter β [-].

Eur the evaporation [mm/d] from UR which follows a linear relation between current

and maximum storage until a threshold Lp [-] is exceeded. Ps is the percolation from UR

to the slow reservoir SR [mm/d], based on a maximum percolation rate Percmax [mm],

relative to the fraction of current storage and maximum storage. Pe f f is routed towards

the unsaturated zone based on Cr, with the remainder being divided into preferential

recharge Rs [mm/d] and fast runoff R f [mm/d]:
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Rs = (Pe f f −Ru)∗D (B.204)

R f = (Pe f f −Ru)∗ (1−D) (B.205)

Where Rs and R f are the flows [mm/d] to the slow and fast runoff reservoir respectively,

based on runoff partitioning coefficient D [-]. Both are lagged by linearly increasing

triangular transformation functions with parameters Nlag,s [d] and Nlag, f [d] respectively.

Percolation Rp is added to Rs before the transformation to Rs,l occurs.

dFR
dt

= R f ,l −Q f (B.206)

Q f = K f ∗FR (B.207)

Where FR is the current storage [mm] in the fast flow reservoir. Outflow Q f [mm/d]

from the reservoir has a linear relation with storage through time scale parameter K f

[d−1].

dSR
dt

= Rs,l −Qs (B.208)

Qs = Ks ∗SR (B.209)

Where SR is the current storage [mm] in the slow flow reservoir. Outflow Qs [mm/d]

from the reservoir has a linear relation with storage through time scale parameter Ks

[d−1]. Total outflow Q [mm/d]:

Q =Q f +Qs (B.210)
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B.2.22 Variable Infiltration Capacity (VIC) model (model ID: 22)

The VIC model (fig. B.23) is originally developed for use with General Circulation Models

and uses latent and sensible heat fluxes to determine the rainfall-runoff relationship [194].

For consistency with other models in this framework, we use a conceptualized version

based in part of the VIC implementation in Clark et al [78]. In addition, the original

Leaf-Area-Index-based interception capacity is replaced with a sinusoidal curve-based

approximation of interception capacity. The model has 3 stores and 10 parameters (Ī, Iδ,

Is, Ssm,max, b, k1, c1, Sgw,max, k2, c2). The model aims to represent:

• Time-varying interception by vegetation;

• Variable infiltration and saturation excess flow;

• Interflow and baseflow from a deeper groundwater layer.

B.2.22.1 File names

Model: m_22_vic_10p_3s

Parameter ranges: m_22_vic_10p_3s_parameter_ ranges

B.2.22.2 Model equations

Si

PEi

inf

QSgw

Ssm

Et1

Et2

Qie

Qex1

pc

Qex2

Qb

Peff + Iex

Figure B.23:

Structure of the

VIC model

dSi

dt
= P −E i −Pe f f − Iex (B.211)

E i = Si

Imax
∗Ep (B.212)

Imax = Ī (1+ Iδ∗ sin (2π(t+ Is))) (B.213)

Pe f f =
P, if Si = Imax

0, otherwise
(B.214)

Iex = max (Si − Imax) (B.215)

Where Si [mm] is the current interception storage, refilled by

precipitation P [mm/d] and drained by evaporation E i [mm/d] and

interception excess flows Pe f f [mm/d] and Iex [mm/d]. E i decreases

linearly with storage, based on maximum storage Imax [mm]. Imax is

determined using the mean interception Ī [mm], fractional seasonal

interception change Iδ [-] and time shift Is [-]. It is implicitly assumed

that 1 sinusoidal period corresponds with a growing season of 1 year.

Pe f f is effective rainfall when the store is at maximum capacity. Iex is
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an auxiliary flux used when a change in storage size result in current

storage Si exceeding Imax.

dSsm

dt
= inf −Et1 −Qex1 − pc (B.216)

inf = (
Pe f f + Iex

)−Q ie (B.217)

Q ie =
(
Pe f f + Iex

)∗(
1−

(
1− Ssm

Ssm,max

)b
)

(B.218)

E t1 = Ssm

Ssm,max
∗ (Ep −E i) (B.219)

Qex1 =
inf , if Ssm = Ssm,max

0, otherwise
(B.220)

pc = k1 ∗
(

Ssm

Ssm,max

)c1

(B.221)

Where Ssm [mm] is the current soil moisture storage, refilled by infiltration inf

[mm/d], and drained by evapotranspiration Et1 [mm/d], storage excess Qex1 [mm/d] and

percolation pc [mm/d]. inf relies on the value of infiltration excess Q ie, which is calculated

using the maximum soil moisture storage Ssm,max [mm] and shape parameter b [-]. Et1

scales linearly with current storage. Qex1 equals inf when the store is at maximum

capacity. pc has a potentially non-linear relationship with current storage through time

parameter k1 [d−1] and shape parameter c1.

dSgw

dt
= pc−Et2 −Qex2 −Qb (B.222)

Et2 =
Sgw

Sgw,max
∗ (

Ep −E i −Et1
)

(B.223)

Qex2 =
pc, if Sgw = Sgw,max

0, otherwise
(B.224)

Qb = k2 ∗
( Sgw

Sgw,max

)c2

(B.225)

Where Sgw [mm] is the current groundwater storage, refilled through percolation pc

[mm/d] and drained by evapotranspiration Et2 [mm/d], excess flow Qex2 [mm/d] and

baseflow Qb [mm/d]. Et2 is scaled linearly with current storage based on maximum

storage Sgw,max [mm]. Qex2 equals pc when the store is at maximum capacity. Qb has a

potentially non-linear relationship with current storage through time parameter k2 and

shape parameter c2. Total outflow:
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Qt =Q ie +Qex1 +Qex2 +Qb (B.226)
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B.2.23 Large-scale catchment water and salt balance model element
(model ID: 23)

The large-scale catchment water and salt balance model (LASCAM) (fig. B.24) is part of a

study that investigates soil water and salt concentration before and after forest clearing

[302]. It is a semi-distributed model made up of individual elements, such as described

below. The model presented here simulates the water balance only (salt is ignored). It has

3 stores and 24 parameters (α f , β f , Bmax, Fmax, αc, βc, Amin, Amax, αss, βss, c, αg, βg, γ f ,

δ f , td, αb, βb, γa, δa, αa, βa, γb, δb). The model aims to represent:

• Stylized interception;

• Saturation and infiltration excess surface runoff;

• An inner layout representing near-stream saturated storage, deep saturated storage

and medium-depth unsaturated storage;

• Subsurface saturation and infiltration excess flow to the near-stream store;

• Percolation to and capillary rise from groundwater.

B.2.23.1 File names

Model: m_23_lascam_24p_3s

Parameter ranges: m_23_lascam_24p_3s_parameter_ ranges

B.2.23.2 Model equations

199



APPENDIX B. SUPPORTING INFORMATION FOR CHAPTER 4

B

PEi

Q

Pg qse

qie

qsse

qsie

F

Ef

Pc

fa Ea

rf qb ra

qa

Eb

A

Figure B.24: Structure of the

LASCAM model

dF
dt

= fa −E f − r f (B.227)

fa = min
(
Pc ∗max

(
1,

1−φss

1−φc

)
, f ∗ss

)
(B.228)

f ∗ss =α f

(
1− B

Bmax

)(
F

Fmax

)−β f

(B.229)

φc =
αc

(
A−Amin

Amax−Amin

)βc
, if A > Amin

0, otherwise
(B.230)

φss =
αss

(
A−Amin

Amax−Amin

)βss
, if A > Amin

0, otherwise
(B.231)

Pc = min
(
Pg − qse, f ∗s

)
(B.232)

f ∗s = c (B.233)

qse =φc ∗Pg (B.234)

Pg = max
(
αg +βg ∗P,0

)
(B.235)

E f = γ f ∗Ep

(
F

Fmax

)δ f

(B.236)

r f = td ∗F (B.237)

Where F [mm] is the current storage in the unsaturated infiltration store, which

controls the amount of subsurface runoff generated on the boundary of a more permeable

top layer (store A) with a less permeable bottom layer (store F). F is refilled by actual

infiltration fa [mm/d], and drained by recharge r f [mm/d] and evaporation Eb [mm/d].

fa depends on the actual infiltration rate Pc [mm/d], the fraction saturated catchment

area φss [-], the fraction variable area contributing to overland flow φc [-] and a catchment-

scale infiltration capacity f ∗ss [mm/d]. f ∗ss depends on a scaling parameter α f [mm/d], the

relative storage in groundwater B/Bmax, the relative infiltration volume in the catchment

F/Fmax and non-linearity parameter βt [-]. Bmax [mm] and Fmax [mm] are storage scaling

parameters [-]. φc uses the minimum contributing area Amin [mm], maximum contributing

area Amax [mm] and shape parameters αc [-] and βc [-] to control the shape of this

distribution. φss takes a similar shape as φc, using parameters αss [-] and βss [-]. Pc is

the lesser of throughfall rate Pg [mm/d] minus saturation excess qse [mm/d], and the

catchment infiltration capacity f ∗s [mm/d]. f ∗s is assumed to have a constant rate c [mm/d].

qse is determined as that part of throughfall Pg that falls on the variable contributing

catchment area given by φc. Pg is determined as a fixed interception rate αg [mm/d] and a

fractional interception βg [-]. Evaporation E f uses the potential rate Ep [mm/d] scaled by
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the relative storage in F and two shape parameters γ f [-] and δ f [-]. Recharge r f [mm/d]

has a linear relation with storage through time parameter td [d−1].

dA
dt

= qsse + qsie + qb −Ea − qa − ra (B.238)

qsse = φss −φc

1−φc
Pc (B.239)

qsie = max
(
Pc ∗ 1−φss

1−φc
− f ∗ss,0

)
(B.240)

qb =βb

(
exp

(
αb

B
Bmax

)
−1

)
(B.241)

Ea =φc ∗Ep +γa ∗Ep

(
A

Amax

)δa

(B.242)

qa =
αa

(
A−Amin

Amax−Amin

)βa
, if A > Amin

0, otherwise
(B.243)

ra =φss ∗ f ∗ss (B.244)

Where A [mm] is the current storage in the more permeable upper zone (above less

permeable lower zone F), refilled by sub-surface saturation excess qsse [mm/d], sub-surface

infiltration excess qsie [mm/d] and discharge from groundwater qb [mm/d]. The store is

drained by evaporation Ea, subsurface stormflow qa [mm/d] and recharge ra [mm/d]. Flow

from store B, qb, decreases exponentially as the store dries out, controlled by parameters

βb and αb. Evaporation Ea occurs at the potential rate Ep from the variable saturated area

φc and additionally at a rate scaled by the relative storage in A and two shape parameters

γa [-] and deltaa [-]/ Recharge ra is a function of the saturated subsurface area φss and

the subsurface infiltration rate f ∗ss.

dB
dt

= r f + ra −Eb − qb (B.245)

Eb = γb ∗Ep

(
B

Bmax

)δb

(B.246)

Where B [mm] is the current storage in the deep layers, refilled by recharge from stores

A (ra) and F (r f ), and drained by evaporation Eb and groundwater discharge qb. Eb uses

the potential rate Ep scaled by the relative storage in B and two shape parameters γb [-]

and δb [-]. Total flow:

Qt = qse + qie + qa (B.247)

qie = Pg − qse −Pc (B.248)
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Where qie [mm/d] is infiltration excess on the surface.
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B.2.24 MOPEX-1 (model ID: 24)

The MOPEX-1 model (fig. B.25) is part of a model improvement study that investigates the

relationship between dominant processes and model structures for 197 catchments in the

MOPEX database [349]. It has 4 stores and 5 parameters (Sb1, tw, tu, Se, tc). The model

aims to represent:

• Saturation excess flow;

• Infiltration to deeper soil layers;

• A split between fast and slow runoff.

B.2.24.1 File names

Model: m_24_mopex1_5p_4s

Parameter ranges: m_24_mopex1_5p_4s_parameter_ ranges

B.2.24.2 Model equations

PET1

Q

Qw

S2

S1

Sc1

Sc2

ET2

Q1f

Q2u

Qf

Qu

Figure B.25: Structure of the

MOPEX-1 model

dS1

dt
= P −ET1 −Q1 f −Qw (B.249)

ET1 = S1

Sb1
∗Ep (B.250)

Q1 f =
P, if S1 ≥ Sb1

0, otherwise
(B.251)

Qw = tw ∗S1 (B.252)

Where S1 [mm] is the current storage in soil moisture

and P precipitation [mm/d]. Evaporation ET1 [mm/d]

depends linearly on current soil moisture, maximum soil

moisture Sb1 [mm] and potential evapotransporation Ep

[mm/d]. Saturation excess flow Q1 f [mm/d] occurs when

the soil moisture bucket exceeds its maximum capacity.

Infiltration to deeper groundwater Qw [mm/d] depends

on current soil moisture and time parameter tw [d−1].
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dS2

dt
=Qw −ET2 −Q2u (B.253)

ET2 = S2

Se
∗Ep (B.254)

Q2u = tu ∗S2 (B.255)

Where S2 [mm] is the current groundwater storage, refilled by infiltration from S1.

Evaporation ET2 [mm/d] depends linearly on current groundwater and root zone storage

capacity Se [mm]. Leakage to the slow runoff store Q2u [mm/d] depends on current

groundwater level and time parameter tu [d−1].

dSc1

dt
=Q1 f −Q f (B.256)

Q f = tc ∗Sc1 (B.257)

Where Sc1 [mm] is current storage in the fast flow routing reservoir, refilled by Q1 f .

Routed flow Q f depends on the mean residence time parameter tc [d−1].

dSc2

dt
=Q2u −Qu (B.258)

Qu = tc ∗Sc2 (B.259)

Where Sc2 [mm] is current storage in the slow flow routing reservoir, refilled by Q2u.

Routed flow Qu depends on the mean residence time parameter tc [d−1]. Total simulated

flow Qt [mm/d]:

Qt =Q f +Qu (B.260)
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B.2.25 Thames Catchment Model (model ID: 25)

The Thames Catchment Model (TCM) model (fig. B.26) is originally intended to be used in

zones with similar surface characteristics, rather than catchments as a whole [222]. It has

4 stores and 6 parameters (φ, rc, γ, k1, ca, k2). The model aims to represent:

• Effective rainfall before infiltration;

• Preferential recharge;

• Catchment drying through prolonged soil moisture depletion;

• Groundwater abstraction;

• Non-linear groundwater flow.

B.2.25.1 File names

Model: m_25_tcm_6p_4s

Parameter ranges: m_25_tcm_6p_4s_parameter_ ranges

B.2.25.2 Model equations

Srz

PEn

a

Q

Suz

Pn Pby

PinEa

Sdef

Et

qex1

qex2

quz

Ssz

Figure B.26: Structure of the

TCM model

dSRz

dt
= Pin −Ea − qex1 (B.261)

Pin = (1−φ)∗Pn (B.262)

Pn = max(P −Ep,0) (B.263)

Ea =
Ep, if Srz > 0

0, otherwise
(B.264)

qex1 =
Pin, if Srz > rc

0, otherwise
(B.265)

Where Srz [mm] is the current storage in the root

zone, refilled by infiltrated precipitation Pin [mm/d], and

drained by evaporation Ea [mm/d] and storage excess

flow qex1 [mm/d]. Pin is the fraction (1−φ) [-] of net pre-

cipitation Pn [mm/d] that is not preferential recharge.

Pn is the difference between precipitation P [mm/d] and

potential evapotranspiration Ep [mm/d] per time step. Ea

occurs at the net potential rate whenever possible. qex1
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occurs only when the store is at maximum capacity rc

[mm].

dSdef

dt
= E t + qex2 − qex1 (B.266)

E t =
γ∗Ep, if Srz = 0

0, otherwise
(B.267)

qex2 =
qex1, if Sde f = 0

0, otherwise
(B.268)

Where Sde f [mm] is the current storage in the soil moisture deficit store. The deficit is

increased by evaporation E t [mm/d] and percolation qex2 [mm/d]. The deficit is decreased

by overflow from the upper store qex1. E t only occurs when the upper zone is empty and at

a fraction γ [-] of Ep. qex2 only occurs when the deficit is zero.

dSuz

dt
= Pby + qex2 − quz (B.269)

Pby =φ∗Pn (B.270)

quz = k1 ∗Suz (B.271)

Where Suz is the current storage in the unsaturated zone, refilled by preferential

recharge Pby [mm/d] and percolation qex2 [mm/d], and drained by groundwater flow quz

[mm/d]. Pby is a fraction φ [-] of Pn. quz has a linear relation with storage through time

parameter k1 [d−1].

dSsz

dt
= quz −a−Q (B.272)

a = ca (B.273)

Q =
k2 ∗S2

sz, if Ssz > 0

0, otherwise
(B.274)

Where Ssz [mm] is the current storage in the saturated zone, refilled by groundwater

flow quz [mm/d] and drained by abstractions a [mm/d] and outflow Q [mm/d]. a occurs

at a constant rate ca [mm/d]. Abstractions can draw down the aquifer below the runoff

generating threshold. Q has a quadratic relation with storage through parameter k2

[mm−1d−1].
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B.2.26 Flex-I (model ID: 26)

The Flex-I model (fig. B.27) is the part of a model development exercise [106]. It has 4

stores and 10 parameters (Imax, URmax, β, D, Percmax, Lp,Nlag, f , Nlag,s, K f , Ks). The

model aims to represent:

• Interception by vegetation;

• Infiltration and saturation excess flow based on a distribution of different soil depths;

• A split between fast saturation excess flow and preferential recharge to a slow store;

• Percolation from the unsaturated zone to a slow runoff store.

B.2.26.1 File names

Model: m_26_flexi_10p_4s

Parameter ranges: m_26_flexi_10p_4s_parameter_ ranges

B.2.26.2 Model equations

SR

UR FR

Q

Peff

RfEur

Rp

Rs

Qs

Qf

Ru Rf,l

Rs,l

I

Ei
P

Figure B.27: Structure of the Flex-I model

dI
dt

= P −E i −Pe f f (B.275)

E i =
Ep , if I > 0

0 , otherwise
(B.276)

Pe f f =
P , if I ≥ Imax

0 , otherwise
(B.277)

Where I is the current interception stor-

age [mm], P [mm/d] incoming precipitation,

E i [mm/d] evaporation from the interception

store and Pe f f [mm/d] interception excess

routed to soil moisture. Evaporation occurs

at the potential rate Ep [mm/d] whenever

possible. Interception excess occurs when the

interception store exceeds its maximum ca-

pacity Imax [mm].
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dUR
dt

= Ru −Eur −Rp (B.278)

RU = (1−Cr)∗Pe f f (B.279)

Cr =
[
1+ exp

(−UR/URmax +1/2
β

)]−1
(B.280)

Eur = Ep ∗min
(
1,

UR
URmax

1
Lp

)
(B.281)

Ps = Percmax ∗ −UR
URmax

(B.282)

Where UR is the current storage in the unsaturated zone [mm]. Ru [mm/d] is the

inflow into UR based on its current storage compared to maximum storage URmax [mm]

and a shape distribution parameter β [-]. Eur the evaporation [mm/d] from UR which

follows a linear relation between current and maximum storage until a threshold Lp [-]

is exceeded. Ps is the percolation from UR to the slow reservoir SR [mm/d], based on a

maximum percolation rate Percmax [mm], relative to the fraction of current storage and

maximum storage. Pe f f is routed towards the unsaturated zone based on Cr, with the

remainder being divided into preferential recharge Rs [mm/d] and fast runoff R f [mm/d]:

Rs = (Pe f f −Ru)∗D (B.283)

R f = (Pe f f −Ru)∗ (1−D) (B.284)

Where Rs and R f are the flows [mm/d] to the slow and fast runoff reservoir respectively,

based on runoff partitioning coefficient D [-]. Both are lagged by linearly increasing

triangular transformation functions with parameters Nlag,s [d] and Nlag, f [d] respectively,

that give the number of days over which Rs and R f need to be transformed. Percolation

Rp is added to Rs before the transformation to Rs,l occurs.

dFR
dt

= R f ,l −Q f (B.285)

Q f = K f ∗FR (B.286)

Where FR is the current storage [mm] in the fast flow reservoir. Outflow Q f [mm/d]

from the reservoir has a linear relation with storage through time scale parameter K f

[d−1].

dSR
dt

= Rs,l −Qs (B.287)

Qs = Ks ∗SR (B.288)
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Where SR is the current storage [mm] in the slow flow reservoir. Outflow Qs [mm/d]

from the reservoir has a linear relation with storage through time scale parameter Ks

[d−1]. Total outflow Q [mm/d]:

Q =Q f +Qs (B.289)
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B.2.27 Tank model (model ID: 27)

The Tank Model (fig. B.28) is originally developed for use constantly saturated soils in

Japan [310]. It has 4 stores and 12 parameters (A0, A1, A2, t1, t2, B0, B1, t3, C0, C1, t4,

D1). The model aims to represent:

• Runoff on increasing time scales with depth.

B.2.27.1 File names

Model: m_27_tank_12p_4s

Parameter ranges: m_27_tank_12p_4s_parameter_ ranges

B.2.27.2 Model equations

PE1

Q

Y1

S4

S1

S2

S3

E2

E3

E4

Y2

Y3

Y4

Y5

F12

F23

F34

Figure B.28: Structure of

the Tank Model

dS1

dt
= P −E1 −F12 −Y2 −Y1 (B.290)

E1 =
Ep, if S1 > 0

0, otherwise
(B.291)

F12 = A0 ∗S1 (B.292)

Y2 =
A2 ∗ (S1 − t2), if S1 > t2

0, otherwise
(B.293)

Y1 =
A1 ∗ (S1 − t1), if S1 > t1

0, otherwise
(B.294)

Where S1 [mm] is the current storage in the upper zone,

refilled by precipitation P [mm/d] and drained by evaporation

E1 [mm/d], drainage F12 [mm/d] and surface runoff Y1 [mm/d]

and Y2 [mm/d]. E1 occurs at the potential rate Ep [mm/d] if

water is available. Drainage to the intermediate layer has a

linear relationship with storage through time scale parameter

A0 [d−1]. Surface runoff Y2 and Y1 occur when S1 is above

thresholds t2 [mm] and t1 [mm] respectively. Both are linear

relationships through time parameters A2 [d−1] and A1 [d−1]

respectively.
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dS2

dt
= F12 −E2 −F23 −Y3 (B.295)

E2 =
Ep, if S1 = 0 & S2 > 0

0, otherwise
(B.296)

F23 = B0 ∗S2 (B.297)

Y3 =
B1 ∗ (S2 − t3), if S2 > t3

0, otherwise
(B.298)

Where S2 [mm] is the current storage in the intermediate zone, refilled by drainage

F12 from the upper zone and drained by evaporation E2 [mm/d], drainage F23 [mm/d] and

intermediate discharge Y3 [mm/d]. E2 occurs at the potential rate Ep if water is available

and the upper zone is empty. Drainage to the third layer F23 has a linear relationship with

storage through time scale parameter B0 [d−1]. Intermediate runoff Y3 occurs when S2

is above threshold t3 [mm] and has a linear relationship with storage through time scale

parameter B1 [d−1].

dS3

dt
= F23 −E3 −F34 −Y4 (B.299)

E3 =
Ep, if S1 = 0 & S2 = 0 & S3 > 0

0, otherwise
(B.300)

F34 = C0 ∗S3 (B.301)

Y4 =
C1 ∗ (S3 − t4), if S3 > t4

0, otherwise
(B.302)

Where S3 [mm] is the current storage in the sub-base zone, refilled by drainage F23

from the intermediate zone and drained by evaporation E3 [mm/d], drainage F34 [mm/d]

and sub-base discharge Y4 [mm/d]. E3 occurs at the potential rate Ep if water is available

and the upper zones are empty. Drainage to the fourth layer F34 has a linear relationship

with storage through time scale parameter C0 [d−1]. Sub-base runoff Y4 occurs when S3

is above threshold t4 [mm] and has a linear relationship with storage through time scale

parameter C1 [d−1].
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dS4

dt
= F34 −E4 −Y5 (B.303)

E4 =
Ep, if S1 = 0 & S2 = 0 & S3 = 0 & S4 > 0

0, otherwise
(B.304)

Y5 = D1 ∗S4 (B.305)

Where S4 [mm] is the current storage in the base layer, refilled by drainage F34 from

the sub-base zone and drained by evaporation E4 [mm/d] and baseflow Y5 [mm/d]. E4

occurs at the potential rate Ep if water is available and the upper zones are empty. Baseflow

Y5 has a linear relationship with storage through time scale parameter D1 [d−1]. Total

runoff:

Qt =Y1 +Y2 +Y3 +Y4 +Y5 (B.306)
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B.2.28 Xinanjiang model (model ID: 28)

The Xinanjiang model (fig. B.29) is originally intended for use in humid or semi-humid

regions in China [351]. The model uses a variable contributing area to simulate runoff. The

version presented here uses a double parabolic curve to simulate tension water capacities

within the catchment [153], instead of the original single parabolic curve. The model has 4

stores and 12 parameters (A im, a, b, Wmax, LM, c, Smax, Ex, kI , kG , cI , cG). The model

aims to represent:

• Runoff from impervious areas;

• Variable distribution of tension water storage capacities in the catchment;

• Variable contributing area of free water storages;

• Direct surface runoff from the contributing free area;

• Delayed interflow and baseflow from the contributing free area.

B.2.28.1 File names

Model: m_28_xinanjiang_12p_4s

Parameter ranges: m_28_xinanjiang_12p_4s_parameter_ ranges

B.2.28.2 Model equations

P

Q

SI

W

S

SG

E RB

RS

QI

QG

QS

Pi
R

RI

RG

Figure B.29: Structure of the Xinan-

jiang model

dW
dt

= Pi −E−R (B.307)

Pi = (1− A im)∗P (B.308)

R =


Pi ∗

[
(0.5−a)1−b

(
W

Wmax

)b
]

, if W
Wmax

≤ 0.5−a

Pi ∗
[
1− (0.5+a)1−b

(
1− W

Wmax

)b
]

, otherwise

(B.309)

E =


Ep, if W > LM
W

LM Ep, if c∗LM ≥W ≤ LM

c∗Ep, otherwise

(B.310)

Where W [mm] is the current tension water storage, refilled by a infiltration Pi [mm/d]

and drained by evaporation E [mm/d] and runoff R [mm/d]. Pi is the fraction of pre-
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cipitation P [mm/d] that does not fall on impervious area A im [-]. Runoff generation R

uses a double parabolic curve to determine the fraction of catchment area that is at full

tension storage and thus can contribute to runoff generation. This curve relies on shape

parameters a [-] and b [-], and maximum tension water storage Wmax [mm]. Evaporation

rate E declines as tension water storage decreases. Evaporation occurs at the potential

rate Ep [mm/d] if storage W is above threshold LM [mm], and reduces linearly below that

up to a second threshold c∗LM [-]*[mm]. Below this threshold evaporation occurs at a

constant rate c∗Ep.

dS
dt

= R−RS −RI −RG (B.311)

RS = R∗
(
1−

(
1− S

Smax

)Ex
)

(B.312)

RI = kI ∗S∗
(
1−

(
1− S

Smax

)Ex
)

(B.313)

RG = kG ∗S∗
(
1−

(
1− S

Smax

)Ex
)

(B.314)

Where S [mm] is the current storage of free water, refilled by runoff R from filled

tension water areas, and drained by surface runoff RS [mm/d], interflow RI [mm/d] and

baseflow RG [mm/d]. All runoff components rely on a parabolic equation to simulate

variable contributing areas of the catchment, dependent on maximum free water storage

Smax [mm] and shape parameter Ex [-]. RI also uses a time coeficient kI [d−1]. RG uses a

time coeficient kG [d−1].

dSI

dt
= RI −QI (B.315)

QI = cI ∗SI (B.316)

Where SI [mm] is the current storage in the interflow routing reservoir, filled by

interflow from free water RI and drained by delayed interflow QI [mm/d]. QI uses a time

coefficient cI [d−1].

dSG

dt
= RG −QG (B.317)

QG = cG ∗SG (B.318)

Where SG [mm] is the current storage in the baseflow routing reservoir, filled by

baseflow from free water RG and drained by delayed baseflow QG [mm/d]. QG uses a time

coefficient cG [d−1]. Total flow depends on four separate runoff components:
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Qt =QS +QI +QG (B.319)

QS = RS +RB (B.320)

RB = A im ∗P (B.321)

Where RB [mm/d] is direct rainoff generated by precipitation P [mm/d] on the fraction

impervious area A im [-].
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B.2.29 HyMOD (model ID: 29)

The HyMOD model (fig. B.30) combines a PDM-like soil moisture routine [e.g. 221]) with a

Nash cascade of three linear reservoirs that simulates fast flow and a single linear reservoir

intended to simulate slow flow [57, 330]. Although the model was originally intended as a

flexible structure where the user defines which processes to include, this study includes

only a single version that is commonly used. It has 5 parameters (Smax, b, a, k f and ks)

and 5 stores. The model aims to represent:

• Different soil depths throughout the catchment;

• Separation of flow into fast and slow flow.

B.2.29.1 File names

Model: m_29_hymod_5p_5s

Parameter ranges: m_29_hymod_5p_5s_parameter_ ranges

B.2.29.2 Model equations

PEa

QS

Sm F1

F2

F3

Qf,1

Qf,2

Qf,3

Qs

Pe Pf

Ps

Figure B.30: Structure of the HyMOD

model

dSm
dt

= P −Ea −Pe (B.322)

Ea = Sm
Smax

∗Ep (B.323)

Pe =
(
1−

(
1− S

Smax

)b
)
∗P (B.324)

Where Sm is the current storage in Sm

[mm], Smax [mm] is the maximum storage

in Sm, Ea and Ep the actual and potential

evapotranspiration respectively [mm/d] and

b is the soil depth distribution parameter [-].

P [mm/d] is the precipitation input.

dF1

dt
= P f −Q f ,1 (B.325)

P f = a∗Pe (B.326)

Q f ,1 = k f ∗S f ,1 (B.327)

Where F1 is the current storage in store F1 [mm], a the fraction of Pe that flows into the

fast stores and k f the runoff coefficient of the fast stores. Stores F2 and F3 take the outflow
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of the previous store as input (Q f ,1 and Q f ,2 respectively) and generate outflow analogous

to the equations above.

dS
dt

= Ps −Qs (B.328)

Ps = (1−a)∗Pe (B.329)

Qs = ks ∗S (B.330)

Where S is the current storage in store S [mm], 1−a [-] the fraction of Pe that flows into

the slow store and ks the runoff coefficient of the slow store. Total outflow:

Qt =Qs +Q f ,3 (B.331)
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B.2.30 MOPEX-2 (model ID: 30)

The MOPEX-2 model (fig. B.31) is part of a model improvement study that investigates the

relationship between dominant processes and model structures for 197 catchments in the

MOPEX database [349]. It has 5 stores and 7 parameters (Tcrit, dd f , Sb1, tw, tu, Se, tc).

The model aims to represent:

• Snow accumulation and melt;

• Saturation excess flow;

• Infiltration to deeper soil layers;

• A split between fast and slow runoff.

B.2.30.1 File names

Model: m_30_mopex2_7p_5s

Parameter ranges: m_30_mopex2_7p_5s_parameter_ ranges

B.2.30.2 Model equations

P

ET1

Q

Qw

S2

S1

Sc1

Sc2

ET2

Q1f

Q2u

Qf

Qu

Sn

Ps

Pr

QN

Figure B.31: Structure of the

MOPEX-2 model

dSn

dt
= Ps −Qn (B.332)

Ps =
P, if T ≤ Tcrit

0, otherwise
(B.333)

Qn =
dd f ∗ (T −Tcrit), if T > Tcrit

0, otherwise
(B.334)

Where Sn [mm] is the current snow pack. Pre-

cipitation occurs as snowfall Ps [mm/d] when cur-

rent temperature T [oC] is below threshold Tcrit

[oC]. Snowmelt QN [mm/d] occurs when the tem-

perature rises above the threshold temperature and

relies in the degree-day factor dd [mm/oC/d].
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dS1

dt
= Pr −ET1 −Q1 f −Qw (B.335)

Pr =
P, if T > Tcrit

0, otherwise
(B.336)

ET1 = S1

Sb1
∗Ep (B.337)

Q1 f =
P, if S1 ≥ Sb1

0, otherwise
(B.338)

Qw = tw ∗S1 (B.339)

Where S1 [mm] is the current storage in soil moisture and Pr precipitation as rain

[mm/d]. Evaporation ET1 [mm/d] depends linearly on current soil moisture, maximum

soil moisture Sb1 [mm] and potential evapotranspiration Ep [mm/d]. Saturation excess

flow Q1 f [mm/d] occurs when the soil moisture bucket exceeds its maximum capacity.

Infiltration to deeper groundwater Qw [mm/d] depends on current soil moisture and time

parameter tw [d−1].

dS2

dt
=Qw −ET2 −Q2u (B.340)

ET2 = S2

Se
∗Ep (B.341)

Q2u = tu ∗S2 (B.342)

Where S2 [mm] is the current groundwater storage, refilled by infiltration from S1.

Evaporation ET2 [mm/d] depends linearly on current groundwater and root zone storage

capacity Se [mm]. Leakage to the slow runoff store Q2u [mm/d] depends on current

groundwater level and time parameter tu [d−1].

dSc1

dt
=Q1 f −Q f (B.343)

Q f = tc ∗Sc1 (B.344)

Where Sc1 [mm] is current storage in the fast flow routing reservoir, refilled by Q1 f .

Routed flow Q f depends on the mean residence time parameter tc [d−1].

dSc2

dt
=Q2u −Qu (B.345)

Qu = tc ∗Sc2 (B.346)
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Where Sc2 [mm] is current storage in the slow flow routing reservoir, refilled by Q2u.

Routed flow Qu depends on the mean residence time parameter tc [d−1]. Total simulated

flow Qt [mm/d]:

Qt =Q f +Qu (B.347)
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B.2.31 MOPEX-3 (model ID: 31)

The MOPEX-3 model (fig. B.32) is part of a model improvement study that investigates the

relationship between dominant processes and model structures for 197 catchments in the

MOPEX database [349]. It has 5 stores and 8 parameters (Tcrit, dd f , Sb1, tw, Sb2, tu, Se,

tc). The model aims to represent:

• Snow accumulation and melt;

• Saturation excess flow;

• Infiltration to deeper soil layers;

• Subsurface-influenced fast flow;

• A split between fast and slow runoff.

B.2.31.1 File names

Model: m_31_mopex3_8p_5s

Parameter ranges: m_31_mopex3_8p_5s_parameter_ ranges

B.2.31.2 Model equations

P

ET1

Q

Qw

S2

S1

Sc1

Sc2

ET2

Q1f

Q2u

Qf

Qu

Sn

Ps

Pr

QN

Q2f

Figure B.32: Structure of the

MOPEX-3 model

dSn

dt
= Ps −Qn (B.348)

Ps =
P, if T ≤ Tcrit

0, otherwise
(B.349)

Qn =
dd f ∗ (T −Tcrit), if T > Tcrit

0, otherwise
(B.350)

Where Sn [mm] is the current snow pack. Pre-

cipitation occurs as snowfall Ps [mm/d] when cur-

rent temperature T [oC] is below threshold Tcrit

[oC]. Snowmelt QN [mm/d] occurs when the tem-

perature rises above the threshold temperature and

relies in the degree-day factor dd [mm/oC/d].
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dS1

dt
= Pr −ET1 −Q1 f −Qw (B.351)

Pr =
P, if T > Tcrit

0, otherwise
(B.352)

ET1 = S1

Sb1
∗Ep (B.353)

Q1 f =
P, if S1 ≥ Sb1

0, otherwise
(B.354)

Qw = tw ∗S1 (B.355)

Where S1 [mm] is the current storage in soil moisture and Pr precipitation as rain

[mm/d]. Evaporation ET1 [mm/d] depends linearly on current soil moisture, maximum

soil moisture Sb1 [mm] and potential evapotranspiration Ep [mm/d]. Saturation excess

flow Q1 f [mm/d] occurs when the soil moisture bucket exceeds its maximum capacity.

Infiltration to deeper groundwater Qw [mm/d] depends on current soil moisture and time

parameter tw [d−1].

dS2

dt
=Qw −ET2 −Q2u −Q2 f (B.356)

ET2 = S2

Se
∗Ep (B.357)

Q2u = tu ∗S2 (B.358)

Q2 f =
Qw, if S2 ≥ Sb2

0, otherwise
(B.359)

Where S2 [mm] is the current groundwater storage, refilled by infiltration from S1.

Evaporation ET2 [mm/d] depends linearly on current groundwater and root zone storage

capacity Se [mm]. Leakage to the slow runoff store Q2u [mm/d] depends on current

groundwater level and time parameter tu [d−1]. When the store reaches maximum capacity

Sb2 [mm], excess flow Q2 f [mm/d] is routed towards the fast response routing store.

dSc1

dt
=Q1 f +Q2 f −Q f (B.360)

Q f = tc ∗Sc1 (B.361)

Where Sc1 [mm] is current storage in the fast flow routing reservoir, refilled by Q1 f

and Q2 f . Routed flow Q f depends on the mean residence time parameter tc [d−1].
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dSc2

dt
=Q2u −Qu (B.362)

Qu = tc ∗Sc2 (B.363)

Where Sc2 [mm] is current storage in the slow flow routing reservoir, refilled by Q2u.

Routed flow Qu depends on the mean residence time parameter tc [d−1]. Total simulated

flow Qt [mm/d]:

Qt =Q f +Qu (B.364)
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B.2.32 MOPEX-4 (model ID: 32)

The MOPEX-4 model (fig. B.33) is part of a model improvement study that investigates the

relationship between dominant processes and model structures for 197 catchments in the

MOPEX database [349]. It has 5 stores and 10 parameters (Tcrit, dd f , Sb1, tw, Iα, Is, Sb2,

tu, Se, tc). The original model relies on observations of Leaf Area Index and a calibrated

interception fraction. Liang et al [194] show typical Leaf Area Index time series, and a

sinusoidal function is a reasonable approximation of this. Therefore, the model is slightly

modified to use a calibrated sinusoidal function, so that the data input requirements for

MOPEX-4 are consistent with other models. The model aims to represent:

• Snow accumulation and melt;

• Time-varying interception;

• Saturation excess flow;

• Infiltration to deeper soil layers;

• A split between fast and slow runoff.

B.2.32.1 File names

Model: m_32_mopex4_10p_5s

Parameter ranges: m_32_mopex4_10p_5s_parameter_ ranges

B.2.32.2 Model equations

P

ET1

Q

Qw

S2

S1

Sc1

Sc2

ET2

Q1f

Q2u

Qf

Qu

Sn

Ps

Pr

QN

Q2f

I

Figure B.33: Structure of the

MOPEX-4 model

dSn

dt
= Ps −Qn (B.365)

Ps =
P, if T ≤ Tcrit

0, otherwise
(B.366)

Qn =
dd f ∗ (T −Tcrit), if T > Tcrit

0, otherwise
(B.367)

Where Sn [mm] is the current snow pack. Pre-

cipitation occurs as snowfall Ps [mm/d] when cur-

rent temperature T [oC] is below threshold Tcrit

[oC]. Snowmelt QN [mm/d] occurs when the tem-

perature rises above the threshold temperature and

relies in the degree-day factor dd [mm/oC/d].
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dS1

dt
= Pr −ET1 − I −Q1 f −Qw (B.368)

Pr =
P, if T > Tcrit

0, otherwise
(B.369)

ET1 = S1

Sb1
∗Ep (B.370)

I = max
(
0, Iα+ (1− Iα)cos

(
2π

t− Is

tmax

))
∗Pr (B.371)

Q1 f =
P, if S1 ≥ Sb1

0, otherwise
(B.372)

Qw = tw ∗S1 (B.373)

Where S1 [mm] is the current storage in soil moisture and Pr precipitation as rain

[mm/d]. Evaporation ET1 [mm/d] depends linearly on current soil moisture, maximum soil

moisture Sb1 [mm] and potential evapotranspiration Ep [mm/d]. Interception I [mm/d]

depends on the mean intercepted fraction Iα [-], the maximum Leaf Area Index timing Is

[d] and the length of the seasonal cycle tmax [d] (usually set at 365 days). Saturation excess

flow Q1 f [mm/d] occurs when the soil moisture bucket exceeds its maximum capacity.

Infiltration to deeper groundwater Qw [mm/d] depends on current soil moisture and time

parameter tw [d−1].

dS2

dt
=Qw −ET2 −Q2u −Q2 f (B.374)

ET2 = S2

Se
∗Ep (B.375)

Q2u = tu ∗S2 (B.376)

Q2 f =
Qw, if S2 ≥ Sb2

0, otherwise
(B.377)

Where S2 [mm] is the current groundwater storage, refilled by infiltration from S1.

Evaporation ET2 [mm/d] depends linearly on current groundwater and root zone storage

capacity Se [mm]. Leakage to the slow runoff store Q2u [mm/d] depends on current

groundwater level and time parameter tu [d−1]. When the store reaches maximum capacity

Sb2 [mm], excess flow Q2 f [mm/d] is routed towards the fast response routing store.
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dSc1

dt
=Q1 f +Q2 f −Q f (B.378)

Q f = tc ∗Sc1 (B.379)

Where Sc1 [mm] is current storage in the fast flow routing reservoir, refilled by Q1 f

and Q2 f . Routed flow Q f depends on the mean residence time parameter tc [d−1].

dSc2

dt
=Q2u −Qu (B.380)

Qu = tc ∗Sc2 (B.381)

Where Sc2 [mm] is current storage in the slow flow routing reservoir, refilled by Q2u.

Routed flow Qu depends on the mean residence time parameter tc [d−1]. Total simulated

flow Qt [mm/d]:

Qt =Q f +Qu (B.382)
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B.2.33 SACRAMENTO model (model ID: 33)

The SACRAMENTO model (fig. B.34) is part of an ongoing model development project by the

National Weather Service, which started several decades ago [60, 225]. The documentation

mentions a specific order of flux computations. For consistency with other models, here

all fluxes are computed simultaneously. It has 5 stores and 13 parameters (PCTIM,

UZTWM, UZFWM, kuz, PBASE, ZPERC, REX P, LZTWM, LZFWPM, LZFWSM,

PFREE, klzp, klzs). The model also uses several coefficients derived from the calibration

parameters [182]: PBASE and ZPERC. The model aims to represent:

• Impervious and direct runoff;

• Within soil division of water storage between tension and free water;

• Surface runoff, interflow and percolation to deeper soil layers;

• Multiple baseflow processes.

B.2.33.1 File names

Model: m_33_sacramento_11p_5s

Parameter ranges: m_33_sacramento_11p_5s_parameter_ ranges

B.2.33.2 Model equations

UZTW

P

Euztw

Q

UZFW

Euzfw

Elztw

LZFWP

Qdir

Qsur

Qint

Qbfp

Qbfs

Peff

Pc
Pctw

Pcfw

Pcfw,p
Pcfw,s

Twex,u

Twex,l Twex,lp

Tw
e
x,
ls

Ru

LZTW

LZFWSRl,s

Rl,p

Figure B.34: Structure of the SACRA-

MENTO model

dUZTW
dt

= Pe f f +Ru −Euztw −Twex,u (B.383)

Pe f f = (1−PCTIM)∗P (B.384)

Ru =


UZTWM∗UZFW −UZFWM∗UZTW

UZTWM+UZFWM
,

if
UZTW

UZTWM
< UZFW

UZFWM
0, otherwise

(B.385)

Euztw = UZTW
UZTWM

∗Ep (B.386)

Twex,u =
Pe f f , if UZTW =UZTWM

0, otherwise

(B.387)

Where UZTW [mm] is upper zone tension wa-

ter, refilled by effective precipitation Pe f f [mm/d]
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and redistribution of free water Ru [mm/d], and is

drained by evaporation Euztw [mm/d] and tension

water excess Twex,u [mm/d]. Pe f f is the fraction

(1−PCTIM) [-] of precipitation P that does not fall

on impervious fraction PCTIM [-]. Ru is only active

when the relative deficit in tension water is greater

than that in free water, and rebalances the available

water in the upper zone. This uses the current stor-

ages, UZTW and UZFW, and maximum storages,

UZTWM [mm] and UZFWM [mm], of tension and

free water stores respectively. Evaporation is de-

termined with a linear relation between available,

maximum upper zone tension storage and potential

evapotranspiration Ep [mm/d]. Twex,u occurs only

when the store is at maximum capacity.

dUZFW
dt

= Twex,u −Euzf w −Qsur −Q int −Pc−Ru (B.388)

Euzf w =
Ep −Euztw, if UZFW > 0 & Ep > Euztw

0, otherwise
(B.389)

Qsur =
Twex,u, if UZFW =UZFWM

0, otherwise
(B.390)

Q int = kuz ∗UZFW (B.391)

Pc = Pcdemand ∗ UZFW
UZFWM

(B.392)

Pcdemand = PBASE∗
(
1+ZPERC∗

(∑
LZdef iciency∑
LZcapacity

)1+REX P
)

(B.393)

LZde f iciency = [LZTWM−LZTW]+ [LZFWPM−LZWFP]+ [LZFWSM−LZFWS]

(B.394)

LZcapacity = LZTWM+LZFWPM+LZFWSM (B.395)

Where UZFW [mm] is upper zone free water, refilled by excess water Twex,u that can

not be stored as tension water, and drained by evaporation Euzf w [mm/d], surface runoff

Qsur [mm/d], interflow Q int [mm/d], and percolation to deeper groundwater Pc [mm/d].

Evaporative demand unmet by the upper tension water store is taken from upper free

water storage at the potential rate. Qsur occurs only when the store is at maximum capacity
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UZFWM [mm]. Q int uses time coefficient kuz [d−1] to simulate interflow. Percolation Pc is

calculated as a balance between the fraction water availability in upper zone free storage,

and demand from the lower zone Pcdemand. The demand can be between a base percolation

rate PBASE [mm/d] and an upper limit of ZPERC [-] times PBASE. This demand is

scaled by the relative size of lower zone moisture deficiencies, expressed as the ratio

between total deficiency and maximum lower zone storage. LZTWM [mm], LZFWP [mm],

LZFWS [mm] are the maximum capacity of the lower zone tension store, primary free

water store and supplemental free water store respectively. The lower zone percolation

demand is potentially non-linear through exponent REGX [-]. PBASE is calculated as

klzp ∗LZFWPM+K lzs ∗LZFWSM.

dLZTW
dt

= Pctw +Rl,p +Rl,s −E lztw −Twex,l (B.396)

Pctw = (1−PFREE)∗Pc (B.397)

Rl,p =


LZFWPM∗ −LZTW(LZFWPM+LZFWSM)+LZTWM(LZWFP +LZWFS)

(LZFWPM+LZFWSM)(LZTWM+LZFWPM+LZFWSM)
,

if
LZTW

LZTWM
< LZFWP +LZFWS

LZFWPM+LZFWSM
0, otherwise

(B.398)

Rl,s =


LZFWSM∗ −LZTW(LZFWPM+LZFWSM)+LZTWM(LZWFP +LZWFS)

(LZFWPM+LZFWSM)(LZTWM+LZFWPM+LZFWSM)
,

if
LZTW

LZTWM
< LZFWP +LZFWS

LZFWPM+LZFWSM
0, otherwise

(B.399)

E lztw =


(
Ep −Euztw −Euzf w

)∗ LZTW
UZTWM+LZTWM , if LZTW > 0 & Ep > (Euztw +Euzf w)

0, otherwise

(B.400)

Twex,l =
Pctw, if LZTW = LZTWM

0, otherwise
(B.401)

Where LZTW [mm] is lower zone tension water, refilled by percolation Pctw [mm/d]

and drained by evaporation E lztw [mm/d] and tension water excess Twex,l [mm/d]. Evapo-

rative demand unmet b the upper zone can be satisfied from the lower zone tension water

store, scaled by the current lower zone storage relative to total tension zone storage. Both

Rl,p and Rl,s are only active when the relative deficit in tension water is greater than

that in free water, and rebalances the available water in the lower zone. This uses the
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current storages, LZTW , LZFWP and LZFWS, and maximum storages, LZTWM [mm],

LZFWPM [mm] and LZFWSM [mm], of the tension and free water stores respectively.

Pctw is the fraction (1−PFREE) [-] of percolation Pc that does not go into free storage.

Twex,l occurs only when the store is at maximum capacity LZTWM [mm].

dLZFWP
dt

= Pc f w,p +Twex,l p −Qbf p (B.402)

Pc f w,p =
 LZFWPM−LZFWP

LZFWPM
(

LZFWPM−LZFWP
LZFWPM + LZFWSM−LZFWS

LZFWSM

)
∗ (PFREE∗Pc)

(B.403)

Twex,l p =
 LZFWPM−LZFWP

LZFWPM
(

LZFWPM−LZFWP
LZFWPM + LZFWSM−LZFWS

LZFWSM

)
∗Twex,l (B.404)

Qbf p = klzp ∗LZFWP (B.405)

Where LZFWP [mm] is current storage in the primary lower zone free water store, re-

filled by excess tension water TWex,l p [mm/d] and percolation Pc f w,p [mm/d] and drained

by primary baseflow Qbf p [mm/d]. Refilling of both lower zone free water stores (primary

and supplemental) is divided between the two based on their relative, scaled moisture

deficiency. Percolation from the upper zone Pc f w,p is scaled according to the relative cur-

rent moisture deficit LZFWPM−LZFWP
LZFWM compared to the total relative deficit in the lower

free water stores
(

LZFWPM−LZFWP
LZFWPM + LZFWSM−LZFWS

LZFWSM

)
. Twex,l p is a similarly scaled part

of Twex,l . Qbf p uses time parameter K lzp [d−1] to estimate primary baseflow.

dLZFWS
dt

= Pc f w,s +Twex,ls −Qbf s (B.406)

Pc f w,s =
 LZFWSM−LZFWS

LZFWSM
(

LZFWPM−LZFWP
LZFWPM + LZFWSM−LZFWS

LZFWSM

)
∗ (PFREE∗Pc)

(B.407)

Twex,ls =
 LZFWSM−LZFWS

LZFWSM
(

LZFWPM−LZFWP
LZFWPM + LZFWSM−LZFWS

LZFWSM

)
∗Twex,l (B.408)

Qbf s = klzs ∗LZFWS (B.409)

Where LZFWS [mm] is current storage in the supplemental free water lower zone

store, refilled by excess tension water TWex,ls [mm/d] and percolation Pc f w,s [mm/d], and

drained by supplemental baseflow Qbf s [mm/d]. Pc f w,s is determined based on relative
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deficits in the lower zone free stores, as is Twex,ls. Qbf s uses time parameter K lzs [d−1] to

estimate supplementary baseflow. Total simulated outflow:

Qt =Qdir +Qsur +Q int +Qbf p +Qbf s (B.410)
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B.2.34 FLEX-IS (model ID: 34)

The FLEX-IS model (fig. B.35) is a combination of the FLEX-B model expanded with

an interception (I) routine [106] and a snow (S) module [233]. It has 5 stores and 12

parameters (TT, dd f , Imax, URmax, β, Lp, Percmax, D, Nlag, f , Nlag,s, K f , Ks). The model

aims to represent:

• Snow accumulation and melt;

• Interception by vegetation;

• Infiltration and saturation excess flow based on a distribution of different soil depths;

• A split between fast saturation excess flow and preferential recharge to a slow store;

• Percolation from the unsaturated zone to a slow runoff store.

B.2.34.1 File names

Model: m_34_flexis_12p_5s

Parameter ranges: m_34_flexis_12p_5s_parameter_ ranges

B.2.34.2 Model equations

M

SR

UR

S

I

FR

Ps

Q

Ei

Peff

RfEur

Rp

Rs

Qs

Qf

Pi

P

Ru Rf,l

Rs,l

Figure B.35: Structure of the FLEX-IS

model

dS
dt

= Ps −M (B.411)

Ps =
P, if T ≤ TT

0, otherwise
(B.412)

M =
dd f ∗ (T −TT), if T ≥ TT

0, otherwise

(B.413)

Where S [mm] is the current snow stor-

age, Ps the precipitation that falls as snow

[mm/d], M the snowmelt [mm/d] based on a

degree-day factor (ddf, [mm/◦C/d]) and thresh-

old temperature for snowfall and snowmelt

(TT, [◦C]).
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dI
dt

= PI +M−E I −Pe f f (B.414)

Pi =
P, if T > TT

0, otherwise
(B.415)

E i =
Ep, if I > 0

0, otherwise
(B.416)

Pe f f =
Pi, if I = Imax

0, otherwise
(B.417)

Where PI [mm/d] is the incoming precipitation, I is the current interception storage [mm],

which is assumed to evaporate (E i [mm/d]) at the potential rate Ep [mm/d] when possible.

When I exceeds the maximum interception storage Imax [mm], water is routed to the rest

of the model as Pe f f [mm/d].

dUR
dt

= Ru −Eur −Rp (B.418)

Ru = (1−
[
1+ exp

(−UR/URmax +1/2
β

)]−1
)∗Pe f f (B.419)

Eur = Ep ∗min
(
1,

UR
URmax

1
Lp

)
(B.420)

Rp = Percmax ∗ −UR
URmax

(B.421)

Where UR is the current storage in the unsaturated zone [mm]. Ru [mm/d] is the

inflow into UR based on its current storage compared to maximum storage URmax [mm]

and a shape distribution parameter β [-]. Eur the evaporation [mm/d] from UR which

follows a linear relation between current and maximum storage until a threshold Lp [-] is

exceeded. Rp [mm/d] is the percolation from UR to the slow reservoir SR [mm], based on a

maximum percolation rate Percmax [mm/d], relative to the fraction of current storage and

maximum storage.

Rs = (Pe f f −Ru)∗D (B.422)

R f = (Pe f f −Ru)∗ (1−D) (B.423)

Where Rs and R f are the flows [mm/d] to the slow and fast runoff reservoir respectively,

based on runoff partitioning coefficient D [-]. Both are lagged by linearly increasing
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triangular transformation functions with parameters Nlag,s and Nlag, f respectively, that

give the number of time steps over which Rs and R f need to be transformed. Rp is added

to Rs before the transformation occurs.

dFR
dt

= R f ,l −Q f (B.424)

Q f = K f ∗FR (B.425)

Where FR is the current storage [mm] in the fast flow reservoir. Outflow Q f [mm/d]

from the reservoir has a linear relation with storage through time scale parameter K f

[d−1].

dSR
dt

= Rs,l −Qs (B.426)

Qs = Ks ∗SR (B.427)

Where SR is the current storage [mm] in the slow flow reservoir. Outflow Qs [mm/d]

from the reservoir has a linear relation with storage through time scale parameter Ks

[d−1].

Q =Q f +Qs (B.428)

Where Q [mm/d] is the total simulated flow as the sum of Qs and Q f .
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B.2.35 MOPEX-5 (model ID: 35)

The MOPEX-5 model (fig. B.36) is part of a model improvement study that investigates

the relationship between dominant processes and model structures for 197 catchments

in the MOPEX database [349]. It has 5 stores and 12 parameters (Tcrit, dd f , Sb1, tw, Iα,

Is, Tmin, Tmax, Sb2, tu, Se, tc). The original model relies on observations of Leaf Area

Index and a calibrated interception fraction. Liang et al [194] show typical Leaf Area Index

time series, and a sinusoidal function is a reasonable approximation of this. Therefore, the

model is slightly modified to use a calibrated sinusoidal function, so that the data input

requirements for MOPEX-5 are consistent with other models. The model aims to represent:

• Snow accumulation and melt;

• Time-varying interception and the impact of phenology on transpiration;

• Saturation excess flow;

• Infiltration to deeper soil layers;

• A split between fast and slow runoff.

B.2.35.1 File names

Model: m_35_mopex5_12p_5s

Parameter ranges: m_35_mopex5_12p_5s_parameter_ ranges

B.2.35.2 Model equations

P

ETc1

Q

Qw

S2

S1

Sc1

Sc2

ETc2

Q1f

Q2u

Qf

Qu

Sn

Ps

Pr

QN

Q2f

I

Figure B.36: Structure of the

MOPEX-5 model

dSn

dt
= Ps −Qn (B.429)

Ps =
P, if T ≤ Tcrit

0, otherwise
(B.430)

Qn =
dd f ∗ (T −Tcrit), if T > Tcrit

0, otherwise
(B.431)

Where Sn [mm] is the current snow pack. Pre-

cipitation occurs as snowfall Ps [mm/d] when cur-

rent temperature T [oC] is below threshold Tcrit

[oC]. Snowmelt QN [mm/d] occurs when the tem-

perature rises above the threshold temperature and

relies in the degree-day factor dd [mm/oC/d].
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dS1

dt
= Pr −ET1 − I −Q1 f −Qw (B.432)

Pr =
P, if T > Tcrit

0, otherwise
(B.433)

ETc1 = S1

Sb1
∗Epc (B.434)

I = max
(
0, Iα+ (1− Iα)sin

(
2π

t+ Is

365/d

))
(B.435)

Q1 f =
P, if S1 ≥ Sb1

0, otherwise
(B.436)

Qw = tw ∗S1 (B.437)

Where S1 [mm] is the current storage in soil moisture and Pr precipitation as rain

[mm/d]. Evaporation ET1 [mm/d] depends linearly on current soil moisture, maximum

soil moisture Sb1 [mm] and phenology-corrected potential evapotranspiration:

Epc = Ep∗GSI (B.438)

GSI =


0, if T < Tmin

T−Tmin
Tmax−Tmin

, if Tmin ≥ T < Tmax

1, if T ≥ Tmax

(B.439)

Where GSI is a growing season index based on parameters Tmin [oC] and Tmax [oC].

Interception I [mm/d] depends on the mean intercepted fraction Iα [-] and the maximum

Leaf Area Index timing Is [d]. Saturation excess flow Q1 f [mm/d] occurs when the soil

moisture bucket exceeds its maximum capacity. Infiltration to deeper groundwater Qw

[mm/d] depends on current soil moisture and time parameter tw [d−1].

dS2

dt
=Qw −ET2 −Q2u −Q2 f (B.440)

ETc2 = S2

Se
∗Epc (B.441)

Q2u = tu ∗S2 (B.442)

Q2 f =
Qw, if S2 ≥ Sb2

0, otherwise
(B.443)
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Where S2 [mm] is the current groundwater storage, refilled by infiltration from S1.

Evaporation ET2 [mm/d] depends linearly on current groundwater and root zone storage

capacity Se [mm]. Leakage to the slow runoff store Q2u [mm/d] depends on current

groundwater level and time parameter tu [d−1]. When the store reaches maximum capacity

Sb2 [mm], excess flow Q2 f [mm/d] is routed towards the fast response routing store.

dSc1

dt
=Q1 f +Q2 f −Q f (B.444)

Q f = tc ∗Sc1 (B.445)

Where Sc1 [mm] is current storage in the fast flow routing reservoir, refilled by Q1 f

and Q2 f . Routed flow Q f depends on the mean residence time parameter tc [d−1].

dSc2

dt
=Q2u −Qu (B.446)

Qu = tc ∗Sc2 (B.447)

Where Sc2 [mm] is current storage in the slow flow routing reservoir, refilled by Q2u.

Routed flow Qu depends on the mean residence time parameter tc [d−1]. Total simulated

flow Qt [mm/d]:

Qt =Q f +Qu (B.448)
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B.2.36 MODHYDROLOG (model ID: 36)

The MODHYDROLOG model (fig. B.37) is an elaborate groundwater recharge model,

originally created for use in Australia [69, 71]. It has 5 stores (I, D, SMS, GW and CH)

and 15 parameters (INSC, COEFF, SQ, SMSC, SUB, CRAK, EM, DSC, ADS, MD, VCOND,

DLEV, k1, k2 and k3). It originally includes a routing scheme that allows linking sub-basins

together, which has been removed here. The model aims to represent:

• Interception by vegetation;

• Infiltration and infiltration excess flow;

• Depression storage and delayed infiltration;

• Preferential groundwater recharge, interflow and saturation excess flow;

• Groundwater recharge resulting from filling up of soil moisture storage capacity;

• Water exchange between shallow and deep aquifers;

• Water exchange between aquifer and river channel.

B.2.36.1 File names

Model: m_36_modhydrolog_15p_5s

Parameter ranges: m_36_modhydrolog_15p_5s_parameter_ ranges

B.2.36.2 Model equations

I

PEi
EXC RUN

INF

INT

SMF

SMS

ET

REC

FLOW
Q

GWF

SRUN

Ed

TRAP

GW

SEEP

CH

D

DINF

Figure B.37: Structure of the MODHY-

DROLOG model

dI
dt

= P −E i −EXC (B.449)

E i =
Ep, if I > 0

0, otherwise
(B.450)

EXC =
P, if I = INSC

0, otherwise
(B.451)

Where I [mm] is the current interception

storage, P the rainfall [mm/d], E i the evapo-

ration from the interception store [mm/d] and

EXC the excess rainfall [mm/d]). Evapora-

tion is assumed to occur at the potential rate

Ep [mm/d] when possible. When I exceeds the

maximum interception capacity INSC, water
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is ruted to the rest of the model as excess pre-

cipitation EXC. The soil moisture store SMS

is instrumental in dividing runoff between

infiltration and surface flow:

dSMS
dt

= SMF +DINF −ET −GWF (B.452)

SMF = INF − INT −REC (B.453)

INF = min
(
COEFF ∗ exp

(−SQ∗SMS
SMSC

)
,EXC

)
(B.454)

INT = SUB∗ SMS
SMSC

∗ INF (B.455)

REC = CRAK ∗ SMS
SMSC

∗ (INF − INT) (B.456)

ET = min
(
EM∗ SMS

SMSC
,PET

)
(B.457)

GWF =
SMF, if SMS = SMSC

0, otherwise
(B.458)

Where SMS is the current storage in the soil moisture store [mm]. SMF [mm/d]

and DINF [mm/d] are the infiltration and delayed infiltration respectively. INF is total

infiltration [mm/d] from excess precipitation, based on maximum infiltration loss parameter

COEFF [-], the infiltration loss exponent SQ and the ratio between current soil misture

storage SMS [mm] and the maximum soil moisture capacity SMSC [mm]. INT represents

interflow and saturation excess flow [mm/d], using a constant of proportionality SUB

[-]. REC is preferential recharge of groundwater [mm/d] based on another constant of

proportionality CRAK [-]. SMF is flow into soil moisture storage [mm/d]. ET evaporation

from the soil moisture that occurs at the potential rate when possible [mm/d], based on

the maximum plant-controlled rate EM [mm/d]. GWF is the flow to the groundwater store

[mm/d]:
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dD
dt

= TRAP −ED −DINF (B.459)

TRAP = ADS∗ exp
(
−MD

D
DSC−D

)
∗RUN (B.460)

RUN = EXC− INF (B.461)

ED =
ADS∗Ep, if D > 0

0, otherwise
(B.462)

DINF =
ADS∗RATE, if D > 0

0, otherwise
(B.463)

RATE = COEFF ∗ exp
(
−SQ

SMS
SMSC

)
− INF − INT −REC (B.464)

Where TRAP [mm/d] is the part of overland flow captured in the depression store

[equation from 258]), ED the evaporation from the depression store [mm/d], and DINF

delayed infiltration to soil moisture [mm/d]. TRAP uses DSC as the maximum depression

store capacity [mm], ADS as the fraction of land functioning as depression storage [-] and

MD a depression storage parameter [-]. ED relies on the potential evapotranspiration Ep.

The grundwater store has no defined upper and lower boundary and instead fluctuates

around a datum DLEV:

dGW
dt

= REC+GWF −SEEP −FLOW (B.465)

SEEP =V COND∗ (GW −DLEV ) (B.466)

FLOW =
k1 ∗|GW |+k2 ∗ (1− exp(−k3 ∗|GW |)) , if GW ≥ 0

− (k1 ∗|GW |+k2 ∗ (1− exp(−k3 ∗|GW |))) , if GW < 0
(B.467)

Where SEEP [mm/d] is the exchange with a deeper aquifer (can be negative or positive)

and FLOW [mm/d] the exchange with the channel (can be negative or positive). VCOND is

a leakage coefficient, DLEV a datum around which the groundwater level can fluctuate,

and k1, k2 and k3 are runoff coefficients. The channel store aggregates incoming fluxes

and produces the total runoff Qt [mm/d]:
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dCH
dt

= SRUN + INT +FLOW −Q (B.468)

SRUN = RUN −TRAP (B.469)

Qt =
CH, if CH > 0

0, otherwise
(B.470)
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B.2.37 HBV-96 (model ID: 37)

The HBV-96 model (fig. B.38) was originally developed for use in Sweden, but has been

widely applied beyond its original region [197]. It can account for different land types

(forest, open ground, lakes) but that distinction has been removed here. It has 5 stores

and 15 parameters (TT, TTI, CFR, CFMAX , TTM, WHC, CFLU X , FC, LP, β, K0, α,

c, K1, MAXBAS) parameters. The model aims to represent:

• Snow accumulation, melt and refreezing;

• Infiltration and capillary flow to, and evaporation from, soil moisture;

• A non-linear storage-runoff relationship from the upper runoff-generating zone;

• A linear storage-runoff relationship from the lower runoff-generating zone.

B.2.37.1 File names

Model: m_37_hbv_15p_5s

Parameter ranges: m_37_hbv_15p_5s_parameter_ ranges

B.2.37.2 Model equations

Ea

Q

SP

melt

refr

P

sfrf

SM

In + Se

UZ

rcf

Q0

perc

LZ
Q1

WC

Figure B.38: Structure of the

HBV-96 model

dSP
dt

= s f + re f r−melt (B.471)

s f =


P, if T ≤ TT − 1

2 TTI

P ∗ TT+ 1
2 TTI−T
TTI , otherwise

0, if T ≥ TT + 1
2 TTI

(B.472)

re f r =
CFR∗CFMAX ∗ (TTM−T), if T < TTM

0, otherwise

(B.473)

melt =
CFMAX ∗ (T −TTM), if T ≥ TTM

0, otherwise
(B.474)

Where SP is the current snow storage [mm]. s f is pre-

cipitation that occurs as snowfall [mm/d] based on daily

precipitation P [mm/d], threshold temperature for snow-

fall TT [◦C] and the snowfall threshold interval length

TTI [◦C]. re f r [mm/d] is the refreezing of liquid snow if

the current temperature T is below the melting threshold
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TTM [◦C], using a coefficient of refreezing CFR [-] and

a degree-day factor CFMAX [mm/d/◦C]. melt represents

snowmelt if the current temperature T is below the melt-

ing threshold TTM, using the degree-day factor CFMAX.

dWC
dt

= r f +melt− re f r− in−Sexcess (B.475)

r f =


0, if T ≤ TT − 1

2 TTI

P ∗ T−TT+ 1
2 TTI

TTI , otherwise

P, if T ≥ TT + 1
2 TTI

(B.476)

in =
r f +melt, if WC ≥WHC∗SP

0, otherwise
(B.477)

Se =
WC−WHC∗SP, if WC ≥WHC∗SP

0, otherwise
(B.478)

Where WC is the current liquid water content in the snow pack [mm], r f is the

precipitation occurring as rain [mm/d] based on temperature threshold parameters TT and

TTI, re f r is the refreezing flux, and in the infiltration to soil moisture [mm/d] that occurs

when the water holding capacity of snow gets exceeded. Sexcess [mm/d] represents excess

stored water that is freed when the total possible storage of liquid water in the snow pack

is reduced.

dSM
dt

= (in+Sexcess)+ c f −Ea − r (B.479)

c f = CFLU X ∗
(
1− SM

FC

)
(B.480)

Ea =
Ep, if SM ≥ LP ∗FC

Ep ∗ SM
LP∗FC , otherwise

(B.481)

r = (in+Sexcess)∗
(

SM
FC

)β
(B.482)

Where SM is the current storage in soil moisture [mm], in the infiltration from the

surface, c f the capillary rise [mm/d] from the unsaturated zone, Ea evaporation [mm/d]

and r the flow to the upper zone [mm/d]. Capillary rise depends on the maximum rate

CFLUX [mm/d], scaled by the available storage in soil moisture, expressed as the ration

between current storage SM and maximum storage FC [mm]. Evaporation Ea occurs at
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the potential rate Ep when current soil moisture is above the wilting point LP [mm],

and is scaled linearly below that. Runoff r to the upper zone has a potentially non-linear

relationship with infiltration in through parameter β [-].

dUZ
dt

= r− c f −Q0 − perc (B.483)

Q0 = K0 ∗UZ(1+α) (B.484)

perc = c. (B.485)

Where UZ is the current storage [mm] in the upper zone. Outflow Q0 [mm/d] from the

reservoir has a non-linear relation with storage through time scale parameter K0 [d−1] and

and α [-]. Percolation perc [mm/d] to the lower zone is given as a constant rate c [mm/d]S.

dLZ
dt

= perc−Q1 (B.486)

Q1 = K1 ∗LZ (B.487)

Where LZ is the current storage [mm] in the lower zone. Outflow Q1 [mm/d] from the

reservoir has a linear relation with storage through time scale parameter K1 [d−1]. Total

outflow is generated by summing Q0 and Q1 and applying a triangular transform based on

lag parameter MAXBAS [d].
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B.2.38 Tank Model - SMA (model ID: 38)

The Tank Model (fig. B.39) is originally developed for use in constantly saturated soils

in Japan. This alternative Tank model - SMA (soil moisture accounting) version was

developed for regions that are not continuously saturated [310]. This model is identical to

the original tank model, but has an increased depth in the first store to represent primary

soil moisture, and adds a new store to represent secondary soil moisture. It has 5 stores

and 16 parameters (sm1, sm2, k1, k2, A0, A1, A2, t1, t2, B0, B1, t3, C0, C1, t4, D1). The

model aims to represent:

• Runoff on increasing time scales with depth;

• Soil moisture storage;

• capillary rise to replenish soil moisture.

B.2.38.1 File names

Model: m_38_tank2_16p_5s

Parameter ranges: m_38_tank2_16p_5s_parameter_ ranges

B.2.38.2 Model equations

PE1

Q

Y1

S4

S1

S2

S3

E2

E3

E4

Y2

Y3

Y4

Y5

F12

F23

F34

Xs T2

T1

Figure B.39: Structure of the Tank

Model - SMA

dS1

dt
= P +T1 −T2 −E1 −F12 −Y2 −Y1 (B.488)

T1 = k1

(
1− S1

sm1

)
, if S1 < sm1 (B.489)

T2 = k2

(
min(S1, sm1)

sm1
− Xs

sm2

)
(B.490)

E1 =
Ep, if S1 > 0

0, otherwise
(B.491)

F12 =
A0 ∗ (S1 − sm1), if S1 > sm1

0, otherwise
(B.492)

Y2 =
A2 ∗ (S1 − t2), if S1 > t2

0, otherwise
(B.493)

Y1 =
A1 ∗ (S1 − t1), if S1 > t1

0, otherwise
(B.494)
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Where S1 [mm] is the current storage in the

upper zone, refilled by precipitation P [mm/d]

and drained by evaporation E1 [mm/d], drainage

F12 [mm/d] and surface runoff Y1 [mm/d] and Y2

[mm/d]. If S1 is below the soil moisture threshold

sm1 [mm], capillary rise T1 [mm/d] from store S2

can occur. Capillary rise has a base rate k1 [mm/d]

and decreases linearly as soil moisture S1 nears

sm1. This store is connected to the secondary soil

moisture store Xs through transfer flux

T2 [mm/d]. This flux can work in either direction, based on a base rate k2 [mm/d], the

current storages S1 [mm] and Xs [mm] and the maximum soil moistures storages sm1

[mm] and sm2 [mm]. Evaporation E1 occurs at the potential rate Ep [mm/d] if water

is available. Drainage to the intermediate layer has a linear relationship with storage

through time scale parameter A0 [d−1]. Surface runoff Y2 and Y1 occur when S1 is above

thresholds t2 [mm] and t1 [mm] respectively. Both are linear relationships through time

parameters A2 [d−1] and A1 [d−1] respectively.

dXs

dt
= T2 (B.495)

Where Xs [mm] is the current storage in the secondary soil moisture zone. This zone

has a maximum capacity sm2 [mm], used in the calculation of T2. T2 can be both positive

and negative.

dS2

dt
= F12 −E2 −T1 −F23 −Y3 (B.496)

E2 =
Ep, if S1 = 0 & S2 > 0

0, otherwise
(B.497)

F23 = B0 ∗S2 (B.498)

Y3 =
B1 ∗ (S2 − t3), if S2 > t3

0, otherwise
(B.499)

Where S2 [mm] is the current storage in the intermediate zone, refilled by drainage

F12 from the upper zone and drained by evaporation E2 [mm/d], drainage F23 [mm/d] and

intermediate discharge Y3 [mm/d]. E2 occurs at the potential rate Ep if water is available

and the upper zone is empty. Drainage to the third layer F23 has a linear relationship with

246



B.2. MODEL DESCRIPTIONS

storage through time scale parameter B0 [d−1]. Intermediate runoff Y3 occurs when S2

is above threshold t3 [mm] and has a linear relationship with storage through time scale

parameter B1 [d−1].

dS3

dt
= F23 −E3 −F34 −Y4 (B.500)

E3 =
Ep, if S1 = 0 & S2 = 0 & S3 > 0

0, otherwise
(B.501)

F34 = C0 ∗S3 (B.502)

Y4 =
C1 ∗ (S3 − t4), if S3 > t4

0, otherwise
(B.503)

Where S3 [mm] is the current storage in the sub-base zone, refilled by drainage F23

from the intermediate zone and drained by evaporation E3 [mm/d], drainage F34 [mm/d]

and sub-base discharge Y4 [mm/d]. E3 occurs at the potential rate Ep if water is available

and the upper zones are empty. Drainage to the fourth layer F34 has a linear relationship

with storage through time scale parameter C0 [d−1]. Sub-base runoff Y4 occurs when S3

is above threshold t4 [mm] and has a linear relationship with storage through time scale

parameter C1 [d−1].

dS4

dt
= F34 −E4 −Y5 (B.504)

E4 =
Ep, if S1 = 0 & S2 = 0 & S3 = 0 & S4 > 0

0, otherwise
(B.505)

Y5 = D1 ∗S4 (B.506)

Where S4 [mm] is the current storage in the base layer, refilled by drainage F34 from

the sub-base zone and drained by evaporation E4 [mm/d] and baseflow Y5 [mm/d]. E4

occurs at the potential rate Ep if water is available and the upper zones are empty. Baseflow

Y5 has a linear relationship with storage through time scale parameter D1 [d−1]. Total

runoff:

Qt =Y1 +Y2 +Y3 +Y4 +Y5 (B.507)
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B.2.39 Midlands Catchment Runoff Model (model ID: 39)

The Midlands Catchment Runoff model (fig. B.40) is intended to be used in a flood-

forecasting setting [222]. To reduce the number of free parameters, the original evaporation

routines and routing are somewhat simplified here. The model has 5 stores and 16 parame-

ters (Smax, cmax, c0, c1, ce, Dsurp, kd, γd, qp,max, kg, τ, Sbf , kcr, γcr, kor ,γor). The model

aims to represent:

• Interception by vegetation;

• Direct runoff from a variable contributing area;

• A deficit-based approach to soil moisture accounting and interflow and percolation;

• Baseflow from groundwater;

• Uniform flood flood wave distribution in time;

• In-channel and out-of-channel flood routing.

B.2.39.1 File names

Model: m_39_mcrm_16p_5s

Parameter ranges: m_39_mcrm_16p_5s_parameter_ ranges

B.2.39.2 Model equations

S

PEc

Q

Sg

qt

qr

D

qd

qp

qb

Sic

Soc

qn

qic

qoc

uob

uib

Er

Figure B.40: Structure of the

MCR model

dS
dt

= P −Ec − qt (B.508)

Ec =
Ep, if S > 0

0, otherwise
(B.509)

qt =
P, if S = Smax

0, otherwise
(B.510)

Where S [mm] is the current interception storage,

refilled by precipitation P [mm/d] and drained by evap-

oration Ec [mm/d] and throughfall qt [mm/d]. Ec occurs

at the potential rate whenever possible. qt occurs only

when the store is at maximum capacity Smax [mm].
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dD
dt

= qn −Er − qd − qp (B.511)

qn = qt − qr (B.512)

qr = min
(
cmax, c0 + c0ec1D

)
∗ qt (B.513)

Er = 1
1+ e−ceD ∗ (

Ep −Ec
)

(B.514)

qd =
kd

(
Dsurp −D

)γd , if D > Dsurp

0, otherwise
(B.515)

qp =


qp,max, if D ≥ Dsurp

D
Dsurp

qp,max, if 0< D < Dsurp

0, otherwise

(B.516)

Where D [mm] is the current storage in soil moisture, refilled by net infiltration qn

[mm/d] and drained by evaporation Er [mm/d], direct runoff qd [mm/d] and percolation

qp [mm/d]. Negative D-values are possible and indicate a moisture deficit. Net inflow

qn is calculated as the difference between throughfall qt and rapid runoff qr [mm/d]. qr

varies depending on the current degree of saturation in the catchment, with a maximum

fraction of the catchment area contributing to rapid runoff called cmax [-], a minimum

contributing area of c0 [-] and an exponential increase with increasing soil moisture storage,

controlled through shape parameter c1 [-], in between. Er fulfils any remaining evaporation

demand but decreases with increasing moisture deficit (negative D values). This relation is

controlled through shape parameter c2. qd has a non-linear relation with storage above a

threshold Dsurp [mm] through time scale parameter kd [d−1] and non-linearity parameter

γd [-]. Percolation qp has a maximum rate of qp,max if D is above threshold Dsurp and

decreases linearly between D = Dsurp and D = 0.

dSg

dt
= qp − qb (B.517)

qb = kg ∗S1.5
g (B.518)

Where Sg [mm] is the current groundwater storage, refilled by percolation qp and

drained by baseflow qb [mm/d]. qb uses time parameter kb [d−1] and a fixed non-linearity

coefficient of 1.5. Next, qr, qd and qb are summed together and distributed uniformly over

timespan τ [d], giving delayed flow uib [mm/d].
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dSic

dt
= uib −uob − qic (B.519)

uob =
uib, if Sic = Sbf

0, otherwise
(B.520)

qic =
kcr ∗Sγcr

ic , if qic < 3
4 Sic

3
4 Sic, otherwise

(B.521)

Where Sic [mm] is the current in-channel storage, refilled by uic and drained by in-

channel flow qic [mm/d] and out-of-bank flow uob [mm/d]. uob only occurs when the store

is at maximum capacity Sbf [mm]. qic uses time parameter kcr [d−1] and non-linearity

parameter γcr [-].

dSoc

dt
= uob − qoc (B.522)

qoc =
kor ∗Sγor

oc , if qoc < 3
4 Soc

3
4 Soc, otherwise

(B.523)

Where Soc [mm] is the current out-of-channel storage, refilled by uob and drained

by out-of-channel flow qoc [mm/d]. qoc uses time parameter kor [d−1] and non-linearity

parameter γor [-]. Total flow:

Qt = qoc + qic (B.524)
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B.2.40 SMAR (model ID: 40)

The SMAR model (fig. B.41) is the result of a series of modifications to the original ’layers-

model’ [236] and summarized by Tan & O’Connor [312]. The model uses an arbitrary

number of soil moistures stores connected in series, with each store having a depth of

25mm. The number of stores is an optimization parameter. The current storage in the

upper 5 stores features in various equations. For consistency within this framework, the

process is reversed: the model uses a fixed number of 5 soil moisture stores, but the depth

of each store is variable and given as Sn,max = Smax/5. It has 6 stores and 8 parameters (H,

Y , Smax, C, G, KG , N, K). The model aims to represent:

• Saturation excess overland flow;

• Infiltration excess overland flow;

• Gradual infiltration into soil moisture and declining evaporation potential when

water is sourced from further underground;

• Groundwater flow;

• Routing of non-groundwater flow.

B.2.40.1 File names

Model: m_40_smar_8p_6s

Parameter ranges: m_40_smar_8p_6s_parameter_ ranges

B.2.40.2 Model equations
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S1

E1
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P*R1

R2

E2

E3

E4
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Gw

Rg

Qg

Qr
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q2

q3

q4

I

R3
*

Figure B.41: Structure of the

SMAR model

dS1

dt
= I −E1 − q1 (B.525)

I =
Y , if P∗−R1 ≥Y

P∗−R1, otherwise
(B.526)

P∗ =
P −Ep, if P > Ep

0, otherwise
(B.527)

R1 = P∗∗H∗
∑

Sn

Smax
(B.528)

R2 =
(
P∗−R1

)− I (B.529)

E1 = C(1−1) ∗Ep∗ (B.530)

E∗
p =

Ep −P, if Ep > P

0, otherwise
(B.531)

q1 =
P∗−R1 −R2, if S1 ≥ Smax

5

0, otherwise
(B.532)

Where S1 [mm] is the current storage in the upper

soil layer, I [mm/d] infiltration into the soil, P∗ the ef-

fective precipitation [mm/d], R1 [mm/d] is direct runoff,

R2 [mm/d] is infiltration excess runoff, E1 [mm/d] evap-

oration and q1 [mm/d] flow towards deeper soil layers. I

uses a constant infiltration rate Y [mm/d]. Direct runoff

R1 relies on distribution parameter H [-] and is scaled by

the current soil moisture storage in all layers compared

to the maximum soil moisture storage Smax [mm] of all

layers. Evaporation from this soil layer occurs at the effect

potential rate E∗
p. Runoff to deeper layers q1 only occurs

when the current storage exceeds the store’s maximum

capacity.
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S2 = q1 −E2 − q2 (B.533)

E2 =
C(2−1) ∗Ep, if S1 = 0

0, otherwise
(B.534)

q2 =
q1, if S2 ≥ Smax

5

0, otherwise
(B.535)

Where S2 [mm] is the current storage in the second soil layer, E2 [mm/d] the evapora-

tion scaled by parameter C [-], and q2 [mm/d] overflow into the next layer. Evaporation is

assumed to occur only when the storage in the upper layers has been exhausted.

S3 = q2 −E3 − q3 (B.536)

E3 =
C(3−1) ∗Ep, if S2 = 0

0, otherwise
(B.537)

q3 =
q2, if S3 ≥ Smax

5

0, otherwise
(B.538)

Where S3 [mm] is the current storage in the second soil layer, E3 [mm/d] the evapora-

tion scaled by parameter C2 [-], and q3 [mm/d] overflow into the next layer. Evaporation is

assumed to occur only when the storage in the upper layers has been exhausted.

S4 = q3 −E4 − q4 (B.539)

E4 =
C(4−1) ∗Ep, if S3 = 0

0, otherwise
(B.540)

q4 =
q3, if S4 ≥ Smax

5

0, otherwise
(B.541)

Where S4 [mm] is the current storage in the second soil layer, E4 [mm/d] the evapora-

tion scaled by parameter C3 [-], and q4 [mm/d] overflow into the next layer. Evaporation is

assumed to occur only when the storage in the upper layers has been exhausted.
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S5 = q4 −E5 −R3 (B.542)

E5 =
C(5−1) ∗Ep, if S4 = 0

0, otherwise
(B.543)

R3 =
q4, if S5 ≥ Smax

5

0, otherwise
(B.544)

Where S5 [mm] is the current storage in the second soil layer, E5 [mm/d] the evapora-

tion scaled by parameter C4 [-], and R3 [mm/d] overflow towards groundwater. Evaporation

is assumed to occur only when the storage in the upper layers has been exhausted.

dGw

dt
= Rg −Qg (B.545)

Rg =G∗R3 (B.546)

Qg = KG ∗Gw (B.547)

Where Gw [mm] is the current groundwater storage, refilled by fraction G [-] of R3

[mm/d] and drained as a linear reservoir with time parameter KG [d−1]. This groundwater

flow Qg [mm/d] contributes directly to simulated streamflow Q. The fraction R∗
3 = (1−G)∗

R3 that does not reach the groundwater reservoir is combined with R1 and R2 and routed

with a gamma function with parameters N and K . The routing function approximates a

Nash-cascade consisting of N reservoirs with storage coefficient K :

h = 1
KΓ(N)

(
t
K

)N−1
e−t/K (B.548)

Integration over the time step length d provides the fraction of flow routed per time

step Qr [mm/d]. Total flow:

Qt =Qr +Qg (B.549)
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B.2.41 NAM model (model ID: 41)

The NAM model (fig. B.42) is originally developed for use in Denmark [232]. Here a small

modification is made by replacing runoff routing equations of the form 1
k e−t/k with the

linear reservoirs these equations represent. The model has 6 stores and 10 parameters (Cs,

Ci f , L∗, CL1, U∗, Cof , CL2, K0, K1, Kb ). The model aims to represent:

• Snow accumulation and melt;

• Interflow when total soil moisture exceeds a threshold;

• Separation of saturation excess flow into overland flow and infiltration;

• Baseflow from groundwater.;

B.2.41.1 File names

Model: m_41_nam_10p_6s

Parameter ranges: m_41_nam_10p_6s_parameter_ ranges

B.2.41.2 Model equations

L

P

Q

U

S

I

O

G
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EU
M

Pn

Inf

Of

If

Dl

Gw

Qo

Qi

Qb

EL

Figure B.42: Structure of the NAM

model

dS
dt

= Ps −M (B.550)

Ps =
P, if T ≤ 0

0, otherwise
(B.551)

M =
Cs ∗T, if T > 0

0, otherwise
(B.552)

Where S is the current snow storage [mm], Ps

[mm/d] the precipitation that falls as snow and M

the snowmelt [mm/d] based on a degree-day factor

(cs, [mm/◦C/d]). The freezing point of 0o [C] is used

as a threshold for snowfall and melt.
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dU
dt

= Pr +M−EU − I f −Pn (B.553)

Pr =
P, if T > 0

0, otherwise
(B.554)

EU =
Ep, if U > 0

0, otherwise
(B.555)

I f =
Ci f ∗ L/L∗−CL1

1−CL1
U , if L/L∗ > CL1

0, otherwise
(B.556)

Pn =
(Pr +M), if U =U∗

0, otherwise
(B.557)

Where U [mm] is the current storage in the upper zone, refilled by precipitation as rain Pr

[mm/d] and snowmelt M, and drained by evaporation EU [mm/d], interflow I f [mm/d]

and net precipitation Pn [mm/d]. Pr occurs only when the current temperature exceeds

the threshold of 0oC. EU occurs at the potential rate Ep whenever possible. I f occurs only

if the fractional storage in the lower zone L/L∗ (L is current lower zone storage, L∗ is lower

zone maximum storage) exceeds a threshold CL1 [-]. I f is further scaled current deficit in

the lower zone and a second scaling coefficient Ci f [-]. Pn occurs only when the upper zone

exceeds its maximum storage capacity U∗ [mm].

dL
dt

= Dl−E t (B.558)

Dl = (Pn −O f )
(
1− L

L∗

)
(B.559)

O f =
Cof ∗ L/L∗−CL2

1−CL2
∗Pn, if L/L∗ > CL2

0, otherwise
(B.560)

E t =


L
L∗ Ep, if U = 0

0, otherwise
(B.561)

Where L [mm] is the current storage in the lower zone, refilled by a fraction of infiltra-

tion Dl [mm/d] and drained by evaporation E t [mm/d]. Dl is calculated as a fraction of

infiltration Pn −O f , dependent on the current deficit in the lower zone. Note that with the

current formulation Dl might be larger than the lower zone deficit L∗−L and a constraint

of the form Dl ≤ L∗−L is needed. Overland flow O f [mm/d] is a fraction of Pn determined
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using the relative storage in the lower zone L/L∗ and two coefficients Cof [-] and CL2 [-].

E t occurs only when the upper zone is empty, and at a reduced rate that uses the relative

storage in the lower zone.

dO
dt

=O f −Qo (B.562)

Qo = K0 ∗O (B.563)

Where O [mm] is the current storage in the overland flow routing store. Qo is the

routed overland flow, using time coefficient K0 [d−1].

dI
dt

= I f −Q i (B.564)

Q i = K1 ∗ I (B.565)

Where I [mm] is the current storage in the interflow routing store. Q i is the routed

interflow, using time coefficient K1 [d−1].

dG
dt

=Gw−Qb (B.566)

Gw = (Pn −O f )
(

L
L∗

)
(B.567)

Qb = Kb ∗O (B.568)

Where G [mm] is the current storage in the overland flow routing store, refilled by

groundwater flow Gw [mm/d]. Qb is the routed baseflow, using time coefficient Kb [d−1].

Total flow:

Q =Qo +Q i +Qb (B.569)
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B.2.42 HYCYMODEL (model ID: 42)

The HYCYMODEL (fig. B.43) is originally developed for use in heavily forested catchments

in Japan [115]. The original model specifies evaporation from the Sb store as ET = ep(i)∗
Qb/Qbc, if Su < 0 & Sb < Sbc, with Qbc = f (Sbc). However, no further details are given

and Sbc is not listed as a parameter. We assume that Sbc [mm] is a threshold parameter

and that evaporation potential declines linearly to zero when the store drops under this

threshold. The model has 6 stores and 12 parameters (C, I1,max, α, I2,max, kin, D50, D16,

Sbc, kb, pb, kh, kc). The model aims to represent:

• Split between channel and ground precipitation;

• Interception by canopy and stems/trunks;

• Overland flow from a variable contributing area;

• Non-linear channel flow, hillslope flow and baseflow;

• Channel evaporation.

B.2.42.1 File names

Model: m_42_hycymodel_12p_6s

Parameter ranges: m_42_hycymodel_12p_6s_parameter_ ranges

B.2.42.2 Model equations

Ic

P

Eic
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Qc

Qh

Qb
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Figure B.43: Structure of the HYCY-

MODEL

dIc

dt
= Rg −E ic − qie (B.570)

Rg = (1−C)P (B.571)

E ic =
(1−C)∗Ep, if Ic > 0

0, otherwise
(B.572)

qie =
Rg, if Ic = I1,max

0, otherwise
(B.573)

Where Ic [mm] is the current canopy stor-

age, refilled by rainfall on ground Rg [mm/d]

and drained by evaporation E ic [mm/d] and

canopy interception excess Q ie [mm/d]. Rg is

the fraction (1-C) [mm] of rainfall P [mm/d]

that falls on ground (and not in the channel).
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This fraction appears several times in the

model to scale evaporation values according

to surface area. E ic occurs at the potential

rate Ep [mm/d] when possible. qie only oc-

curs when the canopy store is at maximum

capacity I1,max [mm].

dIs

dt
= qis −E is −Rs (B.574)

qis =α∗ qie (B.575)

E is =
(1−C)∗Ep, if Is > 0

0, otherwise
(B.576)

Rs =
qis, if Is = I2,max

0, otherwise
(B.577)

Where Is [mm] is the current stem and trunk storage, refilled by a fraction of canopy

excess qis [mm/d] and drained by evaporation E is [mm/d] and stem flow Rs [mm/d]. qis

is the fraction α [-] of canopy excess qie. The remainder (1−α) is throughfall Rt [mm/d].

E is occurs at the potential rate Ep when possible. Rs occurs only when the store is at

maximum capacity I2,max.

dSu

dt
= Rn −Re−Esu −Q in (B.578)

Rn = Rt +Rs (B.579)

Re = m∗Rn (B.580)

m =
∫ ξ

− inf

1p
2π

exp
(
−ξ

2

2

)
dξ (B.581)

ξ= log (Su/D50)
log (D50/D16)

(B.582)

Esu =
(1−C)∗Ep, if Eus > 0

0, otherwise
(B.583)

Q in = kin ∗Su (B.584)

Where Su [mm] is the current storage in the upper zone, refilled by net precipitation

Rn [mm/d] and drained by effective rainfall Re [mm/d], evaporation Esu [mm/d] and

infiltration Q in [mm/d]. Rn is the sum of throughfall Rt and stem flow Rs. Re is a fraction

259



APPENDIX B. SUPPORTING INFORMATION FOR CHAPTER 4

m [-] of Re, determined from a variable contributing area concept. m is calculated is an

integral from a regular normal distribution, scaled by the current storage Su compared

to two parameters D50 [mm] and D16 [mm]. These parameters represent the effective

soil depths at which respectively 50% and 16% of the catchment area contribute to Re.

Esu occurs at the potential rate Ep when possible. Q in has a linear relation with storage

through time parameter kin [d−1].

dSb

dt
=Q in −Esb −Qb (B.585)

Esb =
(1−C)∗Ep, if Su = 0 & Sb ≥ Sbc

(1−C)∗Ep
Sb
Sbc

, otherwise
(B.586)

Qb = kb ∗Spb
b (B.587)

Where Sb [mm] is the current storage in the lower zone, refilled by infiltration Q in and

drained by evaporation Esb [mm/d] and baseflow Qb [mm/d]. Esb occurs at the potential

rate when the store is above a threshold Sbc [mm], and declines linearly below that. Qb

has a potentially non-linear relation with storage through time parameter kb [d−1] and

scale parameter pb [-].

dSh

dt
= Re −Qh (B.588)

Qh = kh ∗Sph
h (B.589)

Where Sh [mm] is the current storage in the hillslope routing store, refilled by effective

rainfall Re and drained by hillslope runoff Qh. Qh has a potentially non-linear relation

with storage through time parameter kh [d−1] and scale parameter ph [-]. ph is a fixed

parameter in the original model with value 5/3.

dSc

dt
= Rc −Qc (B.590)

Qc = kc ∗Spc
c (B.591)

Where Sc [mm] is the current storage in the channel routing store, refilled by rainfall

on the channel Rc and drained by channel runoff Qc. Qc has a potentially non-linear

relation with storage through time parameter kc [d−1] and scale parameter pc [-]. pc is a

fixed parameter in the original model with value 5/3.
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Qt =Qc +Qh +Qb −Ec (B.592)

Ec = C∗Ep (B.593)

Where Qt [mm/d] is the total flow as sum of the three individual flow fluxes minus

channel evaporation Ec [mm/d].
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B.2.43 GSM-SOCONT model (model ID: 43)

The Glacier and SnowMelt - SOil CONTribution model (GSM-SOCONT) model (fig. B.44)

is a model developed for alpine, partly glaciated catchments [281]. For consistency with

other models in this framework, several simplifications are used. The model does not use

different elevation bands nor DEM data to estimate certain parameters, and does not

calculate an annual glacier mass balance. The model has 6 stores and 12 parameters ( f ice,

T0, asnow, Tm, ks, aice, ki, A, x, y, ksl , β). The model aims to represent:

• Separate treatment of glacier and non-glacier catchment area;

• Snow accumulation and melt;

• Glacier melt;

• Soil moisture accounting in the non-glacier catchment area.

B.2.43.1 File names

Model: m_43_gsmsocont_12p_6s

Parameter ranges: m_43_gsmsocont_12p_6s_parameter_ ranges

B.2.43.2 Model equations

P

ET

QSi,i

Hi,s

Pi,r,i

Mi,i

Si,s

Pi,r,s Mi,s

Pice Pnon-ice

Pice,sPice,r Pni,sPni,r

Hni,s

Mni,s

Peq

Sni,q

Sni,s

Peff

Qqu

Qsl

Qis

Qii

Pinf

Figure B.44: Structure of the GSM-SOCONT

model

dHi,s

dt
= Pice,s −Mi,s (B.594)

Pice,s =
Pice, if T ≤ T0

0, otherwise
(B.595)

Pice = f ice ∗P (B.596)

Mi,s =
asnow(T −Tm), if T > Tm

0, otherwise

(B.597)

Where Hi,s [mm] is the current storage

in the snow pack, refilled by precipitation-

as-snow Pice,s [mm/d] and depleted by

melt Mi,s [mm/d]. Pice,s occurs only when

the temperature T [oC] is below a thresh-

old temperature for snowfall T0 [oC]. Pice

is the fraction f ice [-] of precipitation P
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[mm/d] that falls on the ice-covered part

of the catchment. Mi,s uses a degree-day-

factor asnow [mm/oC/d] to estimate snow

melt if temperature is above a threshold

for snow melt Ts [oC].

dSi,s

dt
= Mi,s +Pi,r,s, −Q is (B.598)

Pi,r,s = Pice,r, if Hi,s > 0 (B.599)

Pice,r =
Pice, if T > T0

0, otherwise
(B.600)

Q is = ks ∗Si,s (B.601)

Where Si,s [mm] is the current storage in the snow-water routing reservoir, refilled by

snow melt Mi,s [mm/d] and rain-on-snow Pice,s [mm/d], and drained by runoff Q is. Pi,r,s

occurs only if the current snow pack storage is above zero. Pice,r is precipitation-as-rain

that occurs only if the temperature is above a snowfall threshold T0. Q is has a linear

relation with storage through time parameter ks [d−1].

dSi,i

dt
= Mi,i +Pi,r,i, −Q ii (B.602)

Pi,r,i = Pice,r, if Hi,s = 0 (B.603)

Mi,s =
aice(T −Tm), if T > Tm & Hi,s = 0

0, otherwise
(B.604)

Q ii = ki ∗Si,i (B.605)

Where Si,i [mm] is the current storage in the ice-water routing reservoir, refilled by

glacier melt Mi,i [mm/d] and rain-on-ice Pice,i [mm/d], and drained by runoff Q ii [mm/d].

Both Mi,i and Pice,i are assumed to only occur once the snow pack Hi,s is depleted. Mi,i

uses a degree-day-factor aice [mm/oC/d] to estimate glacier melt. Ice storage in the glacier

is assumed to be infinite. Pice,r,i is equal to Pice,r if Hi,s = 0. Q ii has a linear relation with

storage through time parameter ki [d−1].
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dHni,s

dt
= Pni,s −Mni,s (B.606)

Pni,s =
Pnon−ice, if T ≤ T0

0, otherwise
(B.607)

Pnon−ice = (1− f ice)∗P (B.608)

Mni,s =
asnow(T −Tm), if T > Tm

0, otherwise
(B.609)

Where Hni,s [mm] is the current snow pack storage on the non-ice covered fraction

1− f ice [-] of the catchment, which increases through snowfall Pni,s [mm/d] and decreases

through snow melt Mni,s [mm/d]. Both fluxes are calculated in the same manner as those

on the ice-covered part of the catchment (fluxes Pice,s and Mice,s).

dSni,s

dt
= Pinf −ET −Qsl (B.610)

Pinf = Peq −Pe f f (B.611)

Pe f f = Peq

(Sni,s

A

)y
(B.612)

Peq = Mni,s +Pni,r (B.613)

ET = Ep

(Sni,s

A

)x
(B.614)

Qsl = kslSni,s (B.615)

Where Sni,s [mm] is the current storage in soil moisture, refilled by infiltrated pre-

cipitation Pinf [mm/d] and drained by evapotranspiration ET [mm/d] and slow flow Qsl

[mm/d]. Pinf depends on the effective precipitation Pe f f . Peq is the total of snow melt

Mni,s and precipitation-as-rain Pni,r [mm/d]. Pni,r is calculated in the same manner as Pi,r

(equation 7). ET is a fraction potential evapotranspiration Ep [mm/d], calculated using

A and non-linearity parameter y [-]. Qsl has a linear relation with storage through time

parameter ksl [d−1].

dSni,q

dt
= Pe f f −Qqu (B.616)

Qqu =βS5/3
ni,q (B.617)
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Where Sni,q [mm] is the current storage in the direct runoff reservoir, refilled by

effective precipitation Pe f f [mm/d] and by quick flow Qqu [mm/d]. Qsl has a non-linear

relation with storage through time parameter β [mm4/3/d] and the factor 5/3. Total flow:

Q =Qqu +Qsl +Q is +Q ii (B.618)
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B.2.44 ECHO model (model ID: 44)

The ECHO model (fig. B.45) is a single element from the Spatially Explicit Hydrologic

Response (SEHR-ECHO) model [282]. Because the model is used as a lumped model here,

the "SEHR" prefix was dropped intentionally. For consistency with other models, soil

moisture storage S is given here in absolute terms [mm], rather than fractional terms that

are used in the original reference. Rain- and snowfall equations are taken from Schaefli et

al [281]. The model has 6 stores and 16 parameters (ρ, Ts, Tm, as, a f , Gmax, θ, φ, Smax,

sw, sm, Ksat, c, Lmax, k f , ks). The model aims to represent:

• Interception by vegetation;

• Snowfall, snowmelt, ground-heat flux and storage and refreezing of liquid snow;

• Infiltration, infiltration excess and saturation excess;

• Fast and slow runoff.

B.2.44.1 File names

Model: m_44_echo_16p_6s

Parameter ranges: m_44_echo_16p_6s_parameter_ ranges

B.2.44.2 Model equations

I

PEi

Q

S

Hs

Sfast

Sslow

Pn

PsPr

Ms

Fi

Gs

Mw

RH

RD

L

Ls

Lf

RF

RS

Hw

Fs

Et

Figure B.45: Structure of the

ECHO model

dI
dt

= P −E i −Pn (B.619)

E i =
Ep, if I > 0

0, otherwise
(B.620)

Pn =
P, if I = ρ

0, otherwise
(B.621)

Where I [mm] is the current interception storage, re-

filled by precipitation P [mm/d] and drained by evapo-

ration E i [mm/d] and net precipitation Pn [mm/d]. E i

occurs at the potential rate Ep [mm/d] when possible.

Pn only occurs when the store is at maximum capacity ρ

[mm].
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dHs

dt
= Ps +Fs −Ms −Gs (B.622)

Ps =
Pn, if T ≤ Ts

0, otherwise
(B.623)

Ms =
as(T −Tm), if T > Tm,Hs > 0

0, otherwise
(B.624)

Fs =
a f as(Tm −T), if T < Tm,Hw > 0

0, otherwise
(B.625)

Gs =
Gmax, if Hs > 0

0, otherwise
(B.626)

Where Hs [mm] is the current storage in the snow pack, refilled by precipitation-as-

snow Ps [mm/d] and refreezing of melted snow Fs [mm/d], and drained by snowmelt Ms

[mm/d] and the ground-heat flux Gs [mm/d]. Ps is calculated as all effective rainfall after

interception, provided the temperature is below a threshold Ts [oC]. Ms uses a degree-day

factor as [mm/oC/d] and threshold temperature for snowmelt Tm [oC]. Fs occurs if the

current temperature is below Tm and the degree-day rate reduced by factor a f [-]. Gs

occurs at a constant rate Gmax [mm/d].

dHw

dt
= Pr +Ms −Fs −Mw (B.627)

Pr =
Pn, if T > Ts

0, otherwise
(B.628)

Mw =
Pr +Ms, if Hw = θ∗Hs

0, otherwise
(B.629)

Where Hw [mm] is the current storage of liquid water in the snow pack, refilled by

precipitation-as-rain Pr [mm/d] and snowmelt Ms [mm/d], and drained by refreezing Fs

[mm/d] and outflow of melt water Mw [mm/d]. Pr is calculated as all effective rainfall after

interception, provided the temperature is above a threshold Ts [oC]. Mw occurs only if the

store is at maximum capacity, which is a fraction θ [-] of the current snow pack height Hs

[mm].
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dS
dt

= Fi −RD −E t −L (B.630)

Fi = Peq −RH (B.631)

Peq = Mw +Gs (B.632)

RH =
max(Peq −φ,0), if S < Smax

0, otherwise
(B.633)

RD =
Peq, if S = Smax

0, otherwise
(B.634)

E t = min
(
max

(
0,E t,pot

S− sw
sm− sw

)
,E t,pot

)
(B.635)

E t,pot = Ep −E i (B.636)

L = KsatSc (B.637)

Where S [mm] is the current storage in the soil moisture zone, refilled by infiltration

Fi [mm/d] and drained by Dunne-type runoff RD [mm/d], evapotranspiration E t [mm/d]

and leakage L [mm/d]. Fi is calculated as equivalent precipitation Peq minus Horton-type

runoff RH . Peq is the sum of melt water Mw and the ground-heat flux Gs. RH occurs at

fixed rate φ [mm/d] and only if the soil moisture is not saturated. RD is equal to equivalent

precipitation Peq but occurs only when the store is at maximum capacity Smax [mm]. E t

fulfils any leftover evaporation demand after interception. E t occurs at the potential rate

until the plant stress point sm [mm], decreases linearly until the wilting point sw [mm]

and is zero for any lower storage values. L has a non-linear relationship with storage

through time parameter Ksat [d−1] and coefficient c [-].

S f ast

dt
= L f −R f (B.638)

L f = L−Ls (B.639)

Ls = min(L,Lmax) (B.640)

R f = k f ∗S f ast (B.641)

Where S f ast [mm] is the current storage in the fast runoff reservoir, refilled by leakage-

to-fast-flow L f [mm/d] and drained by fast runoff R f [mm/d]. L f depends on leakage

L from soil moisture and the leakage-to-slow-flow Ls. Ls is calculated from a maximum

leakage rate Lmax [mm/d]. R f has a linear relation with storage through time parameter

k f [mm/d].
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dSslow

dt
= Ls −Rs (B.642)

Rs = ks ∗Sslow (B.643)

Where Sslow [mm] is the current storage in the slow runoff reservoir, refilled by leakage-

to-slow-flow Ls [mm/d] and drained by slow runoff Rs [mm/d]. Rs has a linear relation

with storage through time parameter ks [mm/d]. Total flow:

Q = RH +RD +RF +RS (B.644)
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B.2.45 Precipitation-Runoff Modelling System (PRMS) (model ID: 45)

The PRMS model (fig. B.46) is a modelling system that, in its most recent version, allows the

user to specify a wide variety of catchment processes and flux equations [205]. The version

presented here is a simplified version of the original PRMS model [192]. Simplifications

involve the use of PET time series instead of within-model estimates based on temperature,

and simpler interception and snow routines. The model has 7 stores and 18 parameters

(TT, dd f , α, β, STOR, RETIP, SCN, SCX , REMX , SMAX , cgw, RESMAX , k1, k2,

k3, k4, k5, k6). The model aims to represent:

• Snow accumulation and melt;

• Interception by vegetation;

• Depression storage and impervious surface areas;

• Direct runoff based on catchment saturation;

• Infiltration into soil moisture and connection with deeper groundwater;

• Potentially non-linear interflow, baseflow and groundwater sink.

B.2.45.1 File names

Model: m_45_prms_18p_7s

Parameter ranges: m_45_prms_18p_7s_parameter_ ranges

B.2.45.2 Model equations

XIN

P
Pr

SAS

PC

Ea

EXCS

Q

SRO

Et

SEP

Sn

Ps

Psm

Pim

Pin

Pby

Ein
Ptf

M

Mim

Msm

RSTOR

Eim

INF

SMAV

RECHR

RES

GW

SNK

BAS

GAD
RAS

QRES

Figure B.46: Structure of the PRMS

model

dSn
dt

= Ps −M (B.645)

Ps =
P, if T ≤ TT

0, otherwise
(B.646)

M =
dd f ∗ (T −TT), if T ≥ TT

0, otherwise
(B.647)

Where S is the current snow storage [mm],

Ps the rain that falls as snow [mm], M the

snowmelt [mm] based on a degree-day factor (ddf,

[mm/◦C/d]) and threshold temperature for snowfall

and snowmelt (TT, [◦C]).
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dX IN
dt

= Pin −E in −Pt f (B.648)

Pin =α∗Psm (B.649)

Psm =β∗Pr (B.650)

Pr =
P, if T > TT

0, otherwise
(B.651)

E in =
β∗Ep, if X IN > 0

0, otherwise
(B.652)

Pt f =
Pin, if X IN = STOR

0, otherwise
(B.653)

Where X IN [mm] is the current storage in the interception reservoir, recharged by

intercepted rainfall Pin [mm/d] and drained by evaporation E i [mm/d] and throughfall

Pt f [mm/d]. Pin [mm/d] is the fraction α [-] of rainfall on non-impervious area Psm

[mm/d] that does not bypass the interception reservoir. Psm [mm/d] is the fraction β

[-] of rainfall Pr [mm/d] that does not fall on impervious area. Rainfall is given as all

precipitation P [mm/d] that occurs when temperature T [◦C] is above a threshold TT

[◦C]. E i [mm/d] occurs at the potential rate Ep, corrected for the fraction of the catchment

where interception can occur. Throughfall Pt f is all rainfall that reaches the interception

reservoir when it is at maximum capacity STOR [mm].

dRSTOR
dt

= Pim +Mim −E im −SAS (B.654)

Pim = (1−β)∗Pr (B.655)

Mim = (1−β)∗M (B.656)

E im =
(1−β)∗Ep, if RSTOR > 0

0, otherwise
(B.657)

SAS =
Pim +Mim, if RSTOR = RETIP

0, otherwise
(B.658)

Where RSTOR [mm] is current depression storage, refilled by rainfall and snowmelt

on impervious area, Pim [mm/d] and Mim [mm/d] respectively, and drained by evaporation

E im [mm/d] and surface runoff SAS [mm/d]. Pim is given as the fraction 1−β of rainfall
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Pr. Mim is given as the fraction 1−β of snowmelt M. E im occurs at the potential rate Ep,

corrected for the fraction of the catchment where impervious areas can occur. SAS occurs

when the depression store is at maximum capacity RETIP [mm].

dRECHR
dt

= INF −Ea −PC (B.659)

INF = Msm +Pt f +Pby −SRO (B.660)

Msm =β∗M (B.661)

Pby = (1−α)∗Psm (B.662)

SRO =
[
SCN + (SCX −SCN)∗ RECHR

REMX

]
∗ (

Msm +Pt f +Pby
)

(B.663)

Ea = RECHR
REMX

∗ (
Ep −E i −E im

)
(B.664)

PC =
INF, if RECHR = REMX

0, otherwise
(B.665)

Where RECHR [mm] is the current storage in the upper soil moisture zone, recharged

by infiltration INF [mm/d] and drained by evaporation Ea [mm/d] and percolation PC

[mm/d]. INF is the difference between incoming snowmelt Msm [mm/d], throughfall Pt f

[mm/d] and interception bypass Pby [mm/d], and surface runoff from saturated area SRO

[mm/d]. Ssm is snowmelt from the fraction β [-] of the catchment that is not impervious.

Pby is the fraction 1−α of rainfall over non-impervious area Psm that bypasses the

interception store. SRO has a linear relation between minimum contributing area SCN [-]

and maximum contributing area SCX [-] based on current storage RECHR and maximum

storage REMX [mm]. Ea uses a similar linear relationship and accounts for already

fulfilled evaporation demand by interception and impervious areas. PC occurs when the

store reaches maximum capacity.

dSMAV
dt

= PC−E t −EXCS (B.666)

E t =


SMAV
SMAX ∗ (

Ep −E in −E im −Ea
)
, if RECHR < (

Ep −E in −E im
)

0, otherwise
(B.667)

EXCS =
PC, if SMAV = SMAX −REMX

0, otherwise
(B.668)

Where SMAV [mm] is the current storage in the lower soil moisture zone, recharged

by percolation from the upper zone PC [mm/d] and drained by transpiration E t [mm/d]
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and soil moisture excess EXCS [mm/d]. E t is corrected for already fulfilled evaporation

demand and only occurs if the upper zone can not satisfy this demand. E t uses a linear

relationship between current storage and the maximum storage in the lower zone SMAX−
REMX [mm]. EXCS only occurs when the store has reached maximum capacity SMAX −
REMX .

dRES
dt

=QRES−GAD−RAS (B.669)

QRES = min(EXCS−SEP,0) (B.670)

GAD = k1

(
RES

RESMAX

)k2

(B.671)

RAS = k3 ∗RES+k4 ∗RES2 (B.672)

(B.673)

Where RES [mm] is the current storage in the runoff reservoir, filled by the difference

between soil moisture excess EXCS [mm/d] and constant groundwater recharge SEP

[mm/d], and drained by groundwater drainage GAD [mm/d] and interflow component

RAS [mm/d]. GAD is potentially non-linear using time coefficient k1 [d−1] and non-

linearity coefficient k2 [-], and is also scaled by the maximum reservoir capacity RESMAX

[mm]. RAS is non-linear interflow based on coefficients k3 [d−1] and k4 [mm−1d−1].

dGW
dt

= SEP +GAD−BAS−SNK (B.674)

SEP = min(cgw,EXCS) (B.675)

BAS = k5 ∗GW (B.676)

SNK = k6 ∗GW (B.677)

Where GW [mm] is the current groundwater storage, refilled by groundwater recharge

from soil moisture SEP and recharge from runoff reservoir GAD and drained by baseflow

BAS [mm/d] and flow to deeper groundwater SNK [mm/d]. SEP occurs at the maximum

rate cgw [mm/d] if possible. BAS is a linear reservoir with time coefficient k5 [d−1]. SNK

is a linear reservoir with time coefficient k6 [d−1]. Total flow Qt [mm/d]:

Qt = SAS+SRO+RAS+BAS (B.678)
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B.2.46 Climate and Land-use Scenario Simulation in Catchments
model (model ID: 46)

The CLASSIC model (fig. B.47) is developed as a modular semi-distributed grid-based

rainfall runoff model [85]. For comparability with other models the grid-based routing

component is not included here, nor is the arable soil element because input data for this

soil type is not supported. The model represents runoff from three different soil categories:

permeable, semi-permeable and impermeable. It has 8 stores and 12 parameters ( fap, fdp,

dp, cq, d1, fas, fds, ds, d2, cxq, cxs, cu). The model aims to represent:

• Division into permeable, semi-permeable and impermeable areas;

• Infiltration into permeable soils and deficit-based soil moisture accounting;

• Infiltration into semi-permeable soils and direct runoff from semi-permeable soils

(bypassing the moisture accounting);

• Fixed interception on impermeable soils;

• Linear flow routing from permeable soils;

• Fast and slow routing from semi-permeable soils;

• Linear flow routing from impermeable soils.

B.2.46.1 File names

Model: m_46_classic_12p_8s

Parameter ranges: m_46_classic_12p_8s_parameter_ ranges

B.2.46.2 Model equations

Px

P

Epx

Py

Sx

Sy

Sq

Ss

I
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Epy
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Psi
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xq
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q Q
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Pss

Figure B.47: Structure of the CLASSIC model

dPx

dt
= Pp −Epx −Ppx (B.679)

Pp = fap ∗P (B.680)

Epx =
 fap ∗Ep, if Px > 0

0, otherwise

(B.681)

Ppx =
Pp, if Px = fdp ∗dp

0, otherwise

(B.682)
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Where Px [mm] is the current stor-

age in the upper permeable layer, re-

filled by precipitation Pp [mm/d] and

drained by evaporation Epx [mm/d]

and excess flow Ppx [mm/d]. Pp is the

fraction of precipitation P [mm/d] that

falls on permeable area fap [-]. Epx oc-

curs at the potential rate Ep [mm/d]

whenever possible, adjusted for the

fraction of area that is permeable soil.

Ppx only occurs when the store is at

maximum capacity fdp ∗dp, where dp

is the total soil depth (sum of depths X

and Y) in the permeable area and fdp

the fraction of this depth that is store

X.

dPy

dt
=−Ppx +Epy +Ppe (B.683)

Epy = 1.9∗ exp
[−0.6523∗ (Py + fdp ∗dp)

fdp ∗dp

]
∗ (

fap ∗Ep −Epx
)

(B.684)

Ppe =
Ppx, if Py = 0

0, otherwise
(B.685)

Where Py [mm] is the current deficit, which is increased by evaporation Epy [mm/d]

and decreased by inflow Ppx [mm/d]. Effective precipitation Ppe [mm/d] is only generated

when the deficit is 0. Epy decreases exponentially with increasing deficit.

dP
dt

= Ppe − q (B.686)

q = cq ∗P (B.687)

Where P [mm] is the current storage in the permeable soil routing store, refilled by

effective rainfall on permeable soil Ppe [mm/d] and drained by baseflow q [mm/d]. q has a

linear relation with storage through time scale parameter cp [d−1].
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dSx

dt
= Psi −Esx −Psx (B.688)

Psi = d1 ∗Ps (B.689)

Ps = fas ∗P (B.690)

Esx =
 fas ∗Ep, if Sx > 0

0, otherwise
(B.691)

Psx =
Ps, if Sx = fds ∗ds

0, otherwise
(B.692)

Where Sx [mm] is the current storage in the upper semi-permeable layer, refilled by

infiltration Psi [mm/d] and drained by evaporation Esx [mm/d] and excess flow Psx [mm/d].

Psi is the fraction d1 [mm] of precipitation on semi-permeable area Ps that infiltrates into

the soil. The complementary fraction 1−d1 of Ps bypasses the soil and directly becomes

effective rainfall as Psd. Ps is the fraction of precipitation P [mm/d] that falls on semi-

permeable area fas [-] . Esx occurs at the potential rate Ep [mm/d] whenever possible,

adjusted for the fraction of area that is semi-permeable soil. Psx only occurs when the store

is at maximum capacity fds ∗ds, where ds is the total soil depth (sum of depths X and Y)

in the semi-permeable area and fds the fraction of this depth that is store X.

dSy

dt
=−Psx +Esy +Pse (B.693)

Esy = 1.9∗ exp
[−0.6523∗ (Sy + fds ∗ds)

fds ∗ds

]
∗ (

fas ∗Ep −Esx
)

(B.694)

Ppe =
Psx, if Sy = 0

0, otherwise
(B.695)

Where Sy [mm] is the current deficit, which is increased by evaporation Esy [mm/d]

and decreased by inflow Psx [mm/d]. Effective precipitation Pse [mm/d] is only generated

when the deficit is 0. Esy decreases exponentially with increasing deficit.

dSq

dt
= Psq − xq (B.696)

Psq = d2 ∗ (Pse +Psd) (B.697)

xq = cxq ∗Sq (B.698)
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Where Sq [mm] is the current storage in the semi-permeable quick soil routing store,

refilled by a fraction of effective rainfall on semi-permeable soil Psq [mm/d] and drained

by quick flow xq [mm/d]. Psq is the fraction d2 [-] of (Pse +PSd) that is quick flow. xq has a

linear relation with storage through time scale parameter cxq [d−1].

dSs

dt
= Pss − xs (B.699)

Pss = (1−d2)∗ (Pse +Psd) (B.700)

xs = cxs ∗Ss (B.701)

Where Ss [mm] is the current storage in the semi-permeable quick soil routing store,

refilled by a fraction of effective rainfall on semi-permeable soil Pss [mm/d] and drained

by slow flow xs [mm/d]. Pss is the fraction 1−d2 [-] of (Pse +PSd) that is slow flow. xs has

a linear relation with storage through time scale parameter cxs [d−1].

dI
dt

= Pie −u (B.702)

Pie = Pi −E i (B.703)

Pi = P −Pp −Ps (B.704)

u = cu ∗ I (B.705)

Where I [mm] is the current storage in the impermeable soil routing store, refilled

by effective rainfall on impermeable soil Pie [mm/d] and drained by baseflow u [mm/d].

Pie is the remained of precipitation on impermeable soils Pi [mm/d], after a constant

evaporation E i has been extracted. E i is fixed at 0.5 [mm/d]. xs has a linear relation with

storage through time scale parameter cxs [d−1]. Total flow:

Q = q+ xs + xq +u (B.706)

277



APPENDIX B. SUPPORTING INFORMATION FOR CHAPTER 4

B.3 Flux equations

Section B.2 gives descriptions of each model and provides both Ordinary Differential Equa-

tions and the constitutive functions that describe each model’s fluxes. These constitutive

functions and any relevant constraints are implemented in MARRMoT as individual flux

files. Each flux file contains computer code that combines the consitituve function and

constraints (if needed). Flux files are located in the folder ”./MARRMoT/Models/Flux files/”.

The User Manual contains details on understanding, modifying and creating new flux files.

Table B.1 shows a complete overview of fluxes currently implemented in MARRMoT.

Table B.1: Equations from model descriptions and their implementation in MARRMoT

(Table starts on following page)
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Process Details Function name Constitutive function Constraints MARRMoT Code Model 

Abstraction Groundwater 

abstraction at a 

constant rate 

abstraction_1 𝑓𝑙𝑢𝑥𝑜𝑢𝑡 =  𝜃1 None, taken 

from a store 

with possible 

negative depth 

𝑓𝑙𝑢𝑥𝑜𝑢𝑡 =  𝜃1 25 

       

Baseflow Linear reservoir baseflow_1 𝑓𝑙𝑢𝑥𝑜𝑢𝑡 =  𝜃1 ∗ 𝑆  𝑓𝑙𝑢𝑥𝑜𝑢𝑡 =  𝜃1 ∗ 𝑆 2, 4, 6, 

8, 9, 12, 

13, 15, 

16, 17, 

18, 20, 

21, 24, 

25, 26, 

27, 28, 

29, 30, 

31, 32, 

33, 34, 

35, 36, 

37, 38, 

40, 41, 

43, 44, 

45, 46 

 Non-linear outflow 

from a reservoir 

baseflow_2 

 𝑓𝑙𝑢𝑥𝑜𝑢𝑡 =  (
1

𝜃1
𝑆)

1
𝜃2

 
𝑓𝑙𝑢𝑥𝑜𝑢𝑡 ≤

𝑆

𝛥𝑡
  

To prevent 

complex 

numbers,  

S = [0,∞> 

𝑓𝑙𝑢𝑥𝑜𝑢𝑡 = 𝑚𝑖𝑛(
𝑆

𝛥𝑡
, (
1

𝜃1
𝑚𝑎𝑥(𝑆, 0))

1
𝜃2
) 

9, 11 

 Empirical 

exponential 

outflow from a 

reservoir 

baseflow_3 
𝑓𝑙𝑢𝑥𝑜𝑢𝑡 =

𝑆𝑚𝑎𝑥
−4

4
𝑆5 

Empirical 

equation, so 

interwoven with 

other equations 

that no 

constraints are 

needed. Also 

implicitly 

assumes time 

step 𝛥𝑡 = 1 

𝑓𝑙𝑢𝑥𝑜𝑢𝑡 =
𝑆𝑚𝑎𝑥
−4

4
𝑆5 

7 

 Exponential 

outflow from a 

deficit store 

baseflow_4 𝑓𝑙𝑢𝑥𝑜𝑢𝑡 = 𝜃1𝑒
−𝜃2𝑆  𝑓𝑙𝑢𝑥𝑜𝑢𝑡 = 𝜃1𝑒

−𝜃2𝑆 14 

 Non-linear outflow 

scaled by current 

relative storage 

baseflow_5 
𝑓𝑙𝑢𝑥𝑜𝑢𝑡 =  𝜃1 (

𝑆

𝑆𝑚𝑎𝑥
)
𝜃2

 𝑓𝑙𝑢𝑥𝑜𝑢𝑡 ≤
𝑆

𝛥𝑡
  

To prevent 

complex 

numbers,  

S = [0,∞> 

𝑓𝑙𝑢𝑥𝑜𝑢𝑡 = 𝑚𝑖𝑛(
𝑆

𝛥𝑡
, 𝜃1 (

𝑚𝑎𝑥(0, 𝑆)

𝑆𝑚𝑎𝑥
)

𝜃1

) 
22 

 Quadratic outflow 

from reservoir if a 

storage threshold 

is exceeded 

baseflow_6 
𝑓𝑙𝑢𝑥𝑜𝑢𝑡 = {

𝜃1 ∗ 𝑆
2,      𝑖𝑓 𝑆 > 𝜃2

0,               𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 𝑓𝑙𝑢𝑥𝑜𝑢𝑡 ≤

𝑆

𝛥𝑡
 𝑓𝑙𝑢𝑥𝑜𝑢𝑡 = min(𝜃1 ∗ 𝑆

2,
𝑆

𝛥𝑡
) ∗ [1 − 𝑙𝑜𝑔𝑖𝑠𝑡𝑖𝑐𝑆𝑚𝑜𝑜𝑡ℎ𝑒𝑟_𝑆(𝑆, 𝜃2)] 

25 

 Non-linear outflow 

from a reservoir 

baseflow_7 𝑓𝑙𝑢𝑥𝑜𝑢𝑡 = 𝜃1𝑆
𝜃2 

𝑓𝑙𝑢𝑥𝑜𝑢𝑡 ≤
𝑆

𝛥𝑡
  

To prevent 

complex 

numbers,  

S = [0,∞> 

𝑓𝑙𝑢𝑥𝑜𝑢𝑡 = 𝑚𝑖𝑛 (
𝑆

𝛥𝑡
, 𝜃1𝑚𝑎𝑥(0, 𝑆)

𝜃2) 
39, 42 
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Process Details Function name Constitutive function Constraints MARRMoT Code Model 

 Exponential scaled 

outflow from a 

deficit store 

baseflow_8 𝑓𝑙𝑢𝑥𝑜𝑢𝑡 =  𝜃1 (𝑒
𝜃2
𝑆
𝑆𝑚𝑎𝑥
⁄ − 1) 𝑆 ≤ 𝑆𝑚𝑎𝑥 

𝑆 ≥ 0 𝑓𝑙𝑢𝑥𝑜𝑢𝑡 =  𝜃1 (𝑒
𝜃2∗𝑚𝑖𝑛(1,𝑚𝑎𝑥(0,

𝑆
𝑆𝑚𝑎𝑥
⁄ ))

− 1) 
23 

 Linear outflow 

from a reservoir if 

a storage threshold 

is exceeded 

baseflow_9 𝑓𝑙𝑢𝑥𝑜𝑢𝑡 = {
𝜃1(𝑆 − 𝜃2),   𝑖𝑓 𝑆 > 𝜃2

0,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

 𝑓𝑙𝑢𝑥𝑜𝑢𝑡 = 𝜃1 ∗ 𝑚𝑎𝑥(0, 𝑆 − 𝜃2) 20 

       

Capillary 

rise 

Capillary rise 

scaled by relative 

deficit in receiving 

store 

capillary_1 
𝑓𝑙𝑢𝑥𝑜𝑢𝑡 =  𝜃1 [1 −

𝑆1
𝑆1,𝑚𝑎𝑥

] 𝑓𝑙𝑢𝑥𝑜𝑢𝑡 ≤
𝑆2
𝛥𝑡

  𝑓𝑙𝑢𝑥𝑜𝑢𝑡 = 𝑚𝑖𝑛 (𝜃1 [1 −
𝑆1

𝑆1,𝑚𝑎𝑥
] ,
𝑆2
𝛥𝑡
) 

37 

 Capillary rise at a 

constant rate 

capillary_2 𝑓𝑙𝑢𝑥𝑜𝑢𝑡 = {
𝜃1,  𝑖𝑓 𝑆 ≥ 0
0,  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 𝑓𝑙𝑢𝑥𝑜𝑢𝑡 ≤
𝑆

𝛥𝑡
 𝑓𝑙𝑢𝑥𝑜𝑢𝑡 = 𝑚𝑖𝑛 (

𝑆

𝛥𝑡
, 𝜃1) 

13, 15 

 Capillary rise if the 

receiving store is 

below a storage 

threshold 

capillary_3 

𝑓𝑙𝑢𝑥𝑜𝑢𝑡 = {
𝜃1 (1 −

𝑆1
𝜃2
) ,   𝑖𝑓 𝑆1 < 𝜃 

0,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 
𝑓𝑙𝑢𝑥𝑜𝑢𝑡 ≤

𝑆2
𝛥𝑡

  𝑓𝑙𝑢𝑥𝑜𝑢𝑡 = 𝑚𝑖𝑛 (
𝑆2
𝛥𝑡
, 𝜃1 (1 −

𝑆1
𝜃2
) ∗ 𝑙𝑜𝑔𝑖𝑠𝑡𝑖𝑐𝑆𝑚𝑜𝑜𝑡ℎ𝑒𝑟_𝑆(𝑆1, 𝜃2)) 

38 

       

Depression 

storage 

Exponential inflow 

rate into surface 

depressions 

depression_1 
𝑓𝑙𝑢𝑥𝑜𝑢𝑡 =  𝜃1 ∗ 𝑒𝑥𝑝 [−𝜃2

𝑆

𝑆𝑚𝑎𝑥 − 𝑆
] ∗ 𝑓𝑙𝑢𝑥𝑖𝑛 

𝑓𝑙𝑢𝑥𝑜𝑢𝑡

≤
𝑆𝑚𝑎𝑥 − 𝑆

𝛥𝑡
  

𝑆 ≤ 𝑆𝑚𝑎𝑥 

𝑓𝑙𝑢𝑥𝑜𝑢𝑡 = 𝑚𝑖𝑛 (𝜃1 ∗ 𝑒𝑥𝑝 [−𝜃2
𝑆

max(𝑆𝑚𝑎𝑥 − 𝑆, 0)
] ∗ 𝑓𝑙𝑢𝑥𝑖𝑛,  

𝑆𝑚𝑎𝑥 − 𝑆

𝛥𝑡
 ) 

36 

 

       

Evaporation Evaporation at the 

potential rate 

evap_1 
𝐸𝑎 = {

𝐸𝑝,  𝑖𝑓 𝑆 ≥ 0

0,  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 𝐸𝑎 ≤

𝑆

𝛥𝑡
 𝐸𝑎 = 𝑚𝑖𝑛 (𝐸𝑝,

𝑆

𝛥𝑡
) 

2, 6, 12, 

13, 16, 

17, 18, 

23, 25, 

26, 27, 

33, 34, 

36, 38, 

39, 41, 

42, 44, 

45, 46 

 Evaporation at 

scaled plant-

controlled rate 

evap_2 
𝐸𝑎 = 𝜃1

𝑆

𝑆𝑚𝑎𝑥
 

𝐸𝑎 ≤ 𝐸𝑝 

𝐸𝑎 ≤
𝑆

𝛥𝑡
 

𝐸𝑎 = 𝑚𝑖𝑛 (𝜃1
𝑆

𝑆𝑚𝑎𝑥
, 𝐸𝑝,

𝑆

𝛥𝑡
) 

18, 36 

 Evaporation scaled 

by relative storage 

below a wilting 

point and at the 

potential rate 

above wilting point 

 

evap_3 

𝐸𝐴 = {
𝐸𝑝

𝑆

𝜃1𝑆𝑚𝑎𝑥
,  𝑖𝑓 𝑆 < 𝜃1𝑆𝑚𝑎𝑥

𝐸𝑝,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

𝐸𝑎 ≤ 𝐸𝑝 

𝐸𝑎 ≤
𝑆

𝛥𝑡
 

𝐸𝑎 = 𝑚𝑖𝑛 (𝐸𝑝
𝑆

𝜃1𝑆𝑚𝑎𝑥
, 𝐸𝑝,

𝑆

𝛥𝑡
) 

3, 11, 

14, 21, 

26, 34, 

37, 42 

 Scaled evaporation 

if storage is above 

the wilting point, 

constrained by a 

limitation 

parameter 

evap_4 
𝐸𝑎 = 𝐸𝑝 ∗ 𝑚𝑎𝑥 (0, 𝜃1

𝑆 − 𝜃2𝑆𝑚𝑎𝑥
𝑆𝑚𝑎𝑥 − 𝜃2𝑆𝑚𝑎𝑥

) 𝐸𝑎 ≤
𝑆

𝛥𝑡
 𝐸𝑎 = 𝑚𝑖𝑛 (𝐸𝑝 ∗ 𝑚𝑎𝑥 (0, 𝜃1

𝑆 − 𝜃2𝑆𝑚𝑎𝑥
𝑆𝑚𝑎𝑥 − 𝜃2𝑆𝑚𝑎𝑥

) ,
𝑆

𝛥𝑡
) 

15 

 Evaporation from 

bare soil, scaled by 

relative storage 

evap_5 
𝐸𝑎 = (1 − 𝜃1)

𝑆

𝑆𝑚𝑎𝑥
𝐸𝑝 

𝐸𝑎 ≤ 𝐸𝑝 

𝐸𝑎 ≤
𝑆

𝛥𝑡
 

𝐸𝑎 = 𝑚𝑖𝑛 ((1 − 𝜃1)
𝑆

𝑆𝑚𝑎𝑥
𝐸𝑝,

𝑆

𝛥𝑡
) 

4, 8, 9, 

16 
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 Transpiration from 

vegetation at the 

potential rate if 

storage is above a 

wilting point and 

scaled by relative 

storage if not 

evap_6 

𝐸𝐴 = {

𝜃1 ∗ 𝐸𝑝,   𝑖𝑓 𝑆 > 𝜃2 ∗ 𝑆𝑚𝑎𝑥

𝜃1
𝑆

𝜃2𝑆𝑚𝑎𝑥
𝐸𝑝,    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

𝐸𝑎 ≤ 𝜃1𝐸𝑝 

𝐸𝑎 ≤
𝑆

𝛥𝑡
 

𝐸𝑎 = 𝑚𝑖𝑛 (𝜃1𝐸𝑝
𝑆

𝜃2𝑆𝑚𝑎𝑥
, 𝜃1𝐸𝑝,

𝑆

𝛥𝑡
) 

4, 9, 16 

 Evaporation scaled 

by relative storage 

evap_7 
𝐸𝑎 =

𝑆

𝑆𝑚𝑎𝑥
𝐸𝑝 𝐸𝑎 ≤

𝑆

𝛥𝑡
 𝐸𝑎 = 𝑚𝑖𝑛 (

𝑆

𝑆𝑚𝑎𝑥
𝐸𝑝,

𝑆

𝛥𝑡
) 

1, 3, 10, 

11, 19, 

22, 24, 

29, 30, 

31, 32, 

33, 35, 

45 

 Transpiration from 

vegetation, at 

potential rate if 

soil moisture is 

above the wilting 

point, and linearly 

decreasing if not. 

Also scaled by 

relative storage 

across all stores 

evap_8 

𝐸𝐴 =

{
 

 
𝑆1

𝑆1 + 𝑆2
𝜃1𝐸𝑝,   𝑖𝑓 𝑆1 > 𝜃2

𝑆1
𝜃2
∗

𝑆1
𝑆1 + 𝑆2

𝜃1𝐸𝑝,    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

𝐸𝑎 ≤
𝑆1
𝛥𝑡

 

𝐸𝑎 ≥ 0 

𝐸𝑎 = 𝑚𝑎𝑥 (𝑚𝑖𝑛 (
𝑆1

𝑆1 + 𝑆2
𝜃1𝐸𝑝,

𝑆1
𝜃2
∗

𝑆1
𝑆1 + 𝑆2

𝜃1𝐸𝑝,
𝑆1
𝛥𝑡
) , 0) 

8 

 Evaporation from 

bare soil scaled by 

relative storage 

and by relative 

water availability 

across all stores 

evap_9 
𝐸𝑎 =

𝑆1
𝑆1 + 𝑆2

∗ (1 − 𝜃1)
𝑆1

𝑆𝑚𝑎𝑥 − 𝑆2
𝐸𝑝 𝐸𝑎 ≤

𝑆1
𝛥𝑡

 

𝐸𝑎 ≥ 0 

𝐸𝑎 = 𝑚𝑎𝑥 (𝑚𝑖𝑛 (
𝑆1

𝑆1 + 𝑆2
∗ (1 − 𝜃1)

𝑆1
𝑆𝑚𝑎𝑥 − 𝑆2

𝐸𝑝,
𝑆1
𝛥𝑡
) , 0) 

 
  

8 

 Evaporation from 

bare soil, scaled by 

relative storage 

evap_10 
𝐸𝑎 = 𝜃1

𝑆

𝑆𝑚𝑎𝑥
𝐸𝑝 

𝐸𝑎 ≤ 𝐸𝑝 

𝐸𝑎 ≤
𝑆

𝛥𝑡
 

𝐸𝑎 = 𝑚𝑖𝑛 (𝜃1
𝑆

𝑆𝑚𝑎𝑥
𝐸𝑝,

𝑆

𝛥𝑡
) 

8 

 Evaporation 

quadratically 

related to current 

soil moisture 

evap_11 
𝐸𝑎 = (2

𝑆

𝑆𝑚𝑎𝑥
− (

𝑆

𝑆𝑚𝑎𝑥
)
2

)𝐸𝑝 
𝐸𝑎 ≥ 0 

𝐸𝑎 = 𝑚𝑎𝑥 (0, (2
𝑆

𝑆𝑚𝑎𝑥
− (

𝑆

𝑆𝑚𝑎𝑥
)
2

)𝐸𝑝) 
7 

 Evaporation from 

deficit store, with 

exponential decline 

as deficit goes 

below a threshold 

evap_12 
𝐸𝑎 = 𝑚𝑖𝑛 (1, 𝑒

2(1−
𝑆
𝜃1
)
)𝐸𝑝 

 
𝐸𝑎 = 𝑚𝑖𝑛 (1, 𝑒

2(1−
𝑆
𝜃1
)
)𝐸𝑝 

5 

 Exponentially 

scaled evaporation 

evap_13 𝐸𝑎 = 𝜃1
𝜃2𝐸𝑝 𝐸𝑎 ≤

𝑆

𝛥𝑡
 𝐸𝑎 = 𝑚𝑖𝑛 (𝜃1

𝜃2𝐸𝑝,
𝑆

𝛥𝑡
) 

40 

 Exponentially 

scaled evaporation 

that only activates 

if another store 

goes below a 

certain threshold 

evap_14 
𝐸𝐴 = {

𝜃1
𝜃2𝐸𝑝,   𝑖𝑓 𝑆2 ≤ 𝑆2,𝑚𝑖𝑛
0,    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 𝐸𝑎 ≤
𝑆1
𝛥𝑡

 𝐸𝑎 = 𝑚𝑖𝑛 (𝜃1
𝜃2𝐸𝑝,

𝑆1
𝛥𝑡
) ∗ 𝑙𝑜𝑔𝑖𝑠𝑡𝑖𝑐𝑆𝑚𝑜𝑜𝑡ℎ𝑒𝑟_𝑆(𝑆2, 𝑆2,𝑚𝑖𝑛) 

40 

 Scaled evaporation 

if another store is 

below a threshold 

evap_15 

𝐸𝑎 = {

𝑆1
𝑆𝑚𝑎𝑥

𝐸𝑝,      𝑖𝑓 𝑆2 < 𝜃1

0,               𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 
𝐸𝑎 ≤

𝑆1
𝛥𝑡

 𝐸𝑎 = 𝑚𝑖𝑛 (
𝑆1

𝑆1,𝑚𝑎𝑥
∗ 𝐸𝑝 ∗ 𝑙𝑜𝑔𝑖𝑠𝑡𝑖𝑐𝑆𝑚𝑜𝑜𝑡ℎ𝑒𝑟_𝑆(𝑆2, 𝜃2),

𝑆1
𝛥𝑡
) 

41, 45 
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 Scaled evaporation 

if another store is 

below a threshold 

evap_16 
𝐸𝑎 = {

𝜃1𝐸𝑝,      𝑖𝑓 𝑆2 < 𝜃2
0,               𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 𝐸𝑎 ≤
𝑆1
𝛥𝑡

 𝐸𝑎 = 𝑚𝑖𝑛 (𝜃1 ∗ 𝐸𝑝 ∗ 𝑙𝑜𝑔𝑖𝑠𝑡𝑖𝑐𝑆𝑚𝑜𝑜𝑡ℎ𝑒𝑟_𝑆(𝑆2, 𝜃2),
𝑆1
𝛥𝑡
) 

17, 25 

 Scaled evaporation 

from a store that 

allows negative 

values 

evap_17 
𝐸𝑎 =

1

1 + 𝑒−𝜃1∗𝑆
𝐸𝑝 

None, because 

the store is 

allowed to go 

negative 

𝐸𝑎 =
1

1 + 𝑒−𝜃1∗𝑆
𝐸𝑝 

39 

 Exponentially 

declining 

evaporation from 

deficit store 

evap_18 
𝐸𝑎 = 𝜃1𝑒

−𝜃2𝑆
𝜃3 𝐸𝑝 

 
𝐸𝑎 = 𝜃1𝑒

−𝜃2𝑆
𝜃3 𝐸𝑝 

46 

 Non-linear scaled 

evaporation 

evap_19 
𝐸𝑎 = 𝜃1 (

𝑆

𝑆𝑚𝑎𝑥
)
𝜃2

𝐸𝑝 
𝐸𝑎 ≤ 𝐸𝑝 

𝐸𝑎 ≤
𝑆

𝛥𝑡
 

𝐸𝑎 = 𝑚𝑖𝑛 (𝜃1 ∗ 𝑚𝑎𝑥 (0,
𝑆

𝑆𝑚𝑎𝑥
)
𝜃2

𝐸𝑝, 𝐸𝑝,
𝑆

𝛥𝑡
) 

23, 43 

 Evaporation 

limited by a 

maximum 

evaporation rate 

and scaled below a 

wilting point 

 

evap_20 

𝐸𝐴 = {
𝜃1

𝑆

𝜃2𝑆𝑚𝑎𝑥
,  𝑖𝑓 𝑆 < 𝜃2𝑆𝑚𝑎𝑥

𝐸𝑝,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

𝐸𝑎 ≤ 𝐸𝑝 

𝐸𝑎 ≤
𝑆

𝛥𝑡
 

𝐸𝑎 = 𝑚𝑖𝑛 (𝜃1
𝑆

𝜃2𝑆𝑚𝑎𝑥
, 𝐸𝑝,

𝑆

𝛥𝑡
) 

20 

 Threshold-based 

evaporation with 

constant minimum 

rate 

evap_21 

𝐸𝑎 =

{
 
 

 
 𝐸𝑝,                  𝑖𝑓 𝑆 > 𝜃1

𝑆

𝜃1
𝐸𝑝,   𝑖𝑓 𝜃2𝜃1 ≥ 𝑆 ≥ 𝜃1 

𝜃2 𝐸𝑝                      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

𝐸𝑎 ≤
𝑆

𝛥𝑡
 𝐸𝑎 = 𝑚𝑖𝑛 (𝑚𝑎𝑥 (𝜃2,𝑚𝑖𝑛 (

𝑆

𝜃1
, 1)) ∗ 𝐸𝑝,

𝑆

𝛥𝑡
) 

28 

 Threshold-based 

evaporation rate 

evap_22 

𝐸𝑎 = {

𝐸𝑝,                  𝑖𝑓 𝑆 > 𝜃1
𝑆 − 𝜃1
𝜃1 − 𝜃2

𝐸𝑝,   𝑖𝑓 𝜃2𝜃1 ≥ 𝑆 ≥ 𝜃1 

0                      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 
𝐸𝑎 ≤

𝑆

𝛥𝑡
 𝐸𝑎 = 𝑚𝑖𝑛(

𝑆

𝛥𝑡
,𝑚𝑖𝑛 (𝐸𝑝,𝑚𝑎𝑥 (0,

𝑆 − 𝜃1
𝜃2 − 𝜃1

𝐸𝑝))) 
44 

       

Exchange Water exchange 

between aquifer 

and channel 

exchange_1 

𝑓𝑙𝑢𝑥𝑜𝑢𝑡 = {
𝜃1 ∗ |

𝑆

𝛥𝑡
| + 𝜃2 (1 − 𝑒𝑥𝑝 [−𝜃3 ∗ |

𝑆

𝛥𝑡
|]) ,  𝑖𝑓 𝑆 ≥ 0

− [𝜃1 ∗ |
𝑆

𝛥𝑡
| + 𝜃2 (1 − 𝑒𝑥𝑝 [−𝜃3 ∗ |

𝑆

𝛥𝑡
|])] ,  𝑖𝑓 𝑆 < 0

 

{
𝑁𝑜 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡
𝑓𝑙𝑢𝑥𝑜𝑢𝑡 ≤ 𝑓𝑙𝑢𝑥𝑖𝑛

 

 

The “channel” 

store in this 

model has 0 

time delay, so 

the incoming 

flux to the 

channel is the 

maximum 

channel-to-

groundwater 

flux size. 

Groundwater 

has infinite 

depth 

𝑓𝑙𝑢𝑥𝑜𝑢𝑡 = max(
[𝜃1 ∗ |

𝑆

𝛥𝑡
| + 𝜃2 ∗ (1 − 𝑒𝑥𝑝 [−𝜃3 ∗ |

𝑆

𝛥𝑡
|])]

∗ 𝑠𝑖𝑔𝑛(𝑆),  − 𝑓𝑙𝑢𝑥𝑖𝑛

) 

36 

 Water exchange 

based on relative 

storages 

exchange_2 
𝑓𝑙𝑢𝑥𝑜𝑢𝑡 = 𝜃1 (

𝑆1
𝑆1,𝑚𝑎𝑥

−
𝑆2

𝑆2,𝑚𝑎𝑥
) 

 
𝑓𝑙𝑢𝑥𝑜𝑢𝑡 = 𝜃1 (

𝑆1
𝑆1,𝑚𝑎𝑥

−
𝑆2

𝑆2,𝑚𝑎𝑥
) 

38 

 Water exchange 

with infinite size 

store based on 

threshold 

exchange_3 𝑓𝑙𝑢𝑥𝑜𝑢𝑡 =  𝜃1 ∗ (𝑆 − 𝜃2)  𝑓𝑙𝑢𝑥𝑜𝑢𝑡 =  𝜃1 ∗ (𝑆 − 𝜃2) 36 
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Infiltration Infiltration as 

exponentially 

declining based on 

relative storage 

(taken from a flux) 

infiltration_1 
𝑓𝑙𝑢𝑥𝑜𝑢𝑡 =  𝜃1 ∗ 𝑒𝑥𝑝 [−𝜃2

𝑆

𝑆𝑚𝑎𝑥
] 

𝑓𝑙𝑢𝑥𝑜𝑢𝑡 ≤ 𝑓𝑙𝑢𝑥𝑖𝑛  
𝑓𝑙𝑢𝑥𝑜𝑢𝑡 = 𝑚𝑖𝑛 (𝜃1 ∗ 𝑒𝑥𝑝 [−𝜃2

𝑆

𝑆𝑚𝑎𝑥
] ,  𝑓𝑙𝑢𝑥𝑖𝑛 ) 

18, 36, 

44 

 Delayed 

infiltration as 

exponentially 

declining based on 

relative storage 

(taken from a 

store) 

infiltration_2 
𝑓𝑙𝑢𝑥𝑜𝑢𝑡 =  𝜃1 ∗ 𝑒𝑥𝑝 [−𝜃2

𝑆1
𝑆1,𝑚𝑎𝑥

] − 𝑓𝑙𝑢𝑥𝑢𝑠𝑒𝑑 0 ≤ 𝑓𝑙𝑢𝑥𝑜𝑢𝑡 ≤
𝑆2
𝛥𝑡

 𝑓𝑙𝑢𝑥𝑜𝑢𝑡 = max(𝑚𝑖𝑛 (𝜃1 ∗ 𝑒𝑥𝑝 [−𝜃2
𝑆1

𝑆1,𝑚𝑎𝑥
] − 𝑓𝑙𝑢𝑥𝑢𝑠𝑒𝑑 ,  

𝑆2
𝛥𝑡
) , 0) 

36 

 Infiltration to soil 

moisture of liquid 

water stored in 

snow pack 

infiltration_3 𝑓𝑙𝑢𝑥𝑜𝑢𝑡 = {
𝑓𝑙𝑢𝑥𝑖𝑛,  𝑖𝑓 𝑆 ≥ 𝑆𝑚𝑎𝑥
0,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 
 𝑓𝑙𝑢𝑥𝑜𝑢𝑡 = 𝑓𝑙𝑢𝑥𝑖𝑛[1 − 𝑙𝑜𝑔𝑖𝑠𝑡𝑖𝑐𝑆𝑚𝑜𝑜𝑡ℎ𝑒𝑟_𝑆(𝑆, 𝑆max)] 37 

 Constant 

infiltration rate 

infiltration_4 𝑓𝑙𝑢𝑥𝑜𝑢𝑡 =  𝜃1 𝑓𝑙𝑢𝑥𝑜𝑢𝑡 ≤ 𝑓𝑙𝑢𝑥𝑖𝑛 𝑓𝑙𝑢𝑥𝑜𝑢𝑡 = 𝑚𝑖𝑛(𝑓𝑙𝑢𝑥𝑖𝑛,  𝜃1) 15, 23, 

40, 44 

 Maximum 

infiltration rate 

non-linearly based 

on relative deficit 

and storage 

infiltration_5 
𝑓𝑙𝑢𝑥𝑜𝑢𝑡 = 𝜃1 (1 −

𝑆1
𝑆1,𝑚𝑎𝑥

)(
𝑆2

𝑆2,𝑚𝑎𝑥
)

−𝜃2

 
To prevent 

complex 

numbers, S = 

[0,∞> 

To prevent 

numerical 

issues with a 

theoretical 

infinite 

infiltration rate, 

fluxout < 10^9 

𝑓𝑙𝑢𝑥𝑜𝑢𝑡 = 𝑚𝑖𝑛(10
9, 𝜃1 (1 −

𝑆1
𝑆1,𝑚𝑎𝑥

)𝑚𝑎𝑥 (0,
𝑆2

𝑆2,𝑚𝑎𝑥
)

−𝜃2

) 
23 

 Infiltration rate 

non-linearly scaled 

by relative storage 

infiltration_6 
𝑓𝑙𝑢𝑥𝑜𝑢𝑡 = 𝜃1 (

𝑆

𝑆𝑚𝑎𝑥
)
𝜃2

𝑓𝑙𝑢𝑥𝑖𝑛 
𝑓𝑙𝑢𝑥𝑜𝑢𝑡 ≤ 𝑓𝑙𝑢𝑥𝑖𝑛 

 𝑓𝑙𝑢𝑥𝑜𝑢𝑡 = 𝑚𝑖𝑛 (𝜃1 ∗ 𝑚𝑎𝑥 (0,
𝑆

𝑆𝑚𝑎𝑥
)
𝜃2

𝑓𝑙𝑢𝑥𝑖𝑛, 𝑓𝑙𝑢𝑥𝑖𝑛) 
43 

       

Interception Interception excess 

when maximum 

capacity is reached 

interception_1 𝑓𝑙𝑢𝑥𝑜𝑢𝑡 = {
𝑓𝑙𝑢𝑥𝑖𝑛,  𝑖𝑓 𝑆 ≥ 𝑆𝑚𝑎𝑥
0,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 
  

 𝑓𝑙𝑢𝑥𝑜𝑢𝑡 = 𝑓𝑙𝑢𝑥𝑖𝑛[1 − 𝑙𝑜𝑔𝑖𝑠𝑡𝑖𝑐𝑆𝑚𝑜𝑜𝑡ℎ𝑒𝑟_𝑆(𝑆, 𝑆max)] 16, 18, 

22, 26, 

34, 36, 

39, 42, 

44, 45 

 Interception excess 

after a constant 

amount is 

intercepted 

interception_2 𝑓𝑙𝑢𝑥𝑜𝑢𝑡 = {
𝑓𝑙𝑢𝑥𝑖𝑛 − 𝜃1,  𝑖𝑓 𝑓𝑙𝑢𝑥𝑖𝑛 ≥ 0

0,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

𝑓𝑙𝑢𝑥𝑜𝑢𝑡 ≥ 0 𝑓𝑙𝑢𝑥𝑜𝑢𝑡 = 𝑚𝑎𝑥(𝑓𝑙𝑢𝑥𝑖𝑛 − 𝜃1, 0) 2, 13, 

15 

 Interception excess 

after a fraction is 

intercepted 

interception_3 𝑓𝑙𝑢𝑥𝑜𝑢𝑡 = 𝜃1  𝑓𝑙𝑢𝑥𝑜𝑢𝑡 = 𝜃1 8 

 Interception excess 

after a time-

varying fraction is 

intercepted 

interception_4 
𝑓𝑙𝑢𝑥𝑜𝑢𝑡 = (𝜃1 + (1 − 𝜃1) ∗ cos (2𝜋

𝑡 ∗ 𝛥𝑡 − 𝜃2
𝑡𝑚𝑎𝑥

)) ∗ 𝑓𝑙𝑢𝑥𝑖𝑛 
𝑓𝑙𝑢𝑥𝑜𝑢𝑡 ≥ 0 

𝑓𝑙𝑢𝑥𝑜𝑢𝑡 = 𝑚𝑎𝑥 (0, 𝜃1 + (1 − 𝜃1) ∗ cos (2𝜋
𝑡 ∗ 𝛥𝑡 − 𝜃2
𝑡𝑚𝑎𝑥

)) ∗ 𝑓𝑙𝑢𝑥𝑖𝑛 
32, 35 

 Interception excess 

after a combined 

absolute amount 

and fraction are 

intercepted 

interception_5 𝑓𝑙𝑢𝑥𝑜𝑢𝑡 = {
𝜃1 ∗ 𝑓𝑙𝑢𝑥𝑖𝑛 − 𝜃2,  𝑖𝑓 𝑓𝑙𝑢𝑥𝑖𝑛 ≥ 0

0,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

𝑓𝑙𝑢𝑥𝑜𝑢𝑡 ≥ 0 𝑓𝑙𝑢𝑥𝑜𝑢𝑡 = 𝑚𝑎𝑥(𝜃1 ∗ 𝑓𝑙𝑢𝑥𝑖𝑛 − 𝜃2, 0) 
  

23 
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Interflow Interflow as a 

scaled fraction of 

an incoming flux 

interflow_1 
𝑓𝑙𝑢𝑥𝑜𝑢𝑡 =  𝜃1

𝑆

𝑆𝑚𝑎𝑥
∗ 𝑓𝑙𝑢𝑥𝑖𝑛 

  

 
𝑓𝑙𝑢𝑥𝑜𝑢𝑡 =  𝜃1

𝑆

𝑆𝑚𝑎𝑥
∗ 𝑓𝑙𝑢𝑥𝑖𝑛 

18, 36 

 Non-linear 

interflow 

interflow_2 𝑓𝑙𝑢𝑥𝑜𝑢𝑡 =  𝜃1𝑆
(1+𝜃2) 

𝑓𝑙𝑢𝑥𝑜𝑢𝑡 ≤
𝑆

𝛥𝑡
 

To prevent 

complex 

numbers, S = 

[0,∞> 

𝑓𝑙𝑢𝑥𝑜𝑢𝑡 = 𝑚𝑖𝑛 (𝜃1𝑚𝑎𝑥(𝑆, 0)
(1+𝜃2),𝑚𝑎𝑥 (

𝑆

𝛥𝑡
, 0)) 

37 

 Non-linear 

interflow (variant) 

interflow_3 𝑓𝑙𝑢𝑥𝑜𝑢𝑡 =  𝜃1𝑆
𝜃2 

𝑓𝑙𝑢𝑥𝑜𝑢𝑡 ≤
𝑆

𝛥𝑡
 

To prevent 

complex 

numbers, S = 

[0,∞> 

𝑓𝑙𝑢𝑥𝑜𝑢𝑡 =  𝑚𝑖𝑛 (𝜃1𝑚𝑎𝑥(𝑆, 0)
𝜃2 , 𝑚𝑎𝑥 (

𝑆

𝛥𝑡
, 0)) 

10, 19, 

42, 43 

 Combined linear 

and scaled 

quadratic interflow 

interflow_4 𝑓𝑙𝑢𝑥𝑜𝑢𝑡 =  𝜃1𝑆 + 𝜃2𝑆
2 

𝑓𝑙𝑢𝑥𝑜𝑢𝑡 ≤
𝑆

𝛥𝑡
 

To prevent 

complex 

numbers, S = 

[0,∞> 

𝑓𝑙𝑢𝑥𝑜𝑢𝑡 =  𝑚𝑖𝑛 (𝜃1𝑚𝑎𝑥(𝑆, 0) + 𝜃2𝑚𝑎𝑥(𝑆, 0)
2, 𝑚𝑎𝑥 (

𝑆

𝛥𝑡
, 0)) 

45 

 Linear interflow interflow_5 𝑓𝑙𝑢𝑥𝑜𝑢𝑡 =  𝜃1 ∗ 𝑆  𝑓𝑙𝑢𝑥𝑜𝑢𝑡 =  𝜃1 ∗ 𝑆 28, 33, 

41 

 Scaled linear 

interflow if a 

storage in the 

receiving store 

exceeds a threshold 

interflow_6 

𝑓𝑙𝑢𝑥𝑜𝑢𝑡 = {𝜃1 ∗ 𝑆1 ∗

𝑆2
𝑆2,𝑚𝑎𝑥
⁄ − 𝜃2

1 − 𝜃2
,  𝑖𝑓 

𝑆2
𝑆2,𝑚𝑎𝑥
⁄ > 𝜃2

0,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

𝑆2
𝑆2,𝑚𝑎𝑥

≤ 1 

 
𝑓𝑙𝑢𝑥𝑜𝑢𝑡 = (𝜃1 ∗ 𝑆1 ∗

𝑚𝑖𝑛 (1,
𝑆2
𝑆2,𝑚𝑎𝑥
⁄ ) − 𝜃2

1 − 𝜃2
)

∗ [1 − 𝑙𝑜𝑔𝑖𝑠𝑡𝑖𝑐𝑆𝑚𝑜𝑜𝑡ℎ𝑒𝑟_𝑆 (
𝑆2

𝑆2,𝑚𝑎𝑥
, 𝜃2)] 

41 

 Non-linear 

interflow if storage 

exceeds a threshold 

interflow_7 

𝑓𝑙𝑢𝑥𝑜𝑢𝑡 = {(
𝑆 − 𝜃1𝑆𝑚𝑎𝑥

𝜃2
)

1
𝜃3
,  𝑖𝑓 𝑆 > 𝜃1𝑆𝑚𝑎𝑥

0,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

𝑓𝑙𝑢𝑥𝑜𝑢𝑡

≤
𝑆 − 𝜃1𝑆𝑚𝑎𝑥

𝛥𝑡
 

 

To prevent 

complex 

numbers, S-

θ1Smax = [0,∞> 

𝑓𝑙𝑢𝑥𝑜𝑢𝑡 = 𝑚𝑖𝑛(𝑚𝑎𝑥 (0,
𝑆 − 𝜃1𝑆𝑚𝑎𝑥

𝛥𝑡
) ,  (

𝑚𝑎𝑥(0, 𝑆 − 𝜃1𝑆𝑚𝑎𝑥)

𝜃2
)

1
𝜃3
) 

9 

 Linear interflow if 

storage exceeds a 

threshold 

interflow_8 𝑓𝑙𝑢𝑥𝑜𝑢𝑡 = {
𝜃1(𝑆 − 𝜃2),   𝑖𝑓 𝑆 > 𝜃2

0,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

 𝑓𝑙𝑢𝑥𝑜𝑢𝑡 = 𝑚𝑎𝑥(0, 𝜃1(𝑆 − 𝜃2)) 3, 12, 

27, 38 

 Non-linear 

interflow if storage 

exceeds a threshold 

(variant) 

interflow_9 
𝑓𝑙𝑢𝑥𝑜𝑢𝑡 = {

(𝜃1(𝑆 − 𝜃2))
𝜃3
,   𝑖𝑓 𝑆 > 𝜃2

0,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 𝑓𝑙𝑢𝑥𝑜𝑢𝑡 ≤

𝑆 − 𝜃2
𝛥𝑡

 

 

To prevent 

complex 

numbers, S-θ2 = 

[0,∞> 

𝑓𝑙𝑢𝑥𝑜𝑢𝑡 = 𝑚𝑖𝑛 (
𝑆 − 𝜃2
𝛥𝑡

, (𝜃1 ∗ 𝑚𝑎𝑥(0, 𝑆 − 𝜃2))
𝜃3) 

4, 11, 

16, 39 

 Scaled linear 

interflow if storage 

exceeds a threshold 

interflow_10 

𝑓𝑙𝑢𝑥𝑜𝑢𝑡 = {
𝜃1
(𝑆 − 𝜃2)

𝜃3
,   𝑖𝑓 𝑆 > 𝜃2

0,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

  

 
𝑓𝑙𝑢𝑥𝑜𝑢𝑡 = 𝜃1

𝑚𝑎𝑥(0, 𝑆 − 𝜃2)

𝜃3
 

 

14 

 Constant interflow 

if storage exceeds a 

threshold 

interflow_11 𝑓𝑙𝑢𝑥𝑜𝑢𝑡 = {
𝜃1,   𝑖𝑓 𝑆 > 𝜃2
0,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 𝑓𝑙𝑢𝑥𝑜𝑢𝑡 ≤
𝑆 − 𝜃2
𝛥𝑡

 𝑓𝑙𝑢𝑥𝑜𝑢𝑡 = min (𝜃1,
𝑆 − 𝜃2
𝛥𝑡

) ∗ [1 − 𝑙𝑜𝑔𝑖𝑠𝑡𝑖𝑐𝑆𝑚𝑜𝑜𝑡ℎ𝑒𝑟_𝑆(𝑆, 𝜃2)] 
20 
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Misc Auxiliary function 

to find contributing 

area 

area_1 

𝐴 = {𝜃1 [
𝑆 − 𝑆𝑚𝑖𝑛

𝑆𝑚𝑎𝑥 − 𝑆𝑚𝑖𝑛
]
𝜃2

,   𝑖𝑓 𝑆 > 𝑆𝑚𝑖𝑛

0,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

𝐴 ≤ 1 
𝐴 = 𝑚𝑖𝑛 (1, 𝜃1 [

𝑆 − 𝑆𝑚𝑖𝑛
𝑆𝑚𝑎𝑥 − 𝑆𝑚𝑖𝑛

]
𝜃2

) ∗ [1 − 𝑙𝑜𝑔𝑖𝑠𝑡𝑖𝑐𝑆𝑚𝑜𝑜𝑡ℎ𝑒𝑟_𝑆(𝑆, 𝑆𝑚𝑖𝑛] 
23 

 

 General effective 

flow (returns flux 

[mm/d]) 

effective_1 

 
𝑓𝑙𝑢𝑥𝑜𝑢𝑡 = {

𝑓𝑙𝑢𝑥𝑖𝑛,1 − 𝑓𝑙𝑢𝑥𝑖𝑛,2,  𝑖𝑓 𝑓𝑙𝑢𝑥𝑖𝑛,1 > 𝑓𝑙𝑢𝑥𝑖𝑛,2
0,  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 
 𝑓𝑙𝑢𝑥𝑜𝑢𝑡 = 𝑚𝑎𝑥(0, 𝑓𝑙𝑢𝑥𝑖𝑛,1 − 𝑓𝑙𝑢𝑥𝑖𝑛,2) 22, 23, 

25, 39, 

40, 42, 

43, 44, 

45, 46 

 Storage excess 

when store size 

changes (returns 

flux [mm/d]) 

excess_1 
𝑓𝑙𝑢𝑥𝑜𝑢𝑡 =

𝑆 − 𝑆𝑚𝑎𝑥,𝑛𝑒𝑤
𝛥𝑡

 
𝑓𝑙𝑢𝑥𝑜𝑢𝑡 ≥ 0 

 
𝑓𝑙𝑢𝑥𝑜𝑢𝑡 = 𝑚𝑎𝑥 (

𝑆 − 𝑆𝑚𝑎𝑥,𝑛𝑒𝑤
𝛥𝑡

, 0) 
10, 19, 

22, 37, 

44 

 

 Phenology-based 

correction factor 

for potential 

evapotranspiration 

(returns flux 

[mm/d]) 

phenology_1 

𝐸𝑝
∗ =

{
 
 

 
 0,  𝑖𝑓 𝑇(𝑡) <  𝜃1
𝑇(𝑡) − 𝜃1
𝜃2 − 𝜃1

∗ 𝐸𝑝,  𝑖𝑓 𝜃1 ≤ 𝑇(𝑡) < 𝜃2

𝐸𝑝,  𝑖𝑓 𝑇(𝑡) ≥ 𝜃2

 

 
𝐸𝑝
∗ = 𝑚𝑖𝑛(1,𝑚𝑎𝑥 (0,

𝑇(𝑡) − 𝜃1
𝜃2 − 𝜃1

)) ∗ 𝐸𝑝 
35 

 Phenology-based 

maximum 

interception 

capacity (returns 

store size [mm]) 

phenology_2 
𝑆𝑚𝑎𝑥 = 𝜃1 (1 + 𝜃2𝑠𝑖𝑛 (2𝜋

𝑡 ∗ 𝛥𝑡 − 𝜃3
𝑡𝑚𝑎𝑥

)) 
Assumes  

0 ≤ 𝜃2 ≤ 1 to 

guarantee  
𝑆𝑚𝑎𝑥 ≥ 0 

𝑆𝑚𝑎𝑥 = 𝜃1 (1 + 𝜃2𝑠𝑖𝑛 (2𝜋
𝑡 ∗ 𝛥𝑡 − 𝜃3
𝑡𝑚𝑎𝑥

)) 
22 

 

 Split flow (returns 

flux [mm/d]) 

split_1 𝑓𝑙𝑢𝑥𝑜𝑢𝑡 =  𝜃1 ∗ 𝑓𝑙𝑢𝑥𝑖𝑛  𝑓𝑙𝑢𝑥𝑜𝑢𝑡 =  𝜃1 ∗ 𝑓𝑙𝑢𝑥𝑖𝑛 5, 11, 

13, 17, 

21, 25, 

26, 28, 

29, 33, 

34, 40, 

41, 42, 

43, 45, 

46 

       

Percolation Percolation at a 

constant rate 

percolation_1 𝑓𝑙𝑢𝑥𝑜𝑢𝑡 = {
𝜃1,  𝑖𝑓 𝑆 ≥ 0
0,  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 𝑓𝑙𝑢𝑥𝑜𝑢𝑡 ≤
𝑆

𝛥𝑡
 𝑓𝑙𝑢𝑥𝑜𝑢𝑡 = 𝑚𝑖𝑛 (

𝑆

𝛥𝑡
, 𝜃1) 

37 

 Percolation scaled 

by current relative 

storage 

percolation_2 
𝑓𝑙𝑢𝑥𝑜𝑢𝑡 = 𝜃1

𝑆

𝑆𝑚𝑎𝑥
 𝑓𝑙𝑢𝑥𝑜𝑢𝑡 ≤

𝑆

𝛥𝑡
 𝑓𝑙𝑢𝑥𝑜𝑢𝑡 = 𝑚𝑖𝑛 (

𝑆

𝛥𝑡
, 𝜃1

𝑆

𝑆𝑚𝑎𝑥
) 

21, 26, 

34 

 Non-linear 

percolation 

(empirical) 

percolation_3 
𝑓𝑙𝑢𝑥𝑜𝑢𝑡 =

𝑆𝑚𝑎𝑥
−4

4
(
4

9
)
−4

𝑆5 
 

𝑓𝑙𝑢𝑥𝑜𝑢𝑡 =
𝑆𝑚𝑎𝑥
−4

4
(
4

9
)
−4

𝑆5 
7 

 Demand-based 

percolation scaled 

by available 

moisture 

percolation_4 
𝑓𝑙𝑢𝑥𝑜𝑢𝑡 =

𝑆

𝑆𝑚𝑎𝑥
[𝜃1 {1 + 𝜃2 (

∑𝑑𝑒𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑖𝑒𝑠

∑ 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑖𝑒𝑠
)

𝜃3

}] 𝑓𝑙𝑢𝑥𝑜𝑢𝑡 ≤
𝑆

𝛥𝑡
 

 

To avoid erratic 

numerical 

behaviour, 

𝑓𝑙𝑢𝑥𝑜𝑢𝑡 ≥ 0 

𝑓𝑙𝑢𝑥𝑜𝑢𝑡 = 𝑚𝑎𝑥

(

 
 
 
0,𝑚𝑖𝑛

(

 
 

𝑆

𝛥𝑡
,
𝑚𝑎𝑥(𝑆, 0)

𝑆𝑚𝑎𝑥
∗

[𝜃1 {1 + 𝜃2 (
∑𝑑𝑒𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑖𝑒𝑠

∑ 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑖𝑒𝑠
)

𝜃3

}]
)

 
 

)

 
 
 

 

33 

 Non-linear 

percolation 

percolation_5 
𝑓𝑙𝑢𝑥𝑜𝑢𝑡 =  𝜃1 (

𝑆

𝑆𝑚𝑎𝑥
)
𝜃2

 𝑓𝑙𝑢𝑥𝑜𝑢𝑡 ≤
𝑆

𝛥𝑡
 

To prevent 

complex 

numbers, S = 

[0,∞> 

𝑓𝑙𝑢𝑥𝑜𝑢𝑡 = 𝑚𝑖𝑛(
𝑆

𝛥𝑡
, 𝜃1 (

𝑚𝑎𝑥(0, 𝑆)

𝑆𝑚𝑎𝑥
)

𝜃2

) 
22 
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 Threshold-based 

percolation from a 

store that can 

reach negative 

values 

percolation_6 

𝑓𝑙𝑢𝑥𝑜𝑢𝑡 = {

𝜃1,   𝑖𝑓 𝑆 ≥ 𝜃2

𝜃1
𝑆

𝜃2
,   𝑖𝑓 0 < 𝑆 < 𝜃2

0,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 
𝑓𝑙𝑢𝑥𝑜𝑢𝑡 ≤

𝑆

𝛥𝑡
 𝑓𝑙𝑢𝑥𝑜𝑢𝑡 = 𝑚𝑖𝑛 (

𝑆

𝛥𝑡
, 𝜃1𝑚𝑖𝑛 [1,

𝑚𝑎𝑥(0, 𝑆)

𝜃2
]) 

39 

       

Recharge Recharge as scaled 

fraction of 

incoming flux 

recharge_1 
𝑓𝑙𝑢𝑥𝑜𝑢𝑡 =  𝜃1

𝑆

𝑆𝑚𝑎𝑥
∗ 𝑓𝑙𝑢𝑥𝑖𝑛 

 
𝑓𝑙𝑢𝑥𝑜𝑢𝑡 =  𝜃1

𝑆

𝑆𝑚𝑎𝑥
∗ 𝑓𝑙𝑢𝑥𝑖𝑛 

18, 36 

 Recharge as non-

linear scaling of 

incoming flux 

recharge_2 
𝑓𝑙𝑢𝑥𝑜𝑢𝑡 =  (

𝑆

𝑆𝑚𝑎𝑥
)
𝜃1

∗ 𝑓𝑙𝑢𝑥𝑖𝑛 
To prevent 

complex 

numbers, S = 

[0,∞> 

𝑓𝑙𝑢𝑥𝑜𝑢𝑡 =  (
𝑚𝑎𝑥(0, 𝑆)

𝑆𝑚𝑎𝑥
)

𝜃1

∗ 𝑓𝑙𝑢𝑥𝑖𝑛 
7, 37, 

45 

 Linear recharge recharge_3 𝑓𝑙𝑢𝑥𝑜𝑢𝑡 =  𝜃1 ∗ 𝑆  𝑓𝑙𝑢𝑥𝑜𝑢𝑡 =  𝜃1 ∗ 𝑆 19, 23, 

24, 27, 

30, 31, 

32, 35, 

38, 42 

 Constant recharge 

from a store 

recharge_4 𝑓𝑙𝑢𝑥𝑜𝑢𝑡 = {
𝜃1,  𝑖𝑓 𝑆 ≥ 0
0,  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 𝑓𝑙𝑢𝑥𝑜𝑢𝑡 ≤
𝑆

𝛥𝑡
 𝑓𝑙𝑢𝑥𝑜𝑢𝑡 = 𝑚𝑖𝑛 (

𝑆

𝛥𝑡
, 𝜃1) 

23, 44 

 Recharge to fulfil 

evaporation 

demand if the 

receiving store is 

below a threshold 

recharge_5 

𝑓𝑙𝑢𝑥𝑜𝑢𝑡 =  {
𝜃1𝑆1 (1 −

𝑆2
𝜃2
) ,   𝑖𝑓 𝑆2 < 𝜃2

0,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 
𝑓𝑙𝑢𝑥𝑜𝑢𝑡 = 𝜃1𝑆1 [1 −𝑚𝑖𝑛 (1,

𝑆2
𝜃2
)] 

20 

 Non-linear 

recharge 

recharge_6 𝑓𝑙𝑢𝑥𝑜𝑢𝑡 =  𝜃1𝑆
𝜃2 

𝑓𝑙𝑢𝑥𝑜𝑢𝑡 ≤
𝑆

𝛥𝑡
 

To prevent 

complex 

numbers, S = 

[0,∞> 

𝑓𝑙𝑢𝑥𝑜𝑢𝑡 =  𝑚𝑖𝑛 (𝜃1𝑚𝑎𝑥(𝑆, 0)
𝜃2 , 𝑚𝑎𝑥 (

𝑆

𝛥𝑡
, 0)) 

44 

 Constant recharge 

from a flux 

recharge_7 𝑓𝑙𝑢𝑥𝑜𝑢𝑡 =  𝜃1 𝑓𝑙𝑢𝑥𝑜𝑢𝑡 ≤ 𝑓𝑙𝑢𝑥𝑖𝑛 𝑓𝑙𝑢𝑥𝑜𝑢𝑡 = 𝑚𝑖𝑛(𝑓𝑙𝑢𝑥𝑖𝑛, 𝜃1) 45 

       

Routing Threshold-based 

non-linear routing 

routing_1 
𝑓𝑙𝑢𝑥𝑜𝑢𝑡 = {

𝜃1𝑆
𝜃2 ,   𝑖𝑓 𝑓𝑙𝑢𝑥𝑜𝑢𝑡 < 𝜃3𝑆
𝜃3𝑆,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 𝑓𝑙𝑢𝑥𝑜𝑢𝑡 ≤
𝑆

𝛥𝑡
 𝑓𝑙𝑢𝑥𝑜𝑢𝑡 = 𝑚𝑖𝑛 (

𝑆

𝛥𝑡
, 𝜃1𝑚𝑎𝑥(𝑆, 0)

𝜃2 , 𝜃3
𝑆

𝛥𝑡
) 

39 

 

       

Saturation 

excess 

Saturation excess 

from a store that 

has reached 

maximum capacity 

saturation_1 𝑓𝑙𝑢𝑥𝑜𝑢𝑡 = {
𝑓𝑙𝑢𝑥𝑖𝑛,  𝑖𝑓 𝑆 ≥ 𝑆𝑚𝑎𝑥
0,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 
 𝑓𝑙𝑢𝑥𝑜𝑢𝑡 = 𝑓𝑙𝑢𝑥𝑖𝑛[1 − 𝑙𝑜𝑔𝑖𝑠𝑡𝑖𝑐𝑆𝑚𝑜𝑜𝑡ℎ𝑒𝑟_𝑆(𝑆, 𝑆max)] 

 
  

1, 3, 4, 

6, 8, 9, 

10, 11, 

12, 14, 

15, 16, 

17, 18, 

19, 20, 

22, 24, 

25, 30, 

31, 32, 

33, 35, 

36, 39, 

40, 41, 

44, 45, 

46 
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Process Details Function name Constitutive function Constraints MARRMoT Code Model 

 Saturation excess 

from a store with 

different degrees of 

saturation 

saturation_2 
𝑓𝑙𝑢𝑥𝑜𝑢𝑡 =  (1 − (1 −

𝑆

𝑆𝑚𝑎𝑥
)
𝜃1

) ∗ 𝑓𝑙𝑢𝑥𝑖𝑛 

 
  

To prevent 

complex 

numbers, 

S/Smax = [0,∞> 

𝑓𝑙𝑢𝑥𝑜𝑢𝑡 =  

(

 1− (𝑚𝑖𝑛(1,𝑚𝑎𝑥 (0, (1 −
𝑆

𝑆𝑚𝑎𝑥
))))

𝜃1

)

 ∗ 𝑓𝑙𝑢𝑥𝑖𝑛 

2, 13, 

22, 28, 

29 

 Saturation excess 

from a store with 

different degrees of 

saturation 

(exponential 

variant) 

saturation_3 

𝑓𝑙𝑢𝑥𝑜𝑢𝑡 =

(

 
 
 
 

1 −
1

1 + 𝑒𝑥𝑝(

𝑆
𝑆𝑚𝑎𝑥
⁄ + 0.5

𝜃1
)

)

 
 
 
 

∗ 𝑓𝑙𝑢𝑥𝑖𝑛 

 
 
  

 

𝑓𝑙𝑢𝑥𝑜𝑢𝑡 =

(

 
 
 
 

1 −
1

1 + 𝑒𝑥𝑝(

𝑆
𝑆𝑚𝑎𝑥
⁄ + 0.5

𝜃1
)

)

 
 
 
 

∗ 𝑓𝑙𝑢𝑥𝑖𝑛 

21, 26, 

34 

 Saturation excess 

from a store with 

different degrees of 

saturation 

(quadratic variant) 

saturation_4 
𝑓𝑙𝑢𝑥𝑜𝑢𝑡 = (1 − (

𝑆

𝑆𝑚𝑎𝑥
)
2

) ∗ 𝑓𝑙𝑢𝑥𝑖𝑛 

 
 

0 ≤ 𝑓𝑙𝑢𝑥𝑜𝑢𝑡  
𝑓𝑙𝑢𝑥𝑜𝑢𝑡 = 𝑚𝑎𝑥 (0, (1 − (

𝑆

𝑆𝑚𝑎𝑥
)
2

) ∗ 𝑓𝑙𝑢𝑥𝑖𝑛) 
7 

 Deficit store: 

exponential 

saturation excess 

based on current 

storage and a 

threshold 

parameter 

saturation_5 

𝑓𝑙𝑢𝑥𝑜𝑢𝑡 = (1−𝑚𝑖𝑛 (1, (
𝑆

𝜃1
)
𝜃2

)) ∗ 𝑓𝑙𝑢𝑥𝑖𝑛 

To prevent 

complex 

numbers, S = 

[0,∞> 

𝑓𝑙𝑢𝑥𝑜𝑢𝑡 = (1 −𝑚𝑖𝑛 (1, (
𝑚𝑎𝑥(𝑆, 0)

𝜃1
)

𝜃2

)) ∗ 𝑓𝑙𝑢𝑥𝑖𝑛 

  

5 

 Saturation excess 

from a store with 

different degrees of 

saturation (linear 

variant) 

saturation_6 
𝑓𝑙𝑢𝑥𝑜𝑢𝑡 = 𝜃1

𝑆

𝑆𝑚𝑎𝑥
∗ 𝑓𝑙𝑢𝑥𝑖𝑛 

 
𝑓𝑙𝑢𝑥𝑜𝑢𝑡 = 𝜃1

𝑆

𝑆𝑚𝑎𝑥
∗ 𝑓𝑙𝑢𝑥𝑖𝑛 

 
  

40 

 Saturation excess 

from a store with 

different degrees of 

saturation (gamma 

function variant) 

saturation_7 𝑓𝑙𝑢𝑥𝑜𝑢𝑡

= 𝑓𝑙𝑢𝑥𝑖𝑛 {
∫

1

𝜃1𝛤(𝜃2)
(
𝑥 − 𝜃3
𝜃1

)
𝜃2−1

𝑒
(−
𝑥−𝜃3
𝜃1

)

𝑥=∞

𝑥=𝜃5∗𝑆+𝜃4

,  𝑥 > 𝜃3

0

 

To prevent 

numerical 

problems, S = 

[0,∞> 
𝑓𝑙𝑢𝑥𝑜𝑢𝑡 = 𝑓𝑙𝑢𝑥𝑖𝑛 ∗ 𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑙

(

  
 

1

𝜃1𝛤(𝜃2)
(
𝑚𝑎𝑥(𝑥 − 𝜃3, 0)

𝜃1
)

𝜃2−1

∗

𝑒
(−1∗

𝑚𝑎𝑥(𝑥−𝜃3,0)
𝜃1

)
,

𝜃5 ∗ 𝑚𝑎𝑥(𝑆, 0) + 𝜃4,  ∞ )

  
 

 

14 

 Saturation excess 

flow from a store 

with different 

degrees of 

saturation (min-

max linear variant) 

saturation_8 
𝑓𝑙𝑢𝑥𝑜𝑢𝑡 = [𝜃1 + (𝜃2 − 𝜃1)

𝑆

𝑆𝑚𝑎𝑥
] ∗ 𝑓𝑙𝑢𝑥𝑖𝑛 

 
 
  

𝑓𝑙𝑢𝑥𝑜𝑢𝑡 ≤ 𝑓𝑙𝑢𝑥𝑖𝑛 
𝑓𝑙𝑢𝑥𝑜𝑢𝑡 = [𝜃1 + (𝜃2 − 𝜃1)

𝑆

𝑆𝑚𝑎𝑥
] ∗ 𝑓𝑙𝑢𝑥𝑖𝑛 

45 

 Deficit store: 

saturation excess 

from a store that 

has reached 

maximum capacity 

saturation_9 𝑓𝑙𝑢𝑥𝑜𝑢𝑡 = {
𝑓𝑙𝑢𝑥𝑖𝑛,  𝑖𝑓 𝑆 = 0
0,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 
 𝑓𝑙𝑢𝑥𝑜𝑢𝑡 = 𝑓𝑙𝑢𝑥𝑖𝑛 ∗ 𝑙𝑜𝑔𝑖𝑠𝑡𝑖𝑐𝑆𝑚𝑜𝑜𝑡ℎ𝑒𝑟_𝑆(𝑆, 0) 17, 25, 

43, 46 

 Saturation excess 

flow from a store 

with different 

degrees of 

saturation (min-

max exponential 

variant) 

saturation_10 𝑓𝑙𝑢𝑥𝑜𝑢𝑡 = 𝑚𝑖𝑛(𝜃1,  𝜃2 + 𝜃2𝑒
𝜃3𝑆) ∗ 𝑓𝑙𝑢𝑥𝑖𝑛  𝑓𝑙𝑢𝑥𝑜𝑢𝑡 = 𝑚𝑖𝑛(𝜃1,  𝜃2 + 𝜃2𝑒

𝜃3𝑆) ∗ 𝑓𝑙𝑢𝑥𝑖𝑛 

 
  

39 
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 Saturation excess 

flow from a store 

with different 

degrees of 

saturation (min 

exponential 

variant) 

saturation_11 

𝑓𝑙𝑢𝑥𝑜𝑢𝑡 = {
(𝜃1 [

𝑆 − 𝑆𝑚𝑖𝑛
𝑆𝑚𝑎𝑥 − 𝑆𝑚𝑖𝑛

]
𝜃2

)𝑓𝑙𝑢𝑥𝑖𝑛,   𝑖𝑓 𝑆 > 𝑆𝑚𝑖𝑛

0,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

𝑓𝑙𝑢𝑥𝑜𝑢𝑡 ≤ 𝑓𝑙𝑢𝑥𝑖𝑛 
 𝑓𝑙𝑢𝑥𝑜𝑢𝑡 = 𝑚𝑖𝑛 (1, 𝜃1 [

𝑆 − 𝑆𝑚𝑖𝑛
𝑆𝑚𝑎𝑥 − 𝑆𝑚𝑖𝑛

]
𝜃2

)𝑓𝑙𝑢𝑥𝑖𝑛 ∗ [1 − 𝑙𝑜𝑔𝑖𝑠𝑡𝑖𝑐𝑆𝑚𝑜𝑜𝑡ℎ𝑒𝑟_𝑆(𝑆, 𝑆𝑚𝑖𝑛)] 
23 

 Saturation excess 

flow from a store 

with different 

degrees of 

saturation (min-

max linear variant) 

saturation_12 
𝑓𝑙𝑢𝑥𝑜𝑢𝑡 =

𝜃1 − 𝜃2
1 − 𝜃2

𝑓𝑙𝑢𝑥𝑖𝑛 
𝑓𝑙𝑢𝑥𝑜𝑢𝑡 ≥ 0 

𝑓𝑙𝑢𝑥𝑜𝑢𝑡 = 𝑚𝑎𝑥 (0,
𝜃1 − 𝜃2
1 − 𝜃2

) 𝑓𝑙𝑢𝑥𝑖𝑛 

  

23 

 Saturation excess 

flow from a store 

with different 

degrees of 

saturation (normal 

distribution 

variant) 

saturation_13 

𝑓𝑙𝑢𝑥𝑜𝑢𝑡 = 𝑓𝑙𝑢𝑥𝑖𝑛 ∗ ∫
1

√2𝜋
𝑒𝑥𝑝 [−

𝜉2

2
]

𝜉

−∞

𝑑𝜉,   𝑤𝑖𝑡ℎ 𝜉

=
𝑙𝑜𝑔(𝑆 𝜃1⁄ )

𝑙𝑜𝑔(𝜃1 𝜃2⁄ )
 

 
𝑓𝑙𝑢𝑥𝑜𝑢𝑡 = 𝑓𝑙𝑢𝑥𝑖𝑛 ∗ 𝑛𝑜𝑟𝑚𝑐𝑑𝑓 (

𝑙𝑜𝑔(max(0, 𝑆) 𝜃1⁄ )

𝑙𝑜𝑔(𝜃1 𝜃2⁄ )
) 

42 

 Saturation excess 

flow from a store 

with different 

degrees of 

saturation (two-

part exponential 

variant) 

saturation_14 𝑓𝑙𝑢𝑥𝑜𝑢𝑡

= 𝑓𝑙𝑢𝑥𝑖𝑛

{
 
 

 
 (0.5 − 𝜃1)

1−𝜃2 (
𝑆

𝑆𝑚𝑎𝑥
)
𝜃3

, 𝑖𝑓
𝑆

𝑆𝑚𝑎𝑥
≤ 0.5 − 𝜃1

1 − (0.5 − 𝜃1)
1−𝜃2 (1 −

𝑆

𝑆𝑚𝑎𝑥
)
𝜃3

, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

𝑓𝑙𝑢𝑥𝑜𝑢𝑡 =

(

 
 
 
 
 
 
 

((0.5 − 𝜃1)
1−𝜃2𝑚𝑎𝑥 (0,

𝑆

𝑆𝑚𝑎𝑥
)
𝜃3

) ∗

(
𝑆

𝑆𝑚𝑎𝑥
≤ 0.5 − 𝜃1) +

(1 − (0.5 + 𝜃1)
1−𝜃2𝑚𝑎𝑥 (0,1 −

𝑆

𝑆𝑚𝑎𝑥
)
𝜃3

) ∗

𝑆

𝑆𝑚𝑎𝑥
> 0.5 − 𝜃1 )

 
 
 
 
 
 
 

∗ 𝑓𝑙𝑢𝑥𝑖𝑛 

  

28 

       

Snow Snowfall based on 

temperature 

threshold 

snowfall_1 𝑓𝑙𝑢𝑥𝑜𝑢𝑡 = {
𝑓𝑙𝑢𝑥𝑖𝑛,  𝑖𝑓 𝑇 ≤ 𝑇𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

0,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

 
 

 𝑓𝑙𝑢𝑥𝑜𝑢𝑡 = 𝑓𝑙𝑢𝑥𝑖𝑛 ∗ [𝑙𝑜𝑔𝑖𝑠𝑡𝑖𝑐𝑆𝑚𝑜𝑜𝑡ℎ𝑒𝑟_𝑇(𝑇, 𝑇𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑] 
  

6, 12, 

30, 31, 

32, 34, 

35, 41, 

43, 44, 

45 

 Snowfall based on 

a temperature 

threshold interval 

snowfall_2 𝑓𝑙𝑢𝑥𝑜𝑢𝑡

=

{
  
 

  
 𝑓𝑙𝑢𝑥𝑖𝑛,   𝑖𝑓 𝑇 ≤ 𝜃1 −

1

2
𝜃2

𝑓𝑙𝑢𝑥𝑖𝑛 ∗
𝜃1 +

1
2𝜃2 − 𝑇

𝜃2
,  𝑖𝑓 𝜃1 −

1

2
𝜃2 < 𝑇 < 𝜃1 +

1

2
𝜃2

0,   𝑖𝑓 𝑇 ≥ 𝜃1 +
1

2
𝜃2

 

 

𝑓𝑙𝑢𝑥𝑜𝑢𝑡 = 𝑚𝑖𝑛(𝑓𝑙𝑢𝑥𝑖𝑛, 𝑚𝑎𝑥 (0, 𝑓𝑙𝑢𝑥𝑖𝑛 ∗
𝜃1 +

1
2𝜃2 − 𝑇

𝜃2
)) 

37 

 Rainfall based on 

temperature 

threshold 

rainfall_1 𝑓𝑙𝑢𝑥𝑜𝑢𝑡 = {
𝑓𝑙𝑢𝑥𝑖𝑛,  𝑖𝑓 𝑇 > 𝑇𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

0,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

 
 
  

 𝑓𝑙𝑢𝑥𝑜𝑢𝑡 = 𝑓𝑙𝑢𝑥𝑖𝑛 ∗ [1 − 𝑙𝑜𝑔𝑖𝑠𝑡𝑖𝑐𝑆𝑚𝑜𝑜𝑡ℎ𝑒𝑟_𝑇(𝑇, 𝑇𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑] 6, 12, 

30, 31, 

32, 34, 

35, 41, 

43, 44, 

45 

continued … 
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 Snowfall based on 

a temperature 

threshold interval 

rainfall_2 𝑓𝑙𝑢𝑥𝑜𝑢𝑡

=

{
  
 

  
 0,   𝑖𝑓 𝑇 ≤ 𝜃1 −

1

2
𝜃2

𝑓𝑙𝑢𝑥𝑖𝑛 ∗
𝜃1 +

1
2
𝜃2 − 𝑇

𝜃2
,  𝑖𝑓 𝜃1 −

1

2
𝜃2 < 𝑇 < 𝜃1 +

1

2
𝜃2

𝑓𝑙𝑢𝑥𝑖𝑛,   𝑖𝑓 𝑇 ≥ 𝜃1 +
1

2
𝜃2

 

 

𝑓𝑙𝑢𝑥𝑜𝑢𝑡 = 𝑚𝑖𝑛(𝑓𝑙𝑢𝑥𝑖𝑛,𝑚𝑎𝑥 (0, 𝑓𝑙𝑢𝑥𝑖𝑛 ∗
𝑇 − (𝜃1 −

1
2
𝜃2)

𝜃2
)) 

 
  

37 

 Refreezing of 

stored melted snow 

refreeze_1 𝑓𝑙𝑢𝑥𝑜𝑢𝑡 = {
𝜃1 ∗ 𝜃2 ∗ (𝑇𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 − 𝑇),  𝑖𝑓 𝑇 ≤ 𝑇𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

0,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 𝑓𝑙𝑢𝑥𝑜𝑢𝑡 ≤

𝑆

𝛥𝑡
 𝑓𝑙𝑢𝑥𝑜𝑢𝑡 = 𝑚𝑖𝑛 (

𝑆

𝛥𝑡
,𝑚𝑎𝑥(0, 𝜃1 ∗ 𝜃2 ∗ (𝑇𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 − 𝑇))) 

37, 44 

 Snowmelt from 

degree-day-factor  

melt_1 
𝑓𝑙𝑢𝑥𝑜𝑢𝑡 = {

𝜃1 ∗ (𝑇 − 𝑇𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑),  𝑖𝑓 𝑇 ≥ 𝑇𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑
0,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 𝑓𝑙𝑢𝑥𝑜𝑢𝑡 ≤
𝑆

𝛥𝑡
 𝑓𝑙𝑢𝑥𝑜𝑢𝑡 = 𝑚𝑖𝑛 (

𝑆

𝛥𝑡
,𝑚𝑎𝑥(0, 𝜃1 ∗ (𝑇 − 𝑇𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑))) 

6, 12, 

30, 31, 

32, 34, 

35, 37, 

43, 44, 

45 

 Snowmelt at a 

constant rate 

melt_2 𝑓𝑙𝑢𝑥𝑜𝑢𝑡 = {
𝜃1,  𝑖𝑓 𝑆 ≥ 0
0,  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 𝑓𝑙𝑢𝑥𝑜𝑢𝑡 ≤
𝑆

𝛥𝑡
 𝑓𝑙𝑢𝑥𝑜𝑢𝑡 = 𝑚𝑖𝑛 (

𝑆

𝛥𝑡
, 𝜃1) 

44 

 Glacier melt 

provided no snow 

is stored on the ice 

layer 

melt_3 
𝑓𝑙𝑢𝑥𝑜𝑢𝑡 = {

𝜃1 ∗ (𝑇 − 𝑇𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑),  𝑖𝑓 𝑇 ≥ 𝑇𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ,  𝑆2 = 0
0,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 𝑓𝑙𝑢𝑥𝑜𝑢𝑡 ≤
𝑆1
𝛥𝑡

 𝑓𝑙𝑢𝑥𝑜𝑢𝑡 = 𝑚𝑖𝑛 (
𝑆1
𝛥𝑡
,𝑚𝑎𝑥(0, 𝜃1 ∗ 𝜃2 ∗ (𝑇𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 − 𝑇)))

∗ 𝑙𝑜𝑔𝑖𝑠𝑡𝑖𝑐𝑆𝑚𝑜𝑜𝑡ℎ𝑒𝑟_𝑆(𝑆2, 0) 

43 

       

Soil 

moisture 

Water rebalance to 

equal relative 

storage (2 stores) 

soilmoisture_1 

𝑓𝑙𝑢𝑥𝑜𝑢𝑡 = {

𝑆2𝑆1,𝑚𝑎𝑥 − 𝑆1𝑆2,𝑚𝑎𝑥
𝑆1,𝑚𝑎𝑥 + 𝑆2,𝑚𝑎𝑥

 ,  𝑖𝑓 
𝑆1

𝑆1,𝑚𝑎𝑥
<

𝑆2
𝑆2,𝑚𝑎𝑥

0,              𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

   

 
𝑓𝑙𝑢𝑥𝑜𝑢𝑡 = (

𝑆2𝑆1,𝑚𝑎𝑥 − 𝑆1𝑆2,𝑚𝑎𝑥
𝑆1,𝑚𝑎𝑥 + 𝑆2,𝑚𝑎𝑥

) ∗ 𝑙𝑜𝑔𝑖𝑠𝑡𝑖𝑐𝑆𝑚𝑜𝑜𝑡ℎ𝑒𝑟_𝑆 (
𝑆1

𝑆1,𝑚𝑎𝑥
,
𝑆2

𝑆2,𝑚𝑎𝑥
) 

33 

 Water rebalance to 

equal relative 

storage (3 stores) 

soilmoisture_2 

𝑓𝑙𝑢𝑥𝑜𝑢𝑡 =

{
 
 

 
 𝑆2

𝑆1(𝑆2,𝑚𝑎𝑥 + 𝑆3,𝑚𝑎𝑥) + 𝑆1,𝑚𝑎𝑥(𝑆2 + 𝑆3)

(𝑆2,𝑚𝑎𝑥 + 𝑆3,𝑚𝑎𝑥)(𝑆1,𝑚𝑎𝑥 + 𝑆2,𝑚𝑎𝑥 + 𝑆3,𝑚𝑎𝑥)
 ,  

𝑖𝑓 
𝑆1

𝑆1,𝑚𝑎𝑥
<

𝑆2 + 𝑆3
𝑆2,𝑚𝑎𝑥 + 𝑆3,𝑚𝑎𝑥

0,              𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

   

 
𝑓𝑙𝑢𝑥𝑜𝑢𝑡 = (𝑆2

𝑆1(𝑆2,𝑚𝑎𝑥 + 𝑆3,𝑚𝑎𝑥) + 𝑆1,𝑚𝑎𝑥(𝑆2 + 𝑆3)

(𝑆2,𝑚𝑎𝑥 + 𝑆3,𝑚𝑎𝑥)(𝑆1,𝑚𝑎𝑥 + 𝑆2,𝑚𝑎𝑥 + 𝑆3,𝑚𝑎𝑥)
)

∗ 𝑙𝑜𝑔𝑖𝑠𝑡𝑖𝑐𝑆𝑚𝑜𝑜𝑡ℎ𝑒𝑟_𝑆 (
𝑆1

𝑆1,𝑚𝑎𝑥
,

𝑆2 + 𝑆3
𝑆2,𝑚𝑎𝑥 + 𝑆3,𝑚𝑎𝑥

) 

33 
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B.4 Unit Hydrographs

This section provides details on the implementation of various Unit Hydrographs. An

overview of the 7 UHs is given in Table B.2. Computational implementation of each UH is

given in sections B.4.1 to B.4.7. Unit Hydrograph files can be found in ”./MARRMoT/Model-

s/Unit Hydrograph files/”.
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Table B.2: Overview of Unit Hydrograph schemes implemented in MARRMoT

File name Inputs Diagram Description In model ...

uh_1_half 1: amount to be routed Exponentially 7
2: time base increasing
3: ∆t scheme

uh_2_full 1: amount to be routed Exponential 7
2: time base (time is
doubled inside the func-
tion)

triangular scheme

3: ∆t

uh_3_half 1: amount to be routed Triangular
scheme:

13, 15, 21, 26

2: time base linearly increas-
ing

34

3: ∆t

uh_4_full 1: amount to be routed Triangular
scheme:

0 (template),

2: time base linearly increas-
ing

16, 37,

3: ∆t and decreasing nn (example)

uh_5_half 1: amount to be routed Exponentially 5
2: time base decreasing
3: ∆t scheme

uh_6_gamma 1: amount to be routed Gamma function- 40
2: gamma parameter [-] based
3: time for flow to re-
duce by factor e [d]
4: length of time series

uh_7_uniform 1: amount to be routed Uniform 39
2: time base distribution
3: ∆t

B.4.1 Code: uh_1_half

This section provides the computational implementation of a unit hydrograph with an

increasing exponential distribution of flows.
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File location ./MARRMoT/Models/Unit Hydrograph files/uh_1_half

References E.g. GR4J [255]

1 function [ out ,UH ] = uh_1_half( in, d_base , delta_t )

2 %uh_1_half Unit Hydrograph [days] with half a bell curve.

GR4J -based

3 %

4 % Copyright (C) 2018 W. Knoben

5 % This program is free software (GNU GPL v3) and distributed

WITHOUT ANY

6 % WARRANTY. See <https ://www.gnu.org/licenses/> for details.

7 %

8 % Inputs

9 % in - volume to be routed

10 % d_base - time base of routing delay [d]

11 % delta_t - time step size [d]

12 %

13 % Unit hydrograph spreads the input volume over a time

period x4.

14 % Percentage of input returned only increases.

15 % I.e. d_base = 3.8 [days], delta_t = 1:

16 % UH(1) = 0.04 [% of inflow]

17 % UH(2) = 0.17

18 % UH(3) = 0.35

19 % UH(4) = 0.45

20

21 %%INPUTS

22 if any(size(in)) > 1; error('UH input should be a single

value.'); end

23

24 %%TIME STEP SIZE

25 delay = d_base/delta_t;

26 if delay == 0; delay = 1; end % any value below t = 1

means no delay ,

27 % but zero leads to

problems
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28 tt = 1:ceil(delay); % Time series for which

we need UH

29 % ordinates [days]

30

31 %%EMPTIES

32 SH = zeros(1,length(tt)+1); SH(1) = 0;

33 UH = zeros(1,length(tt));

34

35 %%UNIT HYDROGRAPH

36 for t = tt

37 if t < delay; SH(t+1) = (t./delay).^(5./2);

38 elseif t >= delay; SH(t+1) = 1;

39 end

40

41 UH(t) = SH(t+1)-SH(t);

42 end

43

44 %%DISPERSE VOLUME

45 out = in.*UH;

46

47 end

B.4.2 Code: uh_2_full

This section provides the computational implementation of a unit hydrograph with an

exponential triangular distribution of flows.

File location ./MARRMoT/Models/Unit Hydrograph files/uh_2_full

References E.g. GR4J [255]

1 function [ out , UH ] = uh_2_full( in,d_base ,delta_t )

2 %uh_2_full Unit Hydrograph [days] with a full bell curve.

GR4J -based

3 %

4 % Copyright (C) 2018 W. Knoben

5 % This program is free software (GNU GPL v3) and distributed

WITHOUT ANY
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6 % WARRANTY. See <https ://www.gnu.org/licenses/> for details.

7 %

8 % Inputs

9 % in - volume to be routed

10 % d_base - time base of routing delay [d]

11 % delta_t - time step size [d]

12 %

13 % Unit hydrograph spreads the input volume over a time

period 2*x4.

14 % Percentage of input returned goes up (till x4), then down

again.

15 % I.e. d_base = 3.8 [days], delta_t = 1:

16 % UH(1) = 0.02 [% of inflow]

17 % UH(2) = 0.08

18 % UH(3) = 0.18

19 % UH(4) = 0.29

20 % UH(5) = 0.24

21 % UH(6) = 0.14

22 % UH(7) = 0.05

23 % UH(8) = 0.00

24

25 %%INPUTS

26 if any(size(in)) > 1; error('UH input should be a single

value.'); end

27

28 %%TIME STEP SIZE

29 delay = d_base/delta_t;

30 tt = 1:2* ceil(delay); % time series for which we need UH

ordinates [days]

31

32 %%EMPTIES

33 SH = zeros(1,length(tt)+1); SH(1) = 0;

34 UH = zeros(1,length(tt));

35

36 %%UNIT HYDROGRAPH

37 for t = tt
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38 if (t <= delay)

39 SH(t+1) = 0.5*(t./delay).^(5./2);

40 elseif (t > delay) && (t < 2*delay);

41 SH(t+1) = 1-0.5*(2 -t./delay).^(5./2);

42 elseif (t >= 2*delay);

43 SH(t+1) = 1;

44 end

45

46 UH(t) = SH(t+1)-SH(t);

47 end

48

49 %%DISPERSE VOLUME

50 out = in.*UH;

51

52 end

B.4.3 Code: uh_3_half

This section provides the computational implementation of a unit hydrograph with an

linearly increasing distribution of flows.

File location ./MARRMoT/Models/Unit Hydrograph files/uh_3_half

References E.g. FLEX-Topo [274]

1 function [ out ,UH ] = uh_3_half( in, d_base , delta_t )

2 %uh_3_half Unit Hydrograph [days] with half a triangle (

linear)

3 %

4 % Copyright (C) 2018 W. Knoben

5 % This program is free software (GNU GPL v3) and distributed

WITHOUT ANY

6 % WARRANTY. See <https ://www.gnu.org/licenses/> for details.

7 %

8 % Inputs

9 % in - volume to be routed

10 % d_base - time base of routing delay [d]

11 % delta_t - time step size [d]
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12 %

13 % Unit hydrograph spreads the input volume over a time

period delay.

14 % Percentage of input returned only increases.

15 % I.e. d_base = 3.8 [days], delta_t = 1:

16 % UH(1) = 0.04 [% of inflow]

17 % UH(2) = 0.17

18 % UH(3) = 0.35

19 % UH(4) = 0.45

20

21 %%INPUTS

22 if any(size(in)) > 1; error('UH input should be a single

value.'); end

23

24 %%TIME STEP SIZE

25 delay = d_base/delta_t;

26 if delay == 0; delay = 1; end % any value below t = 1 means

no delay ,

27 % but zero leads to problems

28 tt = 1:ceil(delay); % time series for which we

need UH

29 % ordinates [days]

30

31 %%UNIT HYDROGRAPH

32 % The area under the unit hydrograph by definition sums to 1.

Thus the area

33 % is S(t=0 to t = delay) t*[ff: fraction of flow to move per

time step] dt

34 % Analytical solution is [1/2 * t^2 + c]*ff, with c = 0. Thus

the fraction

35 % of flow step size is:

36 ff = 1/(0.5* delay ^2);

37

38 %%EMPTIES

39 UH = zeros(1,length(tt));

40
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41 %%UNIT HYDROGRAPH

42 for t = 1: length(tt)

43 if t <= delay

44 UH(t) = ff .*(0.5*t^2 - 0.5*(t-1)^2);

45 else

46 UH(t) = ff .*(0.5* delay^2 - 0.5*(t-1)^2);

47 end

48 end

49

50 %%DISPERSE VOLUME

51 out = in.*UH;

52

53 end

B.4.4 Code: uh_4_full

This section provides the computational implementation of a unit hydrograph with an

linear triangular distribution of flows.

File location ./MARRMoT/Models/Unit Hydrograph files/uh_4_full

References E.g. HBV-96

citeLindstrom1997

1 function [ out ,UH ] = uh_4_full( in, d_base , delta_t )

2 %uh_4_half Unit Hydrograph [days] with a triangle (linear)

3 %

4 % Copyright (C) 2018 W. Knoben

5 % This program is free software (GNU GPL v3) and distributed

WITHOUT ANY

6 % WARRANTY. See <https ://www.gnu.org/licenses/> for details.

7 %

8 % Inputs

9 % in - volume to be routed

10 % d_base - time base of routing delay [d]

11 % delta_t - time step size [d]

12 %

13 % Unit hydrograph spreads the input volume over a time

period delay.
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14 % Percentage runoff goes up, peaks , and goes down again.

15 % I.e. d_base = 3.8 [days], delta_t = 1:

16 % UH(1) = 0.14 [% of inflow]

17 % UH(2) = 0.41

18 % UH(3) = 0.36

19 % UH(4) = 0.09

20

21 %%INPUTS

22 if any(size(in)) > 1; error('UH input should be a single

value.'); end

23

24 %%TIME STEP SIZE

25 delay = d_base/delta_t;

26 if delay == 0; delay = 1; end % any value below t = 1

means no delay ,

27 % but zero leads to

problems

28 tt = 1:ceil(delay); % time series for which

we need UH

29 % ordinates [days]

30

31 %%UNIT HYDROGRAPH

32 % The area under the unit hydrograph by definition sums to 1.

Thus the area

33 % is S(t=0 to t = delay) t*[ff: fraction of flow to move per

time step] dt

34 % Analytical solution is [1/2 * t^2 + c]*ff, with c = 0.

35 % Here , we use two half triangles t make one big one , so the

area of half a

36 % triangle is 0.5. Thus the fraction of flow step size is:

37 ff = 0.5/(0.5*(0.5* delay)^2);

38 d50 = 0.5* delay;

39

40 %%TRIANGLE FUNCTION

41 tri = @(t) max(ff.*(t-d50).*sign(d50 -t)+ff.*d50 ,0);

42
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43 %%EMPTIES

44 UH = zeros(1,length(tt));

45

46 %%UNIT HYDROGRAPH

47 for t = 1: length(tt)

48 UH(t) = integral(tri ,t-1,t);

49 end

50

51 %%ENSURE UH SUMS TO 1

52 tmp_diff = 1-sum(UH);

53 tmp_weight = UH./sum(UH);

54 UH = UH + tmp_weight .* tmp_diff;

55

56 %%DISPERSE VOLUME

57 out = in.*UH;

58

59 end

B.4.5 Code: uh_5_half

This section provides the computational implementation of a unit hydrograph with an

decreasing exponential distribution of flows.

File location ./MARRMoT/Models/Unit Hydrograph files/uh_5_half

References E.g. IHACRES [84, 199]

1 function [ out ,UH ] = uh_1_half( in, d_base , delta_t )

2 %uh_1_half Unit Hydrograph [days] with half a bell curve.

GR4J -based

3 %

4 % Copyright (C) 2018 W. Knoben

5 % This program is free software (GNU GPL v3) and distributed

WITHOUT ANY

6 % WARRANTY. See <https ://www.gnu.org/licenses/> for details.

7 %

8 % Inputs

9 % in - volume to be routed
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10 % d_base - time base of routing delay [d]

11 % delta_t - time step size [d]

12 %

13 % Unit hydrograph spreads the input volume over a time

period x4.

14 % Percentage of input returned only increases.

15 % I.e. d_base = 3.8 [days], delta_t = 1:

16 % UH(1) = 0.04 [% of inflow]

17 % UH(2) = 0.17

18 % UH(3) = 0.35

19 % UH(4) = 0.45

20

21 %%INPUTS

22 if any(size(in)) > 1; error('UH input should be a single

value.'); end

23

24 %%TIME STEP SIZE

25 delay = d_base/delta_t;

26 if delay == 0; delay = 1; end % any value below t = 1

means no delay ,

27 % but zero leads to

problems

28 tt = 1:ceil(delay); % Time series for which

we need UH

29 % ordinates [days]

30

31 %%EMPTIES

32 SH = zeros(1,length(tt)+1); SH(1) = 0;

33 UH = zeros(1,length(tt));

34

35 %%UNIT HYDROGRAPH

36 for t = tt

37 if t < delay; SH(t+1) = (t./delay).^(5./2);

38 elseif t >= delay; SH(t+1) = 1;

39 end

40
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41 UH(t) = SH(t+1)-SH(t);

42 end

43

44 %%DISPERSE VOLUME

45 out = in.*UH;

46

47 end

B.4.6 Code: uh_6_gamma

This section provides the computational implementation of a unit hydrograph with a

gamma distribution of flows.

File location ./MARRMoT/Models/Unit Hydrograph files/uh_6_gamma

References E.g. SMAR [236, 312]

1 function [ out ,UH,frac_routing_beyond_time_series ] = ...

2 uh_6_gamma( in,n,k,

t_end ,delta_t )

3 %uh_6_gamma Unit Hydrograph [days] from gamma function.

4 %

5 % Copyright (C) 2018 W. Knoben

6 % This program is free software (GNU GPL v3) and distributed

WITHOUT ANY

7 % WARRANTY. See <https ://www.gnu.org/licenses/> for details.

8 %

9 % Inputs

10 % n = shape parameter [-]

11 % k = time delay for flow reduction by a factor e [d]

12 % t_end = length of time series [d]

13 % delta_t = time step size [d]

14 %

15 % Unit hydrograph spreads the input volume over a time

period delay.

16 % Percentage of input returned only decreases.

17 % I.e. n = 1, k = 3.8 [days], delta_t = 1:

18 % UH(1) = 0.928 [% of inflow]
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19 % UH(2) = 0.067

20 % UH(3) = 0.005

21 % UH(4) = 0.000

22

23 %%INPUTS

24 if any(size(in)) > 1; error('UH input should be a single

value.'); end

25

26 %%TIME STEP SIZE

27 tmax = t_end/delta_t;

28 tt = 1:tmax; % time series for which we need UH

ordinates [days]

29

30 %%EMPTIES

31 UH_full = zeros(1,length(tt));

32 frac_routing_beyond_time_series = 0;

33

34 %%UNIT HYDROGRAPH

35 % The Unit Hydrograph follows a gamma distribution. For a

given

36 % delay time , the fraction of flow per time step is thus the

integral of

37 % t-1 to t of the gamma distrubtion. The curve has range [0,

Inf >.

38 % We need to choose a point at which to cap the integration ,

but this

39 % depends on the parameters n & k, and the total time step.

We choose the

40 % cutoff point at the time step where less than 0.1% of the

peak flow

41 % is still on route.

42

43 %%Unit hydrograph

44 for t = 1: length(tt)

45 UH_full(t) = integral (@(x) 1./(k.*gamma(n)).*(x./k).^(n

-1).* ...
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46 exp(-1.*x./k),(t-1)*

delta_t ,t*delta_t);

47 end

48

49 %%Find cutoff point where less than 0.1% of the peak flow is

being routed

50 [max_val ,max_here] = max(UH_full);

51 end_here = find(UH_full(max_here:end)./max_val <0.001 ,1) +

max_here;

52

53 %%Take action depending on whether the distribution function

exceeds the

54 %%time limit or not

55 if ~isempty(end_here)

56 %%Construct the Unit Hydrograph

57 UH = UH_full (1: end_here);

58

59 %%Account for the truncated part of the full UH.

60 % find probability mass to the right of the cut -off point

61 tmp_excess = 1-sum(UH);

62

63 % find relative size of each time step

64 tmp_weight = UH_full (1: end_here)./sum(UH_full (1: end_here)

);

65

66 % distribute truncated probability mass proportionally to

all elements

67 % of the routing vector

68 UH = UH+tmp_weight .* tmp_excess;

69

70 else

71 %%Construct the Unit Hydrograph

72 UH = UH_full;

73

74 %%The UH is longer than the provided time series length.

Track the
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75 %%percentage of flow that is routed beyond the simulation

duration

76 frac_routing_beyond_time_series = 1-sum(UH);

77

78 end

79

80 %%DISPERSE VOLUME

81 out = in.*UH;

82

83 end

B.4.7 Code: uh_7_uniform

This section provides the computational implementation of a unit hydrograph with a

uniform distribution of flows.

File location ./MARRMoT/Models/Unit Hydrograph files/uh_7_uniform

References E.g. MCRM [28, 222]

1 function [ out ,UH ] = uh_7_uniform( in, d_base , delta_t )

2 %uh_7_uniform Unit Hydrograph [days] with uniform spread

3 %

4 % Copyright (C) 2018 W. Knoben

5 % This program is free software (GNU GPL v3) and distributed

WITHOUT ANY

6 % WARRANTY. See <https ://www.gnu.org/licenses/> for details.

7 %

8 % Inputs

9 % in - volume to be routed

10 % d_base - time base of routing delay [d]

11 % delta_t - time step size [d]

12 %

13 % Unit hydrograph spreads the input volume over a time

period delay.

14 % I.e. d_base = 3.8 [days], delta_t = 1:

15 % UH(1) = 0.26 [% of inflow]

16 % UH(2) = 0.26
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17 % UH(3) = 0.26

18 % UH(4) = 0.22

19

20 %%INPUTS

21 if any(size(in)) > 1; error('UH input should be a single

value.'); end

22

23 %%TIME STEP SIZE

24 delay = d_base/delta_t;

25 tt = 1:ceil(delay); % time series for which we need UH

ordinates [days]

26

27 %%EMPTIES

28 UH = NaN.*zeros(1,length(tt));

29

30 %%FRACTION FLOW

31 ff = 1/delay; % fraction of flow per time step

32

33 %%UNIT HYDROGRAPH

34 for t=1: ceil(delay)

35 if t < delay

36 UH(t) = ff;

37 else

38 UH(t) = mod(delay ,t-1)*ff;

39 end

40 end

41

42 %%DISPERSE VOLUME

43 out = in.*UH;

44

45 end
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B.5 Parameter ranges

Each model function in MARRMoT is accompanied by a file that specifies suitable sampling

ranges for each parameter used in the model, that could be applied if the user chooses to

pair MARRMoT with a calibration or parameter sampling procedure. This section gives

the reasoning behind our choices of parameter ranges used within MARRMoT.

B.5.1 Model-specific ranges versus generalised process-specific ranges

There are two different approaches to determining parameter ranges for model calibration

or parameter sampling studies: (1) make a choice for appropriate parameter ranges per

model, based on previous applications of the model, or (2) try to make consistent choices

for all models based on literature (e.g. ensure that all ’slow’ linear reservoirs, regardless of

which model they are part of, have the same limits for the drainage time scale parameter).

Generalization of parameter ranges across models is difficult because models use different

flux formulations and thus different parameter values might be appropriate, even if the

fluxes are intended to represent the same hydrologic process. On the other hand, using

model-specific parameter ranges based on earlier studies might limit a model’s potential.

Especially if the model has only been applied to a small number of places, published

’appropriate’ parameter ranges might also reflect the climate or catchment characteristics

of the few study catchments the model has been applied to. MARRMoT is intended as a

model comparison framework. We thus attempt to generalize parameter ranges across all

models in the framework, to facilitate fair comparison of different models. We try to err on

the side of caution and intentionally set these ranges wide. Table B.3 shows the parameter

ranges used in MARRMoT and specifies in which model(s) each parameter range is used.
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Description Min(lit) Max(lit) Min(used) Max(used) Reference(s) Notes Model

Snow
Threshold temperature

for snowfall (and melt, if

not specified otherwise)

[oC]

Table

B.4

Table

B.4

-3 5 [171, 181] 6, 12, 30, 31, 32, 34,

35, 37, 43, 44, 45

Threshold interval

width for snowfall [oC]

0 7 0 17 [171] 0 is a physical limit 37

Threshold temperature

for melt [oC]

-3 3 Not easy to find any inter-

val. Temperature for melt

tends be treated as con-

stant at 0

37, 43, 44

Degree-day-factor

for snow or ice melt

[mm/oC/d]

0 Table

B.5

0 20 0 is a physical limit 6, 12, 30, 31, 32, 34,

35, 37, 41, 43, 44, 45

Water holding content of

snow pack [-]

0 0.8 0 1 [181] [0,1] are physical limits 37, 44

Refreezing factor of re-

tained liquid water [-]

0 1 0 1 [0,1] are physical limits 37, 44 (given as frac-

tion [0,1] of degree-

day-factor)

continued . . .
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. . . continued

Description Min(lit) Max(lit) Min(used) Max(used) Reference(s) Notes Model

Maximum melt rate

due to ground-heat flux

[mm/d]

0 2 0 2 [282] 44

Interception
Maximum store depth

[mm]

0 Table

B.6

0 5 [69, 118] 0 is a physical limit. [118]

(table 1.1) reports 3.8mm

as maximum value used

out of 15 studies. [69] (ta-

ble 3) report 5.6mm as

a maximum value for 28

catchments

2, 13, 15, 16, 18, 22,

23, 26, 34, 36, 39, 42,

44, 45

Maximum intercepted

fraction of precipitation

[-]

0 0.42 0 1 [118] [0,1] are physical limits.

[118] (table 1.1) reports

42% as maximum inter-

cepted fraction out of 15

studies

8, 23, 32, 35, 45

Seasonal variation in

LAI as fraction of mean

[-]

0 1 0 is a physical limit 22

Timing of maximum

Leaf Area Index [d]

1 365 Refers to days in a normal

calendar year

22, 32, 35

continued . . .
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Description Min(lit) Max(lit) Min(used) Max(used) Reference(s) Notes Model

Surface depression
Maximum surface area

contributing to store [-]

0 1 0 1 [0,1] are physical limits 36, 45

Maximum store depth

[mm]

0 Table

B.7

0 50 [69] 0 is physical limit. 50 is

recommended in [69]

36, 45

Filling parameter [-] 1 1 0.99 1 [71, 258] Controls the shape of the

depression store inflow

flux but is usually set at

1 because no studies are

(were?) available about

how a depression store

fills

36

Infiltration
Maximum loss [mm] 0 400 0 600 [70] Fig 11.11a shows cali-

brated parameter values

for 339 catchments. Pat-

tern indicates that limit

was set at 400

18, 36

continued . . .
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Description Min(lit) Max(lit) Min(used) Max(used) Reference(s) Notes Model

Loss exponent [-] 0 12 0 15 [70] Fig 11.11a shows cali-

brated parameter values

for 339 catchments. Pat-

tern indicates that limit

was set at 10

18, 36

Maximum infiltration

rate [mm/d]

Table

B.8

Table

B.8

0 200 Infiltration rates can be

very high. However, to

have a practical effect

on modelling, (i.e. gen-

erate infiltration excess

flow), Inf_rate < P(t). In

the context of a follow-up

study, Inf_rate is capped

at 200mm/d because the

maximum daily P in the

study area is 200mm/d.

15, 20, 23, 40, 44

Infiltration decline non-

linearity parameter [-]

0 5 [302] Very difficult to find infor-

mation for (original paper

mentions nothing)

23, 43

continued . . .
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Description Min(lit) Max(lit) Min(used) Max(used) Reference(s) Notes Model

Evaporation
Plant-controlled maxi-

mum rate [mm/d]

5 24.5 0 20 [69] Although the study re-

ports an upper value of

24.5, the recommended

range is capped at 20 (pa-

per appendix)

20, 36

Wilting point as fraction

of Soil moisture capacity

[-]

0.1 0.25 0.05 0.95 [309] 0 is a physical limit but

can break model equa-

tions through "divide-by-

zero" errors. 1 is a physical

limit

3, 4, 8, 9, 10, 12, 14,

15, 16, 19, 20, 21, 26,

31, 32, 34, 35, 37, 44

Moisture constrained

rate parameter [-]

0 1 [0,1] are physical limits 15

Forest fraction for sepa-

rate soil/vegetation evap

[-]

0 1 0.05 0.95 [0,1] are physical limits,

but using these limits can

result in divide-by-zero-

errors in certain fluxes

3, 4, 8, 16

Phenology: minimum

temperature where

transpiration stops [oC]

-5 -5 0 -10 [349] 35

continued . . .
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Description Min(lit) Max(lit) Min(used) Max(used) Reference(s) Notes Model

Phenology: maximum

temperature above

which transpiration

fully utilizes Ep [oC]

10 10 1 20 [349] The setup of minimum

and maximum tempera-

ture used in Ye et al.

(2012) is here changed to

a minimum temperature +

temperature range (Tmax

= Tmin + Trange) to avoid

overlap in parameter val-

ues

35

Evaporation reduction

with depth coefficient [-

]

0.083 1 0 1 [251, 312] [0,1] are physical limits 17, 23, 25, 40

Shape parameter for

evaporation reduction in

a deficit store [-]

0 1 [222] This uses a sigmoid func-

tion to determine a frac-

tion of Ep to evaporate.

Values >1 make the transi-

tion very steep

39

Evaporation non-

linearity coefficient

[-]

0 10 [302] Very difficult to find in-

formation for. Assumption

made to be in line with

other non-linearity coeffi-

cients.

23, 43

continued . . .
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Description Min(lit) Max(lit) Min(used) Max(used) Reference(s) Notes Model

Soil moisture
Maximum store depth

[mm]

1 Table

B.9

1 2000 0 is a physical limit 1, 2, 3, 4, 5, 6, 7, 8, 9,

10, 11, 12, 13, 14, 15,

16, 17, 18, 19, 20, 21,

22, 23, 24, 26, 27, 28,

29, 30, 31, 32, 33, 34,

35, 36, 37, 38, 39, 40,

41, 42, 43, 44, 45, 46

Capillary rise [mm/d] 0 Table

B.10

0 4 0 is a physical limit 13, 15, 37, 38

SMHI gives a default

value of 1 mm/d for use

with HBV. We use a wider

range here

Percolation rate [mm/d] 0 Table

B.11

0 20 [31] Some modelling studies re-

port very large percolation

rates (100 mm/d). Field

observations give approx.

11mm/d [31].

21, 26, 34, 37, 39, 44,

45

Percolation fraction [-] 0.013 0.533 0 1 [349] (Table

1)

[0,1] are physical limits 14, 22, 23, 24, 27, 30,

31, 32, 35, 45
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Description Min(lit) Max(lit) Min(used) Max(used) Reference(s) Notes Model

Recharge nonlinearity

[-]

0 7 0 10 [181] Also seen as a soil depth

distribution

5, 22, 33, 37

Soil depth distribution

[-]

0 Table

B.12

0 10 For cases where the soil

depth is not considered

constant. Most studies

limit this to 0-2.5 but this

seems based on a single

source [335] which is UK

only. Thus we use a wider

range here

2, 13, 15, 21, 22, 26,

28, 29, 34

Porosity [-] 0.35 0.5 0.05 0.95 [309] [0,1] are theoretical physi-

cal limits, but no (0) poros-

ity and full (1) porosity are

not sensible: there would

be no soil moisture or soil

respectively

10, 19

Gamma distribution for

topographic indices - phi

[-]

0.4 3.5 0.1 5 [78] 14

Gamma distribution for

topographic indices - chi

[-]

2 5 1 7.5 [78] 14

continued . . .
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Description Min(lit) Max(lit) Min(used) Max(used) Reference(s) Notes Model

Fraction area with per-

meable soils [-]

0 1 [85] [0,1] are physical limits 46

Fraction area with semi-

permeable soils [-]

0 1 [85] [0,1] are physical limits 46

Fraction area with im-

permeable soils [-]

0 1 [85] [0,1] are physical limits 46

Variable contributing

area scaling [-]

0 5 [302] Very difficult to find in-

formation about this. As-

sumption made

23

Variable contributing

area non-linearity [-]

[302] See: Soil depth distribu-
tion above

23

Fraction of D50 that is

D16 [-]

0.01 0.99 Note: re-writing of D16 pa-

rameter in [115]

42

Variable contributing

area equation inflection

point [-]

-0.5 0.5 -0.5 0.5 [153] 28

Groundwater
Leakage coefficient [-] 0.07 0.13 0 0.5 [69] 0 is physical limit. 0.5 is

recommended in the pa-

per’s appendix

36

continued . . .
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Description Min(lit) Max(lit) Min(used) Max(used) Reference(s) Notes Model

Leakage rate [mm/d] See: Percolation rate
above

Level compared to chan-

nel level [mm]

-2.8 3.9 -10 10 [69] Range recommended in ap-

pendix of the paper

36

Base flow rate at no

deficit [mm/d]

0 201.6 0.1 200 [33] Based on Table 2 [33] 14, 23

Baseflow deficit scaling

parameter [-]

0 1 [0,1] are physical limits 14, 23

Flow distribution
Interflow and saturation

excess [-]

0 1 0 1 [0,1] are physical limits 18, 36

Preferential recharge [-] 0 2 0 1 [69] 0 is a physical limit. Later

paper sets max limit to 1

18, 25, 36, 46

Surface/groundwater di-

vision [-]

0 1 [0,1] are physical limits 13, 17, 33

Fast and slow flow [-] 0 1 0 1 [0,1] are physical limits 21, 26, 29, 34, 46

Groundwater recharge

and interflow [-]

0.05 0.3 0 1 [309] [0,1] are physical limits 10, 11, 20, 40

Infiltration and direct

runoff [-]

0.161 0.422 0 1 [312] [0,1] are physical limits 40
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Description Min(lit) Max(lit) Min(used) Max(used) Reference(s) Notes Model

Impervious and infiltra-

tion area [-]

0 1 [0,1] are physical limits 28, 33, 45

Contributing area to

overland flow [-]

0 1 [0,1] are physical limits 39, 45

Tension water and free

water [-]

0 1 [0,1] are physical limits 33

Threshold for overland

flow generation [-]

0 <1 0 0.99 [232] [0,1] are physical limits 41

Threshold for overland

flow generation [-]

0 <1 0 0.99 [232] [0,1] are physical limits 41

Channel and land divi-

sion [-]

0 1 [0,1] are physical limits 42

Throughfall/stem flow di-

vision [-]

0 1 [0,1] are physical limits 42

Glacier/non-glacier pre-

cipitation [-]

0 1 [0,1] are physical limits 43
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Description Min(lit) Max(lit) Min(used) Max(used) Reference(s) Notes Model

Flow time scale and
shape
Fast reservoir time scale

[d-1]

0.05 Table

B.13

0 1 0 is a physical limit 12, 21, 24, 26, 28, 29,

30, 31, 32, 33, 34, 35,

37, 39, 41, 42, 43, 44,

46

Slow reservoir time scale

[d-1]

0.01 Table

B.14

0 1 0 is a physical limit 2, 3, 4, 6, 8, 10, 13, 15,

16, 17, 18, 19, 20, 21,

22, 24, 25, 26, 28, 29,

30, 31, 32, 33, 34, 35,

37, 39, 40, 41, 42, 43,

44, 46

Flow non-linearity Sx [-] 0 Table

B.15

1 5 4, 9, 10, 11, 16, 19, 22,

23, 37, 39, 42, 44, 45

Flow reduction (S/X)

[mm]

5 40 1 50 [309] 9

Exponential shape pa-

rameter [mm-1]

0 2 [222] Very difficult to find docu-

mentation for

39

Routing
Routing delay to fast

flow [d]

0 1 1 5 [106] 5, 21, 26, 34
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Description Min(lit) Max(lit) Min(used) Max(used) Reference(s) Notes Model

Routing delay to slow

flow [d]

0 8 1 15 5, 7, 21, 26, 34

Routing delay [d] 1 Table

B.16

1 120 [181] 1 is the limit (water

shouldn’t speed up). 120

because it seems very high

13, 15, 16, 21, 37, 39,

40

Routing store depth

[mm]

1 300 1 300 [255] 7, 20, 39, 45

Gamma function, num-

ber of Nash cascade

reservoirs [-]

0.75 9.79 1 10 [312] 0 would mean no routing,

so slightly above that

40

Water exchange para-
meters
Coefficient 1 [-] 0.005 0.54 0 1 [69] Although the study only

reports values up to 0.54,

an upper range of 1 is rec-

ommended in the study’s

appendix

36
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Description Min(lit) Max(lit) Min(used) Max(used) Reference(s) Notes Model

Coefficient 2 [-] 0.01 0.29 0 1 [69] Although the study only

reports values up to 0.29,

an upper range of 1 is rec-

ommended in the study’s

appendix

36

Coefficient 3 [-] 0 13 0 100 [69] Although the study only

reports values up to 13, an

upper range of 100 is rec-

ommended in the study’s

appendix

36

Water exchange coeffi-

cient [mm/d]

-10 14 -10 15 [255, 271] Parameter x2 in GR4J

model

7
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B.5. PARAMETER RANGES

Table B.4: Literature-based ranges for snow melt parameter ”threshold temperature for
snowfall”

Threshold temperature for snowfall [oC] Min Max

Table 2 in [287] -2.5 2.5
Table 1 in [181] -3 3
Table 2 in [171] Note: always coupled with a snow interval [10,17] 1.1 4.5
Table A3 in [291] -1.5 2.5

Table B.5: Literature-based ranges for snow melt parameter ”degree-day-factor”

Degree-day factor for snowmelt [mm/oC/d] Min Max

Table 2 in [287] 1 10
Table 1 in [181] 0 20
Table A3 in [291] 1 10

Table B.6: Literature-based ranges for interception parameter ”maximum interception
capacity”

Interception bucket [mm] Min Max

Figure 11.11a in [70] 0 5
Table 3 in [69] 0.5 5.6
Table 1.1 in [118] 0 3.8
Table 2 in [309] 0.4

Table B.7: Literature-based ranges for depression parameter ”maximum depression capac-
ity”

Depression bucket [mm] Min Max

Table 3 in [69] 1 100
Table 1 in [9] 5 110
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Table B.8: Literature-based ranges for infiltration parameter ”maximum infiltration rate”

Infiltration rate Min Max

Figure 2 in [17] [mm/d] 40 100
Table 3.3 in [157] [mm/h] 6 76
Table 3 in [66] [mm/h] 50 770

Table B.9: Literature-based ranges for soil moisture parameter ”maximum soil moisture
capacity”

Soil moisture bucket [mm] Min Max

Figure 11.11b in [70] 0 500
Table 3 in [69] 65 400
Table 2 in [287] 50 500
Table 1 in [269] 100 800
Table 1 in [181] 0 2000
Table A3 in [291] 50 500
Table 3 in [311] 1 500

Table B.10: Literature-based ranges for capillary rise parameter ”maximum capillary rise
rate”

Capillary rise [mm/d] Min Max

Table 1 in [269] 0.1 1
Default value in [306] 1 1
Figure 3 in [31] 0 0.06

Table B.11: Literature-based ranges for percolation parameter ”maximum percolation rate”

Percolation rate [mm/d] Min Max

Table 2 in [287] 0 6
Table 1 in [269] 0.1 5
Table 1 in [181] 0 100
Figure 3 in [31] 0 10.4
Table A3 in [291] 0 3
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Table B.12: Literature-based ranges for soil moisture parameter ”soil depth distribution
non-linearity”

Soil depth distribution [-] Min Max

Table 3 in [311] 0 2
Figure 9 in [189] 0 2.5
Table 4 in [59] 0 2.5
Figure 4.12 in [335] 0 2
Page 700 in [304] 4.03
Figure 4 in [147] Note: estimated values, 97% < 6 0 11.5

Table B.13: Literature-based ranges for flow parameter ”fast flow time scale”

Fast flow time scale [d−1] Min Max

Table 2 in [287] 0.05 0.5
Table 1 in [269] 0.05 0.8
Table 1 in [181] 0.01 1
Table A3 in [291] 0.01 0.4
Table 3 in [311] 0.5 1.2

Table B.14: Literature-based ranges for flow parameter ”slow flow time scale”

Slow flow time scale [d−1] Min Max

Figure 11.11b in [70] 0 0.3
Table 2 in [309] 2.40E-05 0.1
Table 2 in [287] 0.001 0.1
Table 1 in [269] 0.0005 0.1
Table 1 in [181] 0.00005 0.05
Table A3 in [291] 0.001 0.15
Table 3 in [311] 0.001 0.5

Table B.15: Literature-based ranges for flow parameter ”flow non-linearity”

Flow non-linearity Min Max

Table 3 in [195] – non-linearity shape = S1+var 0 3
Table 1 in [309] – non-linearity shape = S1/var 0.45 0.5
Table 3 in [158] 0.5 0.5
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Table B.16: Literature-based ranges for routing parameter ”routing delay”

Routing delay [d] Min Max

Table 2 in [287] 1 5
Table 1 in [181] 24 120
Table 3 in [195] 1 4
Table 1 in [255] 0.5 4
Table A3 in [291] 1 7
Table 2 in [18] Note: converted from a flow speed of 0.5m/s and catchment
area of 47km2

<1

Table 3 in [121] 12 36
Table 2 in [328] Note: approximated from flow velocities and catchment
sizes

0.01 4
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This appendix is based on a draft manuscript that will be submitted as Supporting Infor-

mation for a research article in Water Resources Research.
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prep). Exploring conceptual model structure uncertainty through a large-sample approach:

Comparative analysis of 36 models across 559 catchments. To be submitted to Water

Resources Reseach.
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Figure C.1: Changes in mean precipitation, temperature and potential evapotranspiration
between the two 10-year periods used in this study. Period 1 (p1) covers 01-Jan 1989 to
31-Dec 1999. Period 2 (p2) covers 01-Jan 2000 to 31-Dec 2009.



327

Figure C.2: Summary of model performance during low flow simulation (KGE(1/Q)) in all
559 catchments. Models are sorted by number of parameters, with the model with the most
parameters at the top (shown in brackets after each model ID). Coloring and model IDs
match those used in Figure 2 in the main manuscript. Each histogram is based on 559
values. Red lines show the 25th, 50th (thick line) and 75th percentiles. Bin widths have
been set at 0.03 KGE [-] through trial-and-error, settling on this value because it shows the
distributions in a sufficient, but not overly high, level of detail. (a) Calibration efficiency.
(b) Evaluation efficiency. (c) Difference in efficiency between calibration and evaluation
period.
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Figure C.3: Summary of model performance during combined flow simulation
(1

2 [KGE(Q)+KGE(1/Q)]) in all 559 catchments. Models are sorted by number of parame-
ters, with the model with the most parameters at the top (shown in brackets after each
model ID). Coloring and model IDs match those used in Figure 2 in the main manuscript.
Each histogram is based on 559 values. Red lines show the 25th, 50th (thick line) and 75th

percentiles. Bin widths have been set at 0.03 KGE [-] through trial-and-error, settling
on this value because it shows the distributions in a sufficient, but not overly high, level
of detail. (a) Calibration efficiency. (b) Evaluation efficiency. (c) Difference in efficiency
between calibration and evaluation period.
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Figure C.4: Overview of median model performance across 559 catchments (open circles)
and median aggregated model performance per number of free parameters (red dots) for
the low flow (KGE(1/Q)) objective function. Statistics are shown for (a) the calibration
period, (b) the evaluation period, and (c) the robustness of model performance given as
KGEval −KGEcal . Mann-Kendall statistical tests using aggregated model performance
show the relative strength and direction of trends (Z-value, negative values indicate
downward trend whereas positive values indicate an upward trend) and the associated
probability level (p).

0 5 10 15

Parameters

0

0.2

0.4

0.6

0.8

1

M
e
d
ia

n
 K

G
E

 [
-]

(a) Calibration efficiency: O
3

Mann-Kendall test

Z = 2.15

p = 0.03

(1,-9.7) (1,-1.08)

0 5 10 15

Parameters

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

M
e
d
ia

n
 K

G
E

 [
-]

(b) Evaluation efficiency: O
3

Mann-Kendall test

Z = 1.79

p = 0.07

(1,-9.52) (1,-1.19)

Median model performance Median aggregated performance

0 5 10 15

Parameters

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

M
e
d
ia

n
 K

G
E

 [
-]

(c) Robustness: O
3

Mann-Kendall test

Z = 0.00

p = 1.00

Figure C.5: Overview of median model performance across 559 catchments (open circles)
and median aggregated model performance per number of free parameters (red dots)
for the combined flow (1

2 [KGE(Q)+KGE(1/Q)]) objective function. Statistics are shown
for (a) the calibration period, (b) the evaluation period, and (c) the robustness of model
performance given as KGEval −KGEcal . Mann-Kendall statistical tests using aggregated
model performance show the relative strength and direction of trends (Z-value, negative
values indicate downward trend whereas positive values indicate an upward trend) and
the associated probability level (p).
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Figure C.6: Summary of model ranking during low flow simulation (KGE(1/Q)) in all 559
catchments. Rank 1 is assigned to the model with the highest efficiency value in a given
catchment. Models are sorted by number of parameters, with the model with the most
parameters at the top (shown in brackets after each model ID). Colouring and model IDs
match those in Figure 2 in the main manuscript. Each histogram is based on 559 values.
Note that each histogram is scaled relative to its own maximum, meaning that absolute
heights should not be compared between different rows. Red lines show the 25th, 50th (thick
line) and 75th percentiles. (a) Calibration ranking. (b) Evaluation ranking. (c) Difference in
ranking between calibration and evaluation period.



331

Figure C.7: Summary of model ranking during combined flow simulation (1
2 (KGE(Q)+

KGE(1/Q))) in all 559 catchments. Rank 1 is assigned to the model with the highest
efficiency value in a given catchment. Models are sorted by number of parameters, with
the model with the most parameters at the top (shown in brackets after each model ID).
Colouring and model IDs match those in Figure 2 in the main manuscript. Each histogram
is based on 559 values. Note that each histogram is scaled relative to its own maximum,
meaning that absolute heights should not be compared between different rows. Red lines
show the 25th, 50th (thick line) and 75th percentiles. (a) Calibration ranking. (b) Evaluation
ranking. (c) Difference in ranking between calibration and evaluation period.
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Figure C.8: Model efficiency trade-off during evaluation of all three objective functions at
various percentiles of model performance. Performance for the combined flow objective is
shown through the colour scheme. 5 models are identified on each plot through their model
ID.
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Figure C.9: Model efficiency trade-off during evaluation of all three objective functions at
various percentiles of model performance. Performance for the combined flow objective is
shown through the colour scheme. 5 models are identified on each plot through their model
ID.
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Figure C.10: Spearman rank correlation between model ranks (obtained during high flow
(KGE(Q)) objective function evaluation) and CAMELS catchment attributes. Models are
ranked from best to worst, with rank 1 indicating the best model. Only correlations with
p-value < 0.05 are shown. Marker size corresponds to the strength of the correlation, as
does the intensity of the colours. Models are sorted manually in an attempt to place models
with similar correlation patterns close together. The sorting order is the same as used in
Figure 9. This makes the models with snow components stand out slightly. See m06, m12,
m30 and m37 which would here be better placed near models m31, m32, m35, m21 and
m26.
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Figure C.11: Spearman rank correlation between model ranks (obtained during low flow
(KGE(1/Q)) objective function evaluation) and CAMELS catchment attributes. Models are
ranked from best to worst, with rank 1 indicating the best model. Only correlations with
p-value < 0.05 are shown. Marker size corresponds to the strength of the correlation, as
does the intensity of the colours. Models are sorted manually in an attempt to place models
with similar correlation patterns close together. The sorting order is the same as used in
Figure C.12.
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Figure C.12: Spearman rank correlation between model ranks (obtained during low flow
(KGE(1/Q)) objective function evaluation) and CAMELS catchment attributes. Only catch-
ments where less than 10% of annual precipitation occurs as snowfall are included in this
figure. Models are ranked from best to worst, with rank 1 indicating the best model. Only
correlations with p-value < 0.05 are shown. Marker size corresponds to the strength of the
correlation, as does the intensity of the colours. Models are sorted manually in an attempt
to place models with similar correlation patterns close together. The sorting order is the
same as used in Figure C.11.
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Figure C.13: Spearman rank correlation between model ranks (obtained during combined
flow (1

2 [KGE(Q)+KGE(1/Q)]) objective function evaluation) and CAMELS catchment
attributes. Models are ranked from best to worst, with rank 1 indicating the best model.
Only correlations with p-value < 0.05 are shown. Marker size corresponds to the strength
of the correlation, as does the intensity of the colours. Models are sorted manually in an
attempt to place models with similar correlation patterns close together. The sorting order
is the same as used in Figure C.14.
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Figure C.14: Spearman rank correlation between model ranks (obtained during combined
flow (1

2 [KGE(Q)+KGE(1/Q)]) objective function evaluation) and CAMELS catchment
attributes. Only catchments where less than 10% of annual precipitation occurs as snowfall
are included in this figure. Models are ranked from best to worst, with rank 1 indicating
the best model. Only correlations with p-value < 0.05 are shown. Marker size corresponds
to the strength of the correlation, as does the intensity of the colours. Models are sorted
manually in an attempt to place models with similar correlation patterns close together.
The sorting order is the same as used in Figure C.13.
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This appendix has been published as a blog post on the website of the Young Hydrologic

Society, in co-operation with Wouter Berghuijs, Shaun Harrigan and David Wright. This

publication does not relate directly to the main topic of the thesis and is therefore not

included in the main manuscript.

Citation: Knoben, W. J. M., Wright, D., Harrigan, S, & Berghuijs, W. R. (2017), Is research

at different spatial scales connected, Streams of Thought (Young Hydrologic Society),

Published May 2017. URL: https://younghs.com/2017/05/03/meet-the-expert-in-hydrology-

is-research-at-different-spatial-scales-connected/

D.1 Introduction

Scaling (i.e. the transfer of knowledge across scales) and scale issues (i.e. the associated

problems) are at the heart of most hydrologic puzzles. In the most recent “Meet the Expert

in Hydrology” session, organized at the EGU General Assembly 2017 in Vienna, YHS

invited three speakers to identify to what degree their research is connected, influenced

by, and influencing research at other spatial scales. By evaluating the current state of

research and discussing future directions we tried to shed some new light on the question

“Is hydrological research at different spatial scales connected?”. This is what we learned. . .

Hydrological research takes place across extremely different spatial scales (from pore-

scale to global). Experimentalists have an understanding of detailed hydrological processes

of hillslopes and headwater catchments, model developers generate larger-scale hydro-

logical descriptions to simulate streamflow, while global hydrologists use such models to
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simulate the global water cycle. In theory, research at these different spatial scales could

be strongly connected. For example, field experiments lead to new understanding and

models, which lead to better hydrologic predictions at larger scales. In practice, hydrological

research across different spatial scales can, at times, be disconnected. Barriers, such as

limited data availability and consistency and the enormous heterogeneity across diverse

landscapes, may limit the interaction between scales.

In the “Meet the Expert in Hydrology: Is research at different spatial scales connected?”

we invited three experts who in their work focus on different spatial scales: Prof. Jeffrey

McDonnell (University of Saskatchewan) focuses on novel experimental work at the hills-

lope and catchment scale, Dr. Markus Hrachowitz (Delft University of Technology) focuses

on catchment scale models, and Prof. Reed Maxwell (Colorado School of Mines) develops

models for hydrologic simulations across continental and global scales. The three experts

were invited to share their experiences on bridging the connections between different

research scales, the difficulties, and opportunities of transferring knowledge between these

scales and their views on future developments in hydrological knowledge from the field to

the global scale.

D.2 The role of fieldwork at small spatial scales

Jeffrey McDonnell first talked about the tremendous amount of heterogeneity that is

present in small hillslopes. An example he highlighted was the study that led to the “fill-

and-spill” hypothesis [321]. This analysis of a single hillslope over various storm events

shows that subsurface depressions first have to fill up before the hillslope starts to produce

runoff. This is potentially very similar to the processes that generate runoff on the land

surface.

Jeffrey McDonnell argued similar threshold processes occur in many different parts of

the hydrological cycle and that the heterogeneities are essentially unknowable. Emergent

behaviour might be the best option to deduce hydrological functioning for scales larger than

experimental plots. He then proceeded with an example of comparing two relatively close

catchments that show wildly different dominant features. In such cases, tracer hydrology

can be valuable to confirm (or to challenge) hypotheses of catchment functioning; tracer

experiments can be used to better understand how catchments work. He showed a further

example of how experimental-scale research can be expanded to a global scale using a

meta-analysis of experimental studies across the planet [99].
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FIGURE D.1. Three experts were invited to talk about their respective research
scale, and the connection to other spatial scales: Prof. Jeffrey McDonnell
(University of Saskatchewan) focuses on novel experimental work at the
hillslope and catchment scale, Dr. Markus Hrachowitz (Delft University of
Technology) focuses on catchment scale models, and Prof. Reed Maxwell
(Colorado School of Mines) develops models for hydrologic simulations across
continental and global scales.

D.3 The role of catchment-scale model development

Markus Hrachowitz argued that hydrology has an observation problem, not a science

problem. He gave examples of how during his Ph.D. research he found that it was ex-

tremely challenging to find hillslopes that were representative for other parts of the (very

small) catchment he studied. He gave another example of measurement challenges by

emphasizing that snow measurements may not be representative for snowfall only just a

few meters further in the catchment.

He subsequently argued that we can still make effective predictions at the catchment

scale by looking at emergent relationships. While we may not be able to measure and

model the full heterogeneity present at the catchment scale simple emergent relationships

at larger scales can help to develop useful models that we can parametrize and that

can represent the catchment’s overall functioning. He discussed the example of root-zone
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storage, which while highly heterogeneous at small scales, is predictable at the catchment

scale [116].

D.4 The role of large-scale simulations

Reed Maxwell argued that computational models are a key tool in bridging the gap between

research scales. In his diverse research group (working both on field studies and large-scale

modelling), they use models as a place to integrate the knowledge and observations across

scales and test whether that matches with our understanding described in hydrological

models.

He gave examples where modelling and field observations have been integrated; a

recent publication tested the role of increased radiation versus the role of rain to snow

transition for total runoff generation [200]. A second example he discussed is how including

lateral flow seems to strongly improve the match between modelled transpiration and

observed transpiration [208].

However, he carefully stated that, while models are useful we need to realize that all

models are predicting the water cycle in a comparable manner, and they may all be wrong.

D.5 Discussion on increasing the synergy between
research scales

During the final 40 minutes of the session, there was a panel discussion on how we can

increase the synergy between research scales.

• The speakers agreed that focussing at emergent behaviour on larger scales
can inform hypotheses, that then should be tested by modelling and exper-
imental work.

• Hydrologists have focused too long on reproducing the hydrograph. There

are plenty of models that can accurately reproduce the hydrograph. While this

is very useful for operational purposes, it does not allow much progress in better

understanding the water cycle.

• Hydrologists have been “farmers” for too long (i.e. collecting data and running

models because we can) and we should become “hunters” instead (i.e. actively

pursuing the relevant and interesting hypothesis that are testable). In this way, we

can become much more efficient in making progress.
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• As the resolution of models is improved, the hope is that the heterogeneity will

disappear and the governing equation that we use can represent the processes that

we will model. In reality, heterogeneity will not disappear, at any scale. We

need to critically think how we better deal with sub-grid heterogeneity as currently

we often apply the equations that are representative for other scales and hope that

the heterogeneity can be adequately described by parameters that we tune. This

premise may be wrong for particular processes. For example, is Darcy-Richards

equation really the best equation for gridded models covering large areas?

• The large watershed is not a linear superposition of soils. We should go after the
characteristic forms of nonlinearity that can be used in models. For example,

it is currently unclear if large scale models can represent the filling and spilling of

the landscape.

• Observations indicate that water in catchments can be thousands and
sometimes even billions of years old. This is a part of reality that is not often

represented by current-day hydrological models. However, Reed Maxwell emphasized

that large-scale models can generate very old water ages.
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