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Abstract The choice of hydrological model structure, that is, a model's selection of states and fluxes
and the equations used to describe them, strongly controls model performance and realism. This work
investigates differences in performance of 36 lumped conceptual model structures calibrated to and
evaluated on daily streamflow data in 559 catchments across the United States. Model performance is
compared against a benchmark that accounts for the seasonality of flows in each catchment. We find that
our model ensemble struggles to beat the benchmark in snow-dominated catchments. In most other
catchments model structure equifinality (i.e., cases where different models achieve similar high efficiency
scores) can be very high. We find no relation between the number of model parameters and performance
during either calibration or evaluation periods nor evidence of increased risk of overfitting for models with
more parameters. Instead, the choice of model parametrization (i.e., which equations are used and how
parameters are used within them) dictates the model's strengths and weaknesses. Results suggest that
certain model structures are inherently better suited for certain objective functions and thus for certain
study purposes. We find no clear relationships between the catchments where any model performs well
and descriptors of those catchments’ geology, topography, soil, and vegetation characteristics. Instead,
model suitability seems to relate strongest to the streamflow regime each catchment generates, and we
have formulated several tentative hypotheses that relate commonalities in model structure to similarities
in model performance. Modeling results are made publicly available for further investigation.

1. Introduction

There is an ongoing debate in hydrology whether a “one model fits all” approach should be pursued, based
on the assumption that the fundamental hydrological processes are the same everywhere (e.g., Fenicia et al.,
2011; Linsley, 1982; Perrin et al., 2003; Savenije, 2009). This assumption has led to development of rainfall
runoff models that are designed to be applied across a wide range of catchments (see, e.g., discussion of the
GR4J model in Fenicia et al., 2011, and consider more recent applications of this model in 142 catchments
in the United States Oudin et al., 2018). This assumption is contrasted by the concept of “uniqueness of
place” (Beven, 2000), the idea that in a practical sense every catchment is unique because there are limits
to our understanding of fundamental processes and the availability of sufficiently detailed measurements.
As a result of this uniqueness, many hydrological models have been developed that all aim to represent the
dominant processes in a given catchment (e.g., Singh & Woolhiser, 2002). While theoretically we should be
able to use a single model based on fundamental hydrologic principles, in practice there are many different
models available that all represent a certain view of which hydrologic processes are important and how
these should be mathematically represented. Choosing an appropriate model out of all possible options is
critical to obtain accurate simulations that are the result of plausible representations of the hydrology in a
given catchment (Kirchner, 2006). Knowing how much uncertainty is associated with the choice of model
structure is also important for quantifying the reliability of model predictions (e.g., Biondi et al., 2012).

Conceptual hydrologic models are the focus of this study. Many different conceptual models exist, and there
is much variety in how these models work. Models such as GR4J (four parameters Perrin et al., 2003) use a
process-aggregated approach where model fluxes represent the aggregated results of all possible processes.
Others such as MODHYDROLOG (15 parameters Chiew, 1990; Chiew & McMahon, 1994) follow a more
process-explicit approach where fluxes and states explicitly relate to specific processes such as interception,
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infiltration, surface storage, and groundwater-channel exchanges. Many models are somewhere in between
and combine explicit process representation with more aggregated approaches. The choice of model struc-
ture is one of the main sources of uncertainty in a modeling study (e.g., Andréassian et al., 2009; Coron et al.,
2012; Fenicia et al., 2008, 2014; Krueger et al., 2010a; Van Esse et al., 2013), but between-model differences
are currently not well understood (Ceola et al., 2015; Gupta et al., 2012). This is of particular concern when
models are applied in large numbers of catchments, in which case multiple models might be plausible
representations of hydrologic behavior, but it is unsure which of the available models is the most appropriate
choice in any given catchment.

Large-sample modeling studies can increase our understanding of model functioning, and the need for them
has been discussed often (e.g., Addor et al., 2019; Andréassian et al., 2009; Coxon et al., 2019; Franchini &
Pacciani, 1991; Hrachowitz & Clark, 2017; Lane et al., 2019; Linsley, 1982; Perrin et al., 2001; Seiller et al.,
2012; Sittner, 1976). Assessing a single model's performance under a wide range of different conditions can
lead to increased understanding of the model's strengths and weaknesses. Comparing the performance of
different models for a given catchment can lead to increased understanding of hydrologic similarity and
between-model differences. Past studies have often needed to limit either the number of catchments or the
number of models (see, e.g., Bell et al., 2001; de Boer-Euser et al., 2017; Euser et al., 2013; Franchini &
Pacciani, 1991; Krueger et al., 2010b; Lane et al., 2019; Lidén & Harlin, 2000; Moore & Bell, 2001; Nijzink
et al., 2016; Perrin et al., 2001; Seiller et al., 2012; Van Esse et al., 2013). This has often been due to limitations
in computing power or available data or both. Additionally, the model code that generated such results is
often not publicly available, limiting the reproducibility and transparency of such work. With increasing
computing power, the availability of open-source model intercomparison frameworks (e.g., Clark et al., 2015;
Knoben, Freer, Fowler, et al., 2019; Kraft et al., 2011), and new publicly available data sets for large-sample
hydrology (e.g., Addor et al., 2017; Alvarez-Garreton et al., 2018), the concerns that have limited
large-sample modeling studies in the past have become somewhat less critical.

Given the current incomplete knowledge on between-model differences, an opportunity now exists to study
similarities and differences in the behavior of multiple different models across a wide variety of places.
A challenge of such a study is that it can be difficult to keep analysis and visualization manageable due
to the large number of results involved. Investigating every interesting individual case is infeasible, and
instead lessons must be learned from emergent patterns across the full sample (Hrachowitz & Clark, 2017).
Large-sample emergent patterns can provide unique insights into how well models function across a
variety of different catchment types and inform understanding of hydrologic similarity between different
places. Potential benefits of such studies include more thorough understanding of the places where a given
hydrologic model can be used with some measure of confidence and improved ability to model ungauged
catchments through regionalization approaches. The aim of this paper is thus to explore the performance
and associated model structure uncertainty of 36 conceptual hydrologic models across 559 catchments,
covering a wide range of climatic and catchment conditions. Our research objectives are further specified
in section 2.

2. Rationale, Research Questions, and Methodology

In this study, we calibrate 36 different model structures for streamflow simulations in 559 catchments using
three different objective functions and evaluate model performance during a separate time period (details in
section 3). This gives a total sample of 60,372 model application test cases. This section defines four research
questions and describes how the modeling results are analyzed to answer these questions.

2.1. Defining a Lower Level of Expected Model Performance

Our approach to model calibration and evaluation expresses model performance as Kling-Gupta efficiency
scores (KGE Gupta et al., 2009). A score of 1 indicates perfect agreement between simulations and obser-
vations. Scores lower than 1 are difficult to interpret beyond “higher is better,” and KGE does not include
a built-in benchmark that can be used to distinguish “good” and “bad” scores (Gupta et al., 2009; Knoben
et al., 2019). Therefore, we first specify a lower benchmark that provides the necessary context to interpret
model KGE scores (Garrick et al., 1978; Pappenberger et al., 2015; Schaefli & Gupta, 2007; Seibert, 2001;
Seibert et al., 2018). The lower benchmark is the minimum score we expect each model to obtain before we
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consider the model a plausible choice for the catchment under consideration. Research Question 1 is thus
What level of model performance do we expect any model to obtain before we consider the model a plausible
option for a given catchment?

A traditional benchmark (i.e., the “score to beat”) in hydrology is the mean annual flow due to its inclu-
sion in the Nash-Sutcliffe efficiency score (NSE Nash & Sutcliffe, 1970). This choice is both quite simplistic
(e.g., Garrick et al., 1978) and not equally difficult to beat in different catchments (Schaefli & Gupta, 2007),
depending on how seasonally variable the flow in any given catchment is. The interannual mean for every
calendar day has been proposed as a benchmark that can account for seasonality in the flow regime
(Garrick et al., 1978; Schaefli & Gupta, 2007), provided that this seasonality is stable between years. This
is not the case in catchments where the flow observations on any given calendar day are heavily skewed,
as might be the case in catchments with very irregular occurrences of high flow peaks. In such cases the
interannual mean might be far away from many of the sample values and the interannual median will be
closer and more representative of the typical flow regime.

We therefore calculate both the interannual mean and median flow per calendar day for each individual
catchment, using data from the calibration period only. We then evaluate the performance of both of these
data-based models during the evaluation period and choose the highest KGE score as our benchmark for
that particular catchment. This benchmark KGE score gives a sense of how predictable the flow in each
catchment is using only streamflow observations at the same temporal resolution as the models use. It
represents the minimum accuracy score we expect from any of the conceptual models before considering
them as plausible model structures for a given catchment.

2.2. Model Structure Equifinality of Plausible Model Structures

The set of plausible model structures for each catchment contains only those models that beat the daily flow
benchmark in that location. These models are different, but all are potentially realistic descriptions of the
relevant hydrologic processes in the catchment. However, not all plausible models will beat the benchmark
by an equally large margin. We assume that models that outperform the benchmark by a larger margin are
better choices to use in a given catchment than models that beat the benchmark by a smaller margin and
use this concept to quantify the extent of model structure equifinality. If the best model is joined by multiple
other models that exceed the benchmark by a similar amount, model equifinality is considered to be high.
Research Question 2 is thus How many of the 36 model structures in our sample can be considered plausible
in a given catchment, and how high is model equifinality within this subset?

Differences in objective function values are commonly used to quantify model structure uncertainty and
equifinality (e.g., Fenicia et al., 2008; Hogue et al., 2006; Winter & Nychka, 2010). We therefore report (1)
the KGE score of the best model in each catchment, (2) the difference between the best model's KGE score
and the benchmark score in each catchment, (3) the total number of plausible models in each catchment
(i.e., the number of models with KGE scores above the benchmark score), and (4) the number of plausible
models that fall within 0.01, 0.05, 0.10, and 0.25 KGE value [-] of the best model expressed as cumulative
distribution functions (CDFs) across all catchments.

2.3. Relating Differences Between Models to Number of Model Parameters

The number of model parameters is often used to explain differences in model performance. In a study
of 19 conceptual models and 429 catchments Perrin et al. (2001) find a tendency for models with more
parameters to better fit calibration data but not evaluation data and decreasing robustness (defined as the
decrease of mean model performance between calibration and verification periods) for models with more
parameters. They suggest that models with more degrees of freedom (i.e., calibration parameters) tend to
reproduce errors or noise in the calibration data, a phenomenon called overfitting that is also described by
other authors (e.g., Beven, 2012; Schoups et al., 2008; Shaw et al., 2011). Overfitting is related to but not the
same as parameter identifiability, which is here used to refer to the ability to identify a unique optimal value
for a given calibration parameter. Parameter overfitting leads to an increase in calibration performance
combined with a decrease in performance robustness. This is a common expectation when statistical
models are used (see, e.g., Figure 12 in Lute & Luce, 2017). This behavior also manifests through evaluation
performance that decreases in bias but increases in random scatter for models with a higher number of free
parameters (Hoge et al., 2018; Lute & Luce, 2017). In conceptual hydrologic models parameters are used as
part of equations intended to describe hydrologic behavior, and ideally models that are appropriate descrip-
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tions of the dominant processes in a catchment would perform well in such a catchment, regardless of the
number of parameters used. Research Question 3 is thus What are the differences in model performance, and
how do these relate to the number of model parameters?

The analysis for this research question is divided into two parts. First, we investigate the extent to which
each model outperforms the benchmark and if any differences between models can be attributed to the
number of model parameters. To this end we report (1) the number of catchments in which a model beats the
benchmark, (2) the margins by which the model beats the benchmark, (3) how the model ranks compared
to the other models in our sample, and (4) the difference in performance between the model and the best
model in a given catchment, all in the context of the number of model parameters. A full sensitivity analysis
for each combination of model, catchment, and objective function is outside the scope of this work, and we
therefore use the total number of calibrated model parameters as a basic surrogate for the effective number
of parameters.

Second, we investigate the tendency of models toward overfitting by comparing model performance during
calibration, evaluation, and the change between the two periods. We assess this visually with boxplots and
use the statistical Mann-Whitney test (Mann & Whitney, 1947) to quantify any differences in a pair-wise
comparison of all models. The Mann-Whitney test tests the null hypothesis that two different samples are
taken from a single distribution, that is, that 4; = u,. If models with more parameters do indeed better
fit the data during calibration, we expect that the Mann-Whitney test results show a tendency to reject the
null hypothesis for model pairs with a very different number of parameters, combined with a tendency to
not reject the null hypothesis for model pairs with a similar number of parameters. The expectations that
models with more parameters have lower robustness is tested in the same manner.

The KGE can be decomposed into its three constituent parts, which reflect the similarity between simula-
tions and observations in terms of the correlation between the two, the ratio of standard deviations, and the
ratio of means (Gupta et al., 2009). The latter two components can be seen as indications of the scatter and
bias of the simulations and investigate these as a second test for overfitting, both visually as box plots and
through Mann-Whitney tests (Mann & Whitney, 1947). Our expectations for the Mann-Whitney test are as
outlined in the previous paragraph.

2.4. Model Suitability for Different Catchments

Model development generally takes places on geographically small scales, such as one or a few research
catchments where in-depth knowledge of catchment conditions can inform the choice of model structure
(e.g., Ambroise et al., 1996; Fenicia et al., 2016; McGlynn et al., 2002; Peters et al., 2003). Across larger
scales, the relation between climatic conditions and conceptual model performance has been well studied
(e.g., Dakhlaoui et al., 2017; Fowler et al., 2018; Lidén & Harlin, 2000; Merz et al., 2011; Van Werkhoven
et al., 2008; Van Esse et al., 2013). Catchment-averaged attributes beyond climatic data have proven useful
to to assess conceptual model strengths and weaknesses across the United Kingdom (Lane et al., 2019).
Such studies are generally conducted with a limited number of models, a limited number of catchments,
or within a geographically small and thus relatively similar area (such as Austria, Merz et al., 2011, and
France, Van Esse et al., 2013). Until recently no data were available to allow such studies to also investigate
the relationship with catchment structure across a large and varied domain. The CAMELS data set provides
catchment attributes spread across six main categories: climate, geology, topography, soil, land cover, and
streamflow (Addor et al., 2017). We attempt to use these descriptors to clarify the relation between model
performance and catchment type. Research Question 4 is thus How does relative model performance relate
to known catchment attributes?

Because efficiency scores are not easily compared between places (e.g., Schaefli & Gupta, 2007), we instead
rank the plausible model structures in each catchment based on their KGE scores and use model ranks for
this analysis. Given the size of the data sample, we limit this aspect of the study to an exploratory analysis
based on Spearman rank correlations between model ranks and catchment attributes only.

3. Data and Models
3.1. CAMELS Catchment Data

This study uses the CAMELS data set (Addor et al., 2017), which provides time series of meteorological
variables and streamflow (Newman et al., 2015), and tables with catchment attributes for 671 catchments
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(a) Location of 559 selected catchments

(b) Catchment area
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Figure 1. Catchments in the CAMELS data set. Five hundred fifty-nine catchments were used in this study (blue), after removing those catchments with
uncertain area estimates (purple; >10% differences between two geospatial data sets and the USGS reported value) or water balance errors (yellow) or both
(red). (a) Geographical location and reason for exclusion from this study. (b) Catchment area distribution of the 559 selected catchments. (c) Aridity index
against 1 — runoff ratio for the 559 selected catchments.

in the contiguous United States. We perform several basic data checks and remove those catchments with
large (>10%) discrepancies between catchment area as used for averaging of the meteorological time series
and area as published by the USGS (US Geological Survey, 2018) or the higher resolution GAGES II data set
(provided as part of the CAMELS data set). We use preliminary screening (e.g., Martinez & Gupta, 2011)
to remove those catchments that fall outside the energy limit and water limit on the Budyko curve
(Budyko, 1974). This leaves 559 catchments for use in this study, distributed across the contiguous United
States (Figure 1).

The CAMELS data provide three different forcing products (Newman et al., 2015) at a daily resolu-
tion. This study investigates lumped models (catchments are treated as a single entity) and thus uses
catchment-averaged forcing data. We follow Newman et al. (2015) and Addor et al. (2017) in using the
Daymet product, which is based on the highest spatial resolution of all three products (1 km x 1km com-
pared to 12km x 12km for Maurer and NLDAS products) and is more likely to provide accurate data for
smaller catchments and locations with complex topography. Time series of daily precipitation and
temperature are part of the CAMELS data, and time series of potential evapotransiration (PET) are estimated
using the Priestley-Taylor method (details in supporting information Text S1 Priestley & Taylor, 1972).

3.2. MARRMoT Modeling Framework

This study uses 36 conceptual model structures from the Modular Assessment of Rainfall-Runoff Models
Toolbox (MARRMOoT) v1.0 (Knoben et al., 2018a, 2019), which organizes conceptual model code in a single
uniform framework. This has the main advantage that the implementation of models and fluxes is consistent
and any differences in simulation are thus solely due to differences in model structure. The MARRMoT
models used in this work are all based on published literature and cover a wide range of possible structures,
from a simple one-parameter model to structures with up to 6 stores or 15 parameters. The toolbox is
provided with literature-based parameter ranges for each model to support parameter sampling or
optimization. These standardize the parameter ranges as much as possible, so that models have the same
amount of parameter freedom (e.g., in the case of interception capacity, all models that simulate the
interception process use a range of 0-5mm). The differential equations that express each model's changes
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Figure 2. Summary of the 36 models used in this work (adapted from Knoben, Freer, Fowler, et al., 2019, Figure 2).
Models are sorted by the number of stores first (indicated in the left column) and by their number of parameters
second (bars in right column). MARRMOoT identifier refers to an identifier that is used in the MARRMoT
documentation and subsequent analysis in this work. Identifier, number of parameters (p) and number of stores (s) are
used in other figures as, for example, “mo01 (1p, 1s).” The middle part of the figure gives an overview of the processes
each model's store(s) is intended to represent. Note that MARRMoT model implementations can deviate from the
source models they are based on. See the MARRMoT documentation for details.

in storage(s) with time are numerically approximated with a fixed-step implicit Euler method, which uses
the same step size as the forcing data (detailed settings for reproducibility can be found as part of the data
package that accompanies this paper). The implicit Euler method provides better accuracy and stability
compared to the Explicit Euler method, at the cost of increased computational times (Kavetski et al., 2006;
Schoups et al., 2010). Figure 2 provides an overview of the 36 models used in this work.

3.3. Model Setup

Data for each catchment are divided into two 10year periods covering 1 January 1989 to 31 December
1998 (calibration) and 1 January 1999 to 31 December 2009 (evaluation), respectively. Average climate
characteristics are approximately constant between these periods with the exception of regions with high
mean precipitation (P > 5mm/day; precipitation has decreased somewhat) and regions with low mean
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temperatures (T < 5°C; temperatures have increased). Estimated potential evapotranspiration rates are
approximately constant between the two periods (see Figure S1). Streamflow records are complete during
this period for 546 catchments. For the remaining 13 catchments, days with missing streamflow values are
ignored during the calculation of objective function values. Missing values account for 0.013% to 4.8% of all
observations in these catchments.

The 36 models in this study are calibrated for 559 catchments using three different objective functions, each
based on the KGE (Gupta et al., 2009):

2 2
KGE=1—\/(r—1)2+<Gﬂ—1> +(”ﬂ—1> o))
Oobs Hobs

where subscripts obs and sim refer to observed and simulated time series of flow, respectively, r is the linear
correlation coefficient between observed and simulated flow, o denotes the standard deviation of flows, and
u the mean of flows. We aim to compare model performance for a variety of flow conditions; therefore,
our choice of objective functions emphasizes higher flows, lower flows, and a combination of both. The
objective functions used are the KGE calculated on time series of flow (KGE(Q)), the KGE of inverse flows
(KGE(1/Q), and the mean of KGE(Q) and KGE(1/Q). Inverse flows are shown to be more appropriate than
a log transform to emphasize low flows (e.g., Pushpalatha et al., 2012; Santos et al., 2018). Pushpalatha et al.
(2012) add a constant e to observed and simulated streamflow to avoid problems with inverting zero flow
values. They recommend e to be set at 1% of the mean observed flow, because this limits the impact of the
added constant on the resulting NSE(1/Q) values in their study. Because no such guidance yet exists for KGE
and because NSE and KGE are conceptually based on the same three components (Gupta et al., 2009), we
assume that this value is an appropriate choice for KGE(1/Q), too.

We use the Covariance Matrix Adaptation Evolution Strategy (CMA-ES Hansen, 2016; Hansen &
Ostermeier, 1996, 2001; Hansen et al., 2003) to calibrate model parameters. CMA-ES is a single-objective
optimizer that compares favorably to various other methods for finding the global optimum of difficult func-
tions and in rugged objective function landscapes (Arsenault et al., 2014; Hansen et al., 2003, 2010). The algo-
rithm has seen successful application in hydrology (e.g., Arsenault et al., 2014; Fowler et al., 2018; Peterson
& Western, 2014), as well as many other fields (Hansen, 2009). The algorithm is allowed to run either until
the change in objective function of all members in the current generation and the range of objective func-
tion values in at least the preceding 10 generations is below 1E—3 or until the standard deviation of the
normal distribution used to sample parameter values for the new generation drops below 1E—3. These are
problem-dependent algorithm settings (Hansen, 2016) that we consider an acceptable compromise between
accuracy and speed for the 60,372 combinations of models, catchments, and objective functions. Details
about CMA-ES stopping criteria and algorithm exit flags can be found in supporting information Text S2.

Model warm-up periods are used to reduce the impact of uncertain initial conditions on model performance.
Recent studies have attempted to provide guidelines for warm-up period length in conceptual models
(Kim et al., 2018), but these studies are limited in number of models (1 and 2, respectively) and catchments
(18 and 1, respectively), and it is therefore difficult to generalize their findings to a large-sample study such
as this. Instead of using a fixed number of warm-up days, we determine the initial storages in an iterative
procedure by letting the model repeat Year 1 of the data period until the stores reach an equilibrium for
the first day of the year (<1% change in storage value[s] between runs). Storage values might not converge
for certain parameter sets (e.g., when a store of unlimited depth has very low outflow), in which case the
procedure is stopped after 50 iterations.

4. Results

Results presented here are based on data for the KGE(Q) objective function obtained from the evaluation
period, unless specifically indicated as being calibration results or relating to one of the two other objective
functions.

Where applicable, findings for each model only include results from those catchments where the model
exceeds the minimum benchmark level of expected performance. Each section also includes a brief sum-
mary of findings for the other two objective functions, KGE(1/Q) and 1/2*[KGE(Q) + KGE(1/Q)]. Figures
for these objective functions are part of the supporting information for brevity.
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(a) Benchmark KGE(Q) score (evaluation)

(b) Benchmark type

05 0 05 1 005 0 05 1 Mean Median
KGE [-]
Figure 3. (a) Benchmark KGE(Q) score that a model must beat to be considered a plausible model structure in each
catchment. The benchmark is treated as any other model in the sense that the benchmark simulations are
calculated from flow observations in the calibration period, and the benchmark KGE(Q) score is calculated by

comparing these simulations to observations from the evaluation period. (b) Type of benchmark (mean or median
calendar day flow) that gives the higher benchmark KGE(Q) score.

4.1. Defining a Lower Level of Expected Model Performance

The performance of the benchmark time series (i.e., the mean or median daily flow regime) varies across
space and is subject to strong spatial organization (Figure 3a). KGE scores are lowest (KGE < —0.5) in
very arid areas and highest in snow-dominated areas (with values up to KGE = 0.89). Approximately 80%
of these benchmarks are obtained by using the mean calendar day flow, the remainder being obtained
from the median calendar day flow (Figure 3b). These results set a baseline for minimum expected model
performance by indicating how predictable the flow regime is.

This spatial organization is also visible for the KGE(1/Q) and 1/2*[KGE(Q) + KGE(1/Q)] objective functions
(Figures S3 and S4). Benchmark values for KGE(1/Q) are generally higher than those for KGE(Q) and
are in 96% of cases obtained by using the median calendar day flow. As expected, the results for the
%[KGE(Q) + KGE(1/Q)] objective function are in between the results of the other two.

4.2. Model Structure Equifinality of Plausible Model Structures

Figure 4a shows that the maximum achieved evaluation efficiency in each catchment (i.e., what the best
model out of 36 achieves) is subject to strong spatial organization, although exceptions to the pattern exist.
Maximum efficiency ranges from —0.11 to 0.93. Note that these values are raw KGE scores and are not yet
adjusted by the benchmark score. In geographical terms, maximum model performance tends to be lowest
in the central United States (plains areas east of the Rocky Mountains) and certain parts of the southwest.
These areas share a tendency to be very arid (see Figure 3c in Addor et al., 2017). Figure 4b shows the number
of models that fall within certain performance thresholds. Curves that stay closer to the bottom indicate
that fewer models have a KGE value within 0.01/0.05/0.10/0.25 of the best model in a given catchment. For
example, the blue line indicates that in approximately 350 catchments, no model has a KGE value within
0.01 of the best model, while in the remaining 200 catchments at least one and up to eight models have
performance within 0.01 of the best model for each catchment. These results show that model structure
equifinality can be very high: In many catchments several models can be virtually indistinguishable (within
0.01 KGE of each other) in terms of efficiency scores, and in the vast majority of catchments up to 28 different
models can be close (within 0.05 KGE) to the best model.

Comparing maximum model efficiency to the predefined benchmark values in each catchment provides
context for the maximum model efficiency scores (compare Figures 4a and 4c). The difference between
maximum model performance and benchmark is smallest in mountainous regions and generally high in
arid regions. In 11 catchments no model outperforms the benchmark (AKGE < 0), all characterized by a high
fraction of precipitation occurring as snowfall. In these places, no model in our sample is able to simulate the
persistent features of the hydrograph (i.e., features that recur every year) better than the benchmark does.
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Figure 4. Results shown for the evaluation period. (a) Maximum model efficiency, showing the highest KGE score
obtained in each catchment (note that this is not necessarily by the same model). (b) Model equifinality, showing how
many models are within 0.01, 0.05, 0.10, and 0.25 KGE distance away from the best model in each catchment. Note that
the catchments are sorted independently for each CDF and that lines should not be compared on a per-catchment
basis. (c) Difference between maximum model efficiency and benchmark efficiency in each catchment. (d) Number of
models that beat the benchmark in each catchment.

These 11 catchments are excluded from further analysis, because our model ensemble contains no structures
that meet our plausibility criterion. Figure 4d shows that in mountainous regions the number of models
that beat the benchmark is low. This can partly be explained by not all models having a snow module (only
eight models do), but even having a snow module is no guarantee that a model can beat the benchmark. In
contrast, in wet, nonsnowy regions the vast majority of models beats the benchmark and in 289 out of 559
catchments every single model in our sample provides more accurate simulations than the benchmark gives
(although that does not automatically imply that all model simulations are equally close to observations in
these catchments, see Figure 4b). Model choices matters most in the arid regions where maximum model
efficiency is lowest. Models do exist that can provide reasonable simulations here, but they must be carefully
selected.

Spatial patterns of maximum model KGE and KGE distributions are roughly similar for the three objective
functions (see Figures S5 and S6). Maximum evaluation efficiency ranges from —0.74 to 0.96 for the
low flow objective function (KGE(1/Q)) and —0.15 to 0.91 for the combined flow objective function
(%[KGE(Q) + KGE(1/Q)]). Model equifinality is lower (i.e., fewer models are close to the best model in
each catchment), especially for the combined objective function. There are more catchments (19 and 24,
respectively) where no model beats the benchmark and fewer catchments where most models can beat the
benchmark (in only 189 and 200 catchments, respectively, do more than 30 models beat the benchmark).
Many models struggle to achieve accurate low flow simulations but the maximum model KGE scores for the
KGE(1/Q) objective show that this is not impossible, only that it requires careful model selection. Adopting
a multiobjective approach reduces model equifinality by the largest degree.
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Figure 5. Results shown for the evaluation period. (a) Number of times each model beats the KGE(Q) benchmark. Models with a snow module are shown in
dark blue. Models are sorted by number of parameters first and number of state variables (stores) second. For example, m37 (15p, 5s) means that the model
with identifier m37 has 15 parameters and 5 stores. (b) Box plot of the margin by which each model beats the benchmark. Negative values (cases where the
model does not beat the benchmark) are not shown. (c) Histograms of model ranks, where Rank 1 indicates the model with the highest KGE evaluation score
and Rank 36 indicates the model with the lowest KGE evaluation score. Note that histograms are scaled individually to best make use of the available space and
that bar heights should not be compared between rows. Red lines indicate 25th, 50th, and 75th percentiles. (d) Box plot of the difference between the model's
performance and that of the best model in each catchment.

4.3. Relating Differences Between Models to Number of Model Parameters

4.3.1. Differences Between Models During Evaluation

Figure 5 compares performance of individual models during evaluation. With the exception of the simplest
Model m01, models beat the benchmark in approximately equal numbers (Figure 5a). Models that include
a snow module (shown as blue bars) tend to beat the benchmark in more catchments than models with-
out a snow module for obvious reasons. There is substantial variety in the margin by which models beat
the benchmark (Figure 5b), showing that certain models are much better suited to flow simulation with
the KGE(Q) objective function than other models are. This is reflected in the ranks these models obtain
(Figure 5c). Number of parameters is a poor predictor of how a model will perform. Certain models, such
as m36 (15 parameters), m28 (12 parameters), and m13 (7 parameters), tend to rank better (toward Rank 1),
whereas other models, such as m26 (10 parameters), m21 (9 parameters), m25 (6 parameters), and m06
(4 parameters), tend to rank much worse (toward Rank 36). Many models with a snow module show bimodal
distributions, indicating that in certain catchments (i.e., those with snow) they are one of the best options
available, but this does not imply they are among the better choices in other catchments. Differences in
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model suitability for the KGE(Q) objective function can also be seen in how far away each model tends
to be from the best model in each catchment (Figure 5d). Models such as m28 (12 parameters), m13
(7 parameters), and mO05 (6 parameters) tend to perform similar to the best model in any catchment, whereas
models such as m34 (12 parameters), m21 (9 parameters), and m06 (4 parameters) tend to be much further
from the best model in each catchment. These results suggest that the choice of model parametrization
(i.e., which equations are used and how parameters are used within them) is more important to dictate a
model's strengths and weakness than how many parameters the model has.

There is greater variety in the number of catchments in which a model beats the benchmark for the other
two objective functions (see Figures S7 and S8) and broadly speaking these results support the conclusion
that certain model structures are much better suited for certain objective functions. Of particular note are
Models m28, m27, and m21 because they showcase three different model types: m28 performs well under all
three objective functions; m27 performs reasonably well with the KGE(Q) objective function but performs
substantially worse for the other two objectives; m21 performs poorly on the KGE(Q) objective function but
performs very well on the KGE(1/Q) objective, moving from being consistently one of the worst choices to
consistently one of the best.

4.3.2. Tests for Overfitting

Contrary to expectations, a higher number of model parameters does not necessarily lead to higher effi-
ciency values during calibration (Figure 6a). In other words, models with higher degrees of freedom (more
parameters) are not consistently better at fitting the calibration data. In fact, several of the models that show
lower calibration efficiency ranges (e.g., m21 and m26) have a relatively high number of free parameters
(9 and 10, respectively). Both simpler (e.g., m02, four parameters) and more complex models (e.g., m35, 15
parameters) show higher ranges of efficiency values during calibration.

Evaluation performance shows a similar pattern (Figure 6b): There are certainly differences between the
ranges of efficiency values obtained by different models, but this seems unrelated to the number of param-
eters each model has. Overall, evaluation efficiency ranges are somewhat lower than calibration ranges,
which indicates either a change in catchment conditions that the models insufficiently account for
(e.g., change in climatic forcing), or a degree of overcalibration (i.e., the models are calibrated to a certain
amount of data noise). Analysis of each model's performance change between calibration and evaluation
periods (Figure 6¢) shows that, whatever the cause, distributions of performance change are similar across
all models. Figure 6¢ also shows that performance decline during evaluation does not always occur, and in
approximately a quarter of all catchments model performance instead increases during evaluation (note that
these are not necessarily the same catchments for each model). While this may seem like a high number,
we note that many studies conducting similar analyses deliberately choose periods with contrasting climate
between calibration and evaluation periods and find declining model performance under contrasting
conditions, whereas here climatic conditions are relatively similar in both periods (see Figure S1).

Pair-wise Mann-Whitney statistical tests (see Figure S9) confirm that there are certainly differences between
the distributions of model performance but that there are no clear patterns that relate to the number of model
parameters. For example, the null hypothesis that calibration performance of Models m17 (4 parameters)
and m37 (15 parameters) are drawn from the same distribution cannot be rejected (p > 0.95). Analysis
on a per-catchment basis (not shown for brevity) also shows that no significant (p < 0.05) relation exists
between either calibration performance, evaluation performance or robustness, and the number of model
parameters.

Analysis of the constitutive KGE components (correlation, scatter, and bias; Figure S10) shows that the
expectation that bias decreases while scatter increases for models with a higher number of parameters
(see, e.g., Hoge et al., 2018) is not a general rule that can be applied to these conceptual models. Collectively,
models show a tendency to overestimate the bias component (s;,, > > although exceptions such as mo01,
m17, m14, and m22 exist; Figure S10c). Models also show a tendency to overestimate the scatter component
(o4im > 0, Figure S10b) but again exceptions exist. The clearest variability can be seen in the correlation
component (Figure S10a) where certain models score substantially lower than others, but here too no
relation with number of parameters can be seen.

Pair-wise Mann-Whitney tests (see Figure S11) indicate that distributions of values for KGE components
can be different for different models but that results for models with more parameters are not necessarily
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Figure 6. (a) Model performance during calibration. (b) Model performance during evaluation. (c) Model performance
robustness defined as the change in performance between calibration and evaluation. Results are only shown for
catchments where each model beats the benchmark during evaluation. Models are sorted by number of parameters first
and number of state variables (stores) second. Models that include a snow module are indicated with an asterisk (*).

statistically different from results from models with fewer parameters in a consistent way. These results sup-
port the findings in the previous section and again suggest that the number of calibrated model parameters
is not an effective measure for explaining differences in conceptual model performance.

The main conclusions can be found for the other two objective functions as well: Models perform quite
differently, but this cannot be consistently explained by an increasing number of parameters (see Figures
S12-S19). Interestingly, plots of the KGE components for both other objective functions (see Figures S16
and S18) show that most models have a tendency to underestimate the bias and scatter components
(i.e., the opposite of what happens with the KGE(Q) objective), showing the impact of objective function
choice on model simulation errors.

4.4. Relating Model Performance to Knowledge About Catchments
4.4.1. Correlations Between Model Ranks and CAMELS Catchment Features

The 52 CAMELS catchment features are divided into six categories: climatic conditions, observed stream-
flow signatures, geologic properties, topographic properties, vegetation properties, and soil properties. The
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Figure 7. Spearman rank correlation between model ranks in the evaluation period and the different categories of
CAMELS catchment data (separated by dotted lines, these are properties of vegetation, topography, soil, streamflow,
geology, and climate). For each model, correlations are only calculated for catchments where the model beats the
benchmark. Models are ranked from best to worst, with Rank 1 indicating the best model. Only correlations with p
value <0.05 are shown, and color intensity corresponds to the strength of the correlation. Models are sorted manually
in an attempt to place models with similar correlation patterns close together. Example interpretation: See the dark
green points for the combination of models with a snow module (indicated with an asterisk (*)) and “fraction
P(recipitation) as snow” that indicates a strong negative correlation (bottom left of the figure). As the observed snowfall
fraction of catchments increases, models with a snow module tend to achieve lower rank numbers, that is, toward
Rank 1, and thus rank better than the other models in our sample.

categories are not fully independent. The connection between climatic conditions and streamflow regimes
on continental to global scales is well established (e.g., Addor et al., 2018; Berghuijs et al., 2014; Knoben,
Woods, and Freer 2018; Kuentz et al., 2017), and this shows in the CAMELS data as high correlations
between climatic conditions and observed streamflow signatures (Addor et al., 2018, see also Figure S20 for
cross correlations). Climatic conditions and to a lesser extent observed streamflow signatures also correlate
strongly with vegetation attributes. Geologic and soil properties contain the most independent information.
Scatter plots of model ranks and CAMELS catchment attributes (not shown for brevity) indicate that
empirical relationships exist between model ranks and certain types of catchments but also that substantial

KNOBEN ET AL.

13 of 23



 ¥eld
AUV
ADVANCING EARTH
AND SPACE SCIENCE

Water Resources Research 10.1029/2019WR025975

scatter around any main relationship is present. Figure 7 summarizes these relationships using the Spear-
man rank correlation coefficient. Note that for each model only those catchments are included where the
model beats the benchmark.

The strongest correlations for most models can be found with observed streamflow signatures (for a descrip-
tion of these signatures, see Addor et al., 2018) and to a slightly lesser extent with climatic conditions.
If streamflow signatures are seen as a way to describe flow regimes, this suggest that certain models are
relatively more or less suited for certain flow regimes (compared to the other models in our study). The
established connection between streamflow regimes and climatic conditions explains why model ranks also
correlate with climatic conditions. Correlations with those CAMELS attributes that describe the catchments'’
geology, topography, soil, and vegetation are generally the weakest, except in cases where those attributes
also correlate with climatic conditions or observed streamflow signatures. For example, mean elevation
(topography) correlates strongly with fraction precipitation as snowfall (climate). This can imply several
things: (1) Uncertainty in the attributes data is too high to find any clear relationships with model perfor-
mance; (2) we are not looking at the right catchment attributes because these do not seem to explain the
hydrologic and model behavior; (3) models work better/worse for certain streamflow regimes, but regimes
are not a unique result from a certain arrangement of catchment attributes.

These conclusions are similar for the other two objective functions. Correlations for the KGE(1/Q) objective
function (see Figure S21) are generally lower than those in Figure 7, but the strongest correlations can be
seen between model ranks and observed streamflow signatures. Correlations for the % [KGE(Q)+KGE(1/Q)]
objective function (see Figure S22) are similar to those in Figure 7, in terms of both pattern and strength.
4.4.2. Model Structure Similarity

In Figure 7, models are sorted manually along the x axis, such that models with similar correlation patterns
in the y direction are placed close to one another. This allows us to define model groups that contain model
structures with similar performance ranks across the sample of catchments.

An obvious relation exists between models that include a snow component (m12 to m34, leftmost on the
x axis) and catchments where a larger fraction of the annual precipitation occurs as snowfall, where these
models naturally achieve higher efficiency scores than models without the capability to simulate snow
accumulation and melt. The next group consists of Models m34, m21, m26, m28, and m29. These perform
relatively better in baseflow-dominated catchments without flashy streamflow behavior. These particular
models share a structural feature that consists of a soil moisture routine that simulates a variable
contributing area, which then drains into a linear reservoir. Models m01, m08, m14, m17, m20, m22, and
m25 (at the right on the x axis) share a tendency to rank better in catchments with low precipitation,
low mean flows and low flows (Q5) and a larger number of high precipitation events. This suggests
drier catchments with low flows punctuated by the occasional high flow event. These models all have a
mechanism that allows incoming precipitation to reach the stream quickly (either saturation excess or
a bypass mechanism) and also contain a mechanism that ensures that very low (up to 0) flows can be
generated. This mechanism is either threshold-based, where no flow is generated unless a storage threshold
is exceeded, or evaporation-based, where evaporation can occur from multiple stores and can thus be used to
prevent water from reaching the stream. Model mO1 is the most extreme member of this group, containing
only a saturation excess mechanism. The models in this group suggest that very different model structures
are capable of reproducing similar flow regimes. The remaining models can be roughly divided into two
groups: Models m02 to m36 and m03 to m40. These models do not share any obvious characteristics and do
not show many pronounced correlations.

Similarity of correlation patterns can be seen for the other two objective functions too (see Figures S21 and
S22) but model groupings are different. This might imply that different parts of the model structure influence
whether model structures behave similarly on a given objective function. Further analysis for the other two
objective functions is considered out of scope for this work.

5. Discussion
5.1. Synthesis

Large-sample analysis such as this study can provide unique insights into our ability to model a wide variety
of catchments and how models differ from one another in a practical sense. Here, we return to the research
questions posed in section 2.
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Figure 8. (a) Maximum model performance during evaluation. (b) Difference between maximum model performance
and benchmark KGE. (c-f) Relations between model performance and climatic conditions, showing how (not) using a
benchmark can affect conclusions.

We first answer the question “What level of model performance can reasonably be expected in a given catch-
ment?” by defining benchmarks based on daily flow observations in the calibration period (Figure 3). This
results in benchmark evaluation KGE scores that range between —0.65 and 0.87, with 98.8% of catchments
having benchmark values that are higher than what would be obtained by using the mean annual flow
(i.e, KGE=1- \/5; Knoben, Freer, & Woods, 2019). The benchmark scores gives us the necessary context to
evaluate model performance, by showing what the typical seasonal signal in the data is and which efficiency
scores can easily be obtained in a given catchment. Benchmark scores show strong spatial organization and
are typically highest in snow-dominated catchments and lowest in arid catchments.

Answers to our second question, “How many of the 36 model structures in our sample can be considered
plausible in a given catchment, and how high is model equifinality within this subset?” are dependent on
where we draw the line between plausible and implausible models. Without an explicit statement about the
benchmark that we expect our models to beat we might have concluded that our model sample performs
worst in arid catchments (see the strong negative gradient in Figure 8c). In fact, this would have been in line
with existing literature that states that it is harder to obtain high efficiency scores in arid locations than it is
to obtain such scores in more humid regions (e.g., Fowler et al., 2018; Krysanova et al., 2017; Melsen et al.,
2018; Newman et al., 2017; Van Esse et al., 2013). With our specified benchmark arid regions do not stand
out as places where our model ensemble does poorly. Despite the challenges to hydrologic modeling in arid
regions (Pilgrim et al., 1988), our model ensemble is able to beat the benchmark in arid and humid regions
by approximately equal margins (Figure 8d). Instead, we have reason to doubt the ability of the models in our
sample to simulate cold-region hydrology: Models tend to achieve higher KGE evaluation scores as fraction
snowfall increases but improvement over benchmark drastically lowers. Of course, when the benchmark
scores increases there is less potential for improvement to be achieved by any model and lower AKGE values
might be expected (e.g., with a benchmark KGE = 0.95, the potential for improvement is only 1-0.95 = 0.05).
However, in 11 snow-dominated catchments our model ensemble is unable to reproduce the persistent
seasonal streamflow signal identified by the benchmark model and no model in the ensemble can beat the
benchmark score. This might suggest any combination of missing or inappropriate process representations,
issues with the input data or problems with model calibration. In the vast majority of nonsnowy catchments
many to all of the models can beat the benchmark (Figure 4). They do not do so by equal margins but in
approximately 200 catchments up to 8 model structures achieve practically the same efficiency score as
the best model (<0.01 KGE difference) and in approximately 500 catchments up to 28 models can be close
(<0.05 KGE difference) to the best model. Logically, in cases where model structure equifinality is high, not
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every model can be an equally good representation of the catchment under consideration and that these
models produce hydrograph simulations of similar accuracy does not mean that they do so for the right
reasons (Kirchner, 2006). These results provide evidence from a very large sample of model structures and
catchments that better assessment of model structural adequacy (e.g., Gupta et al., 2012) and process fidelity
in models (e.g., Clark et al., 2016; Kirchner, 2006) should become the norm. Relying on aggregated efficiency
scores alone is insufficient to determine which models are appropriate choices for which catchments.

We next answer the question “What are the differences between models, and how do these relate to the
number of model parameters?” The expectation that models with more parameters are vulnerable to overfit-
ting cannot be seen in our results. This contrasts with findings by Perrin et al. (2001), who reported a tendenc
for conceptual hydrology models with more parameters to better fit calibration data but not evaluation
data, and an inverse relation between model robustness (defined in their paper as the decrease of mean
model performance between calibration and verification periods) and number of model parameters. This
pattern is not visible in our sample (Figures 6, S12, and S14) and not found by our use of statistical tests
(Figures S9, S13, and S15). Equally, the expectation that models with more degrees of freedom generate
errors with reduced bias and increased scatter (Hoge et al., 2018; Lute & Luce, 2017) is not seen in the con-
stitutive components of the KGE objective function (Figures S10, S11, and S16-S19). While overfitting (i.e.,
performance loss in evaluation due to noise fitting during calibration, e.g., Beven, 2012; Schoups et al., 2008;
Shaw et al., 2011) is a clear issue with high-degree polynomials (Grayson & Blgschl, 2001; Schoups et al.,
2008), these principles do not seem to apply to our sample of conceptual hydrologic models and catchments.
Consequently, the number of parameters might only be a good way to quantify model complexity in the
restricted case that the models with more parameters contain the models with fewer parameters as a special
case (e.g., a fifth-order polynomial contains fourth-order polynomials as a special case). This condition is
generally not met in model intercomparison studies which typically aim for diversity, not similarity, in the
models included (e.g., see the models used in Franchini & Pacciani, 1991; Perrin et al., 2001; Seiller et al.,
2012; and this study).

Whereas most models show a tendency to perform well on specific objective functions but not on others
(a common finding in studies comparing multiple models across multiple objectives; see, e.g., Fowler et al.,
2018; Perrin et al., 2001; Seiller et al., 2012), certain models seem to display more well-rounded behavior
and tend to rank better regardless of the objective function used. It is therefore noteworthy and somewhat
unexpected to find that Model m28 is consistently among the best, if not the best, model structure in the
majority of catchments and for all three objective functions. This model is the MARRMoT version of the
Xinanjiang model (Knoben et al., 2019; Zhao, 1992), modified with a unique feature not seen in any other
model in our sample, namely a double parabolic curve that is used to represent the fraction of the catch-
ment that contributes to free drainage (Jayawardena & Zhou, 2000). Nonlinear treatment of saturated area
representation has been linked to more flexible model performance within groundwater-dominated catch-
ments before (Lane et al., 2019) and we can speculate that this specific double parabolic formulation gives
the model a unique capability that allows it to perform well in a wide variety of catchments. Interestingly,
it is difficult to generalize these findings because for every model (including m28) certain catchments can
be found where that model is one of the best structures (in terms of efficiency scores during evaluation)
and equally catchments can be found where that model is one of the worst options (Figure 9 Perrin et al.,
2001, presents a similar finding). This shows a critical weakness of model comparison studies that use a small
number of basins: Results are conditional on the choice of catchments and thus very difficult to generalize
to other places.

Large-sample studies allow patterns to emerge, of which Figure 9a provides an example: Some model struc-
tures seem relatively unsuitable for flow simulation with the KGE(Q) objective function, but of the models
that do tend to rank better on this objective, models with more parameters appear to have more flexibility
and tend to rank better in larger numbers of catchments than models with fewer parameters. This leaves
modelers working with conceptual models in large numbers of catchments facing a dilemma: Parsimonious
models are preferable because their parameters will be better identifiable (e.g., Jakeman & Hornberger, 1993;
Nash & Sutcliffe, 1970; Wagener et al., 2003), but, as our results suggest, models with more parameters seem
to have the flexibility to accurately reproduce hydrographs in a much wider range of catchments without
any obvious risk of being overfitted to the calibration data.
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Figure 9. Overview of how often each model ranks (a, c, ) in the top three and (b, d, f) in the bottom three models during evaluation. Note that these instances
are only counted in cases where the model at least beats the catchment-specific benchmark. For example, there are only 548 counts of any model being ranked
first on the KGE(Q) objective, while our sample contains 559 catchments, because in 11 catchments not a single model beats the benchmark and in these
catchments no model is assigned a rank. Models that include a snow module are indicated with an asterisk (*).

Last, we attempt to answer “How does relative model performance relate to known catchment attributes?”
We found the strongest relation between relative model rank and observed streamflow signatures, while rela-
tions with climatic attributes and catchment descriptors were less clear (Figures 7, S21, and S22). The lack of
correlation with some attributes may be due to low information content in these attributes but might also be
the results of our experimental design. Given that models were calibrated to streamflow data, it is perhaps not
surprising to see model performance correlate most strongly with streamflow signatures, because the models
are naturally sorted by their ability to replicate certain regimes as a consequence of the calibration procedure.
It is possible that the relation between model performance and other catchment attributes becomes clearer
when those attributes are specifically used during calibration (e.g., calibrating against streamflow, evapora-
tion and soil moisture observations simultaneously might clarify relations between model performance and
climate and/or soil characteristics), but such calibration approaches also carry new challenges with them
such as the commensurability between model states and real-world observations. Currently, our findings
reinforce the idea that certain model structures are better suited for simulation of certain flow regimes and
our results suggest that models that share certain structural elements show similar suitability for certain
flow regimes. Our results give rise to several hypotheses about conceptual model behavior (see section 4.4.2
and the note on Model m28 in this section), but all were formulated after we calibrated, evaluated, ranked,
and grouped the models. Strict testing of the hypotheses is thus necessary (see, e.g., Beven, 2000, 2018; Clark
et al., 2011; Fenicia et al., 2014; Kirchner, 2006; Pfister & Kirchner, 2017) before these ideas can be used to
guide model development.
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5.2. The Need to Select an Appropriate Hydrological Model

This study provides large-sample evidence for the need for more thorough and process-based model eval-
uations (e.g., Clark et al., 2016; Gupta et al., 2012; Kirchner, 2006; Wrede et al., 2015). There are too many
models that are superficially similar in terms of efficiency scores but internally different in terms of process
representation. To increase hydrologic understanding and generate robust long-term projections of future
water resources, more effort needs to be devoted to understanding (1) which hydrologic processes are dom-
inant where, (2) which model structures contain appropriate representations of these dominant processes
and should thus be used in a given catchment (for a given definition of “appropriate”), and (3) how domi-
nant hydrologic processes and consequently the criteria for what constitutes an “appropriate” model might
change in the future in a given catchment. Only with such understanding can we confidently select a model
structure for a given catchment and study purpose.

It has been long known that models with fewer calibrated parameters can compete with more parameter
-heavy models in terms of model performance (e.g., Jakeman & Hornberger, 1993; Perrin et al., 2001).
Overfitting and the inability to properly identify parameter values through calibration to streamflow data are
often cited as a reason for this (e.g., Beven, 1989; Kuczera & Mroczkowski, 1998). Parsimonious models with
few calibration parameters are often preferred over more complex models to avoid these issues. However,
such simple models cannot contain all potentially relevant hydrologic processes, because this would require
more parameters than can be identified from streamflow data alone. This leads to a dilemma succinctly
stated in Kuczera and Mroczkowski (1998): “A simple model cannot be relied upon to make meaningful
extrapolative predictions, whereas a complex model may have the potential but because of information
constraints may be unable to realize it.” Yet, such complex models are required if predictions under changing
conditions are to be made (Kirchner, 2006). Our results suggest that models with a larger number of
parameters (up to 15 in this study) are less vulnerable to parameter overfitting than might be expected
(although parameter identifiability might remain an issue; see section 5.4). Therefore, when a choice must
be made between several model structures for prediction under changing conditions there is no clear
justification for selecting the model with the fewest calibration parameters as the preferable alternative
(cf. Oreskes et al., 1994; Reichert & Omlin, 1997). Instead, analysis of the dominant hydrologic processes,
possible changes in these processes and each models' ability to reflect both current and future processes
should form the core of such a decision.

5.3. How Representative Are the Catchment and Model Sample?

We have remarked on the fact that results from modeling studies are conditional in the sample of models
and catchments used. We therefore briefly summarize our findings about the representativeness of our
catchment and model sample and refer the interested reader to supporting information Text S3 for more
details.

We use the hydrological climate classification of Knoben, Woods, and Freer (2018) to quantify where the
CAMELS catchments fall in relation to the global distribution of hydroclimates. This classification uses
three axes that describe annual average aridity, the within-year variability in the water-energy balance and
the fraction of precipitation that occurs as snow. There are few CAMELS catchments on either end of the
aridity scale, few catchments with low within-year aridity seasonality, and snow-dominated CAMELS catch-
ments cover a fairly narrow range out of all possible snow-dominated conditions. In geographical terms, care
should be taken when extrapolating our findings to climates with more extreme aridity values (e.g., deserts
and tropical rain forests), to regions with less seasonally varied aridity values (e.g., climatic transition zones
on the edges of deserts and rain forest), and to places with a low mean temperatures combined with a less
pronounced summer-winter temperature cycle (e.g., taiga).

It is commonly assumed that models in an ensemble are sufficiently varied if the model simulations bracket
the observations (Clark et al., 2008). This is the case for the majority of catchments during evaluation. Clear
exceptions are mountainous snow-dominated catchments and several catchments on the Pacific North-
west, which can indicate a lack of diversity in our model ensemble (likely the case for snow-dominated
catchments) or the presence of bias in the forcing data (a likely explanation for the Pacific Northwest).
Despite mostly bracketing the observations, the model ensemble shows a strong seasonal bias with a
tendency toward underprediction in late spring and summer and overprediction in late autumn and winter.
This could be due to the spacing of the MARRMoT models in the overall model space. Skewed sampling of
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model structures can bias model comparison studies but the extent to which this is an issue is currently dif-
ficult to quantify. Metrics that define model similarity and model spread in the total model space are needed
to address this question in more depth.

5.4. Study Limitations

This section briefly describes various limitations in the current study set up and possible ways to address
these in future work. First, our analyses are mostly based on general performance metrics that aggregate
model performance into a single efficiency score. Higher resolution diagnostics such as seasonal or time
step based performance metrics (see, e.g., Coxon et al., 2014), or signature-based calibration and evaluation
(see, e.g., Westerberg et al., 2014) might provide insight into why there is considerable equifinality in
aggregated model performance across our sample.

Second, we use lumped models, catchment-averaged daily forcing data and average catchment attributes.
Spatial heterogeneity is not accounted for beyond parametrizations of contributing catchment area in certain
model structures, in an attempt to keep the analysis manageable. This lack of spatial explicitness makes it
challenging to get clear answers to questions that require more nuanced analysis of the hydrograph and/or
detailed process consideration, and much work remains to be done.

Third, this work focuses on model structure uncertainty and leaves data and parameter uncertainty mostly
unaccounted for. Our experimental design is constrained by a need to limit computational times but ignoring
data uncertainty (see, e.g., McMillan et al., 2012, 2018) can force the calibration procedure to compensate
for errors in the measured rainfall-runoff relationship and thus influence results. Equally, although we see
no evidence of parameter overfitting, it is still possible that parameters are poorly identifiable. We have
performed a short investigation of the impact of using only a single parameter set per model per catchment
and believe that patterns across all catchments and models can be inferred from this approach
(see supporting information Text S4 for details). We caution against using our data to investigate a single
catchment without accounting for parameter uncertainty, because differences between calibrated parameter
sets can be substantial in a given basin, even if patterns across the sample of all basins remain relatively
stable. Our results do suggest that models can be divided into groups, where models within each group
are similarly suited toward particular flow regimes. These groups can be used to select a small number of
promising models within our ensemble, with each selected model being representative of several others.
This reduces the computational load and is a potential way to allow future studies more room to account for
data and parameter uncertainties.

5.5. Fostering Further Work

The computational demands of studies such as this can be high. To facilitate further research, calibration
results of all models (parameters, simulated model storages and fluxes and obtained efficiency values)
are made available on the University of Bristol data repository (dx.doi.org/10.5523/bris.2zutxh2qeep6y2cy
6scwgk9eqj). The CAMELS data set and MARRMoT modeling toolbox are also freely available and can be
found through their respective references.

6. Conclusions

We calibrated 36 lumped conceptual models for streamflow simulation in 559 catchments across the United
States, using three different formulations of the KGE as objective functions. We used a benchmark based on
the mean or median calendar day flow (depending on the catchment) to define a baseline of expected model
performance for each catchment. This benchmark proved hardest to beat in mountainous snow-dominated
catchments: In 11 of these catchments no model managed to beat the benchmark, indicating that persistent
features of the hydrograph are systematically poorly simulated in these places. In wet nonsnowy catch-
ments, the majority of models managed to beat the benchmark. In arid catchments model choice seemed to
matter most: Models do exist that beat the benchmark (and by similar margins as models in wetter catch-
ments do), but these must be carefully selected. In nearly all catchments model equifinality can be high. For
approximately 500 catchments, between 1 and up to 28 models can be within 0.05 KGE from the best model
in each catchment. Our results indicate that there is little relation between model performance and number
of parameters and there is no evidence of increased risk of overfitting of models with more parameters
compared to models with fewer parameters. Instead, our results suggest that the choice of model
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parametrization (i.e., which equations are used and how parameters are used within them) is more impor-
tant to dictate its suitability for flow simulation with a given objective function and the flow regimes the
model is capable of simulating well. In fact, our results suggest that if the model is suitable for a given
objective function, models with more parameters tend to have increased flexibility compared to models with
fewer parameters. This flexibility allows them to perform well outside the calibration period in larger num-
bers of catchments. It remains difficult to explain the type of catchments where a model might do well with
attributes that quantify the catchments’ geologic, topographic, soil, and vegetation attributes. Instead, model
suitability seems to relate strongest to the streamflow regime each catchment generates, and we show an
initial assessment that relates commonalities in model structure to similarities in model performance. Given
our catchment-averaged approach to model use, data, and analysis and the fact that our hypotheses about
model structure similarity were formulated after we calibrated and evaluated our models, more detailed
investigation of between-model differences is needed, and care should be taken when applying our findings
to future modeling efforts that extend beyond the limits of our approach.

Data Availability Statement

CAMELS data can be downloaded from https://ncar.github.io/hydrology/datasets/CAMELS_attributes
(Addor et al., 2017). The latest MARRMoT model code and supporting information can be downloaded
from https://github.com/wknoben/MARRMoT (Knoben et al., 2018c); MARRMoT v1.0 which was used for
this work is available online (from https://dx.doi.org/10.5281/zenodo.2482542). A data package containing
calibrated parameter values for the models used in this work, obtained efficiency values, and time series of
simulated flows, internal fluxes, and model states can be downloaded from the University of Bristol data
repository (dx.doi.org/10.5523/bris.2zutxh2qeep6y2cy6scwgk9eq;j).
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