47 research outputs found

    A simple score to estimate the likelihood of pseudoprogression vs. recurrence following stereotactic radiosurgery for brain metastases: The Bergen Criteria

    Get PDF
    Background A major challenge in the follow-up of patients treated with stereotactic radiosurgery (SRS) for brain metastases (BM) is to distinguish pseudoprogression (PP) from tumor recurrence (TR). The aim of the study was to develop a clinical risk assessment score. Methods Follow-up images of 87 of 97 consecutive patients treated with SRS for 348 BM were analyzed. Of these, 100 (28.7%) BM in 48 (53.9%) patients responded with either TR (n = 53, 15%) or PP (n = 47, 14%). Differences between the 2 groups were analyzed and used to develop a risk assessment score (the Bergen Criteria). Results Factors associated with a higher incidence of PP vs. TR were as follows: prior radiation with whole brain radiotherapy or SRS (P = .001), target cover ratio ≄98% (P = .048), BM volume ≀2 cm3 (P = .054), and primary lung cancer vs. other cancer types (P = .084). Based on the presence (0) or absence (1) of these 5 characteristics, the Bergen Criteria was established. A total score 3 points were associated with 84% TR and 16% PP, P < .001. Conclusion Based on 5 characteristics at the time of SRS the Bergen Criteria could robustly differentiate between PP vs. TR following SRS. The score is user-friendly and provides a useful tool to guide the decision making whether to retreat or observe at appropriate follow-up intervals.publishedVersio

    Responses to the 2017 ‘1 Million Gray Question’: ASTRO membership’s opinions on the most important research question facing radiation oncology

    Get PDF
    At the American Society for Radiation Oncology's (ASTRO's) 2017 annual meeting in San Diego, CA, attendees were asked, “What is the most important research question that needs to be answered in the next 3 to 5 years?” This request was meant to start a dialogue, promote thoughtful discussion within our professional community, and help inform topics for ASTRO workshops and focus meetings. Nearly 100 people responded while in attendance at the meeting, with questions that ranged from “How can we remove barriers so low- and middle-income countries can have radiation oncology facilities?” to “What is the exact role of radiation in stage IV disease in combination with immunotherapy or targeted agents to combat resistance development?” to “How can personalized care be better integrated into the oncology and radiation oncology clinical space?

    Diagnosis of Anosmia and Hyposmia: A Systematic Review

    Get PDF
    BackgroundAnosmia and hyposmia have many etiologies, including trauma, chronic sinusitis, neoplasms, and respiratory viral infections such as rhinovirus and SARS-CoV-2. We aimed to systematically review the literature on the diagnostic evaluation of anosmia/hyposmia.MethodsPubMed, EMBASE, and Cochrane databases were searched for articles published since January 1990 using terms combined with Medical Subject Headings (MeSH). We included articles evaluating diagnostic modalities for anosmia, written in the English language, used original data, and had two or more patients.ResultsA total of 2065 unique titles were returned upon the initial search. Of these, 226 abstracts were examined, yielding 27 full-text articles meeting inclusion criteria (Level of evidence ranging from 1 to 4; most level 2). The studies included a total of 13,577 patients. The most utilized diagnostic tools were orthonasal smell tests (such as the Sniffin? Sticks and the UPSIT, along with validated abridged smell tests). Though various imaging modalities (including MRI and CT) were frequently mentioned in the workup of olfactory dysfunction, routine imaging was not used to primarily diagnose smell loss.ConclusionThe literature includes several studies on validity and reliability for various smell tests in diagnosing anosmia. Along with a thorough history and physical, validated orthonasal smell tests should be part of the workup of the patient with suspected olfactory dysfunction. The most widely studied modality was MRI, but criteria for the timing and sequence of imaging modalities was heterogenous

    MRI-LINAC: A transformative technology in radiation oncology

    Get PDF
    Advances in radiotherapy technologies have enabled more precise target guidance, improved treatment verification, and greater control and versatility in radiation delivery. Amongst the recent novel technologies, Magnetic Resonance Imaging (MRI) guided radiotherapy (MRgRT) may hold the greatest potential to improve the therapeutic gains of image-guided delivery of radiation dose. The ability of the MRI linear accelerator (LINAC) to image tumors and organs with on-table MRI, to manage organ motion and dose delivery in real-time, and to adapt the radiotherapy plan on the day of treatment while the patient is on the table are major advances relative to current conventional radiation treatments. These advanced techniques demand efficient coordination and communication between members of the treatment team. MRgRT could fundamentally transform the radiotherapy delivery process within radiation oncology centers through the reorganization of the patient and treatment team workflow process. However, the MRgRT technology currently is limited by accessibility due to the cost of capital investment and the time and personnel allocation needed for each fractional treatment and the unclear clinical benefit compared to conventional radiotherapy platforms. As the technology evolves and becomes more widely available, we present the case that MRgRT has the potential to become a widely utilized treatment platform and transform the radiation oncology treatment process just as earlier disruptive radiation therapy technologies have done

    Conformal Radiotherapy for High-Grade Gliomas: How Much Is Too Much?

    No full text

    Radioresistance of Brain Tumors

    No full text
    Radiation therapy (RT) is frequently used as part of the standard of care treatment of the majority of brain tumors. The efficacy of RT is limited by radioresistance and by normal tissue radiation tolerance. This is highlighted in pediatric brain tumors where the use of radiation is limited by the excessive toxicity to the developing brain. For these reasons, radiosensitization of tumor cells would be beneficial. In this review, we focus on radioresistance mechanisms intrinsic to tumor cells. We also evaluate existing approaches to induce radiosensitization and explore future avenues of investigation

    Is a Half-Truth a Whole Lie?

    No full text
    corecore