14 research outputs found

    The implicit loss function for errors in soil information

    Get PDF
    The loss function expresses the costs to an organization that result from decisions made using erroneous information. In closely constrained circumstances, such as remediation of soil on contaminated land prior to development, it has proved possible to compute loss functions and to use these to guide rational decision making on the amount of resource to spend on sampling to collect soil information. In many circumstances it may not be possible to define loss functions prior to decision making on soil sampling. This may be the case when multiple decisions may be based on the soil information and the costs of errors are hard to predict. We propose the implicit loss function as a tool to aid decision making in these circumstances. Conditional on a logistical model which expresses costs of soil sampling as a function of effort, and statistical information from which the error of estimates can be modelled as a function of effort, the implicit loss function is the loss function which makes a particular decision on effort rational. After defining the implicit loss function we compute it for a number of arbitrary decisions on sampling effort for a hypothetical soil monitoring problem. This is based on a logistical model of sampling cost parameterized from a recent survey of soil in County Donegal, Ireland and on statistical parameters estimated with the aid of a process model for change in soil organic carbon. We show how the implicit loss function might provide a basis for reflection on a particular choice of sampling regime, specifically the simple random sample size, by comparing it with the values attributed to soil properties and functions. In a recent study rules were agreed to deal with uncertainty in soil carbon stocks for purposes of carbon trading by treating a percentile of the estimation distribution as the estimated value. We show that this is equivalent to setting a parameter of the implicit loss function, its asymmetry. We then discuss scope for further research to develop and apply the implicit loss function to help decision making by policy makers and regulators

    Technical assistance in Nigeria : developing geoscience skills for tomorrow

    Get PDF
    The World Bank funded Nigerian Geochemical Mapping Technical Assistance Project was started in 2008 within the Nigerian Ministry of Mines and Steel Development, and is now nearing completion. Staff from the Nigerian Geological Survey Agency (NGSA), the Nigerian academic community, British Geological Survey, and Geological Survey of Finland, have worked alongside one another in a comprehensive program of practical training and knowledge exchange. This program has enabled researchers from a range of backgrounds and experience in Africa and Europe to exchange knowledge and develop important geoscience skills. As part of this program key skills in many areas including; GIS, statistics, QC, data management, laboratory analysis, sampling methodologies, has developed the knowledge and skills base within the Nigerian geosciences community, and has maintained momentum for Nigeria’s national geochemical mapping program. An important objective of the Project is knowledge exchange during training of Nigerian geoscientists in conducting regional geochemical surveys as part of a long term mapping program across Nigeria. Practical training in methodologies for geochemical mapping formed the basis of a major field campaign in 2009, during which over 100 personnel were trained in geochemical mapping techniques. A similar number of personnel were involved in specialist training through a series of workshops and training courses in Nigeria and the UK. Two field areas were selected for the geochemical mapping training — one in central Nigeria (the ‘Minna Cell’) and one in south-western Nigeria (the ‘South-western Cell’) — covering a combined area of 52 000 km2. Key challenges involved the procurement of field equipment and consumables, and modernisation of sample preparation laboratories and archiving facilities at the National Geosciences Research Laboratory, Kaduna. New sample preparation and analytical equipment has been purchased and the laboratory staff have received training in the use of the new equipment. In the long-term it is envisaged that the analytical facilities will be developed further, and that all samples will be prepared, analysed and archived in Nigeria. A national geochemical mapping programme involving multi-element analysis of stream sediment samples is used as a primary dataset in the exploration for new economic mineral deposits. Establishing a geochemical baseline is necessary in order to monitor the effects of anthropogenic activities e.g. contamination caused by industrial waste and mining activities, for environmental investigations and medical geology studies both in rural and in urban areas, as well as studies within the agricultural and forestry sectors

    London region atlas of topsoil geochemistry

    Get PDF
    The London Region Atlas of Topsoil Geochemistry (LRA) is a further step towards understanding the chemical quality of soils in London, following a previous project called London Earth carried out by the British Geological Survey (BGS) (Johnson et al., 2010[1]). The main advantage of the LRA is that it includes soil geochemical data from the counties surrounding London; placing the city within the context of its rural hinterland, allowing assessments of the impact of urbanisation on soil quality. The London Region Atlas of Topsoil Geochemistry is a product derived from the BGS Geochemical Baseline Survey of the Environment (G-BASE[2]) project. The London Region Geochemical Dataset (LRD, n=8400), on which the atlas is based, includes TOPSOIL data from two complementary surveys: i) the urban London Earth (LOND) and ii) the rural South East England (SEEN). The LRA covers the Greater London Authority (GLA) and its outskirts in a rectangular area of 80x62 km. This extends from British National Grid coordinates Easting 490000–570000, and Northing 153000–215000. The urban LOND and the rural SEEN surveys contribute with 6801 and 1599 samples respectively to the LRD. The concentrations of 44 inorganic chemical elements (Al2O3, CaO, Fe2O3, K2O, MgO, MnO, Na2O, P2O5, SiO2, TiO2, Ag, As, Ba, Bi, Br, Cd, Ce, Co, Cr, Cs, Cu, Ga, Ge, Hf, I, La, Mo, Nb, Nd, Ni, Pb, Rb, Sb, Sc, Se, Sn, Sr, Th, U, V, W, Y, Zn and Zr), loss on ignition (LOI) and pH in topsoil are included in the LRA. For each element, a map showing the distribution in topsoil across the atlas area and a one-page sketch of descriptive statistics and graphs are presented. Statistics and graphs for whole dataset (LRD), London urban subset (LOND) and London surroundings rural subset (SEEN), as well as graphs of topsoil element concentrations over each simplified geology unit are shown. The LRD has been used already in a study aiming to detect geogenic (geological) signatures and controls on soil chemistry in the London region (Appleton et al., 2013[3]). It includes maps showing the distribution of Al, Si, La and I (and Th, Ca, Mn, As, Pb and Zr in supplementary material) and it is concluded that the spatial distribution of a range of elements is primarily controlled by the rocks from where soil derives, and that these geogenic patterns are still recognisable inside the urban centre. Other studies have been done that are based on data in the LRD, namely using the LOND subset or part of it. The main focus of these studies was the mercury content (Scheib et al., 2010[4]), the influence of land use on geochemistry (Knights and Scheib, 2011[5]; Lark and Scheib, 2013[6]); the bioaccessibility of pollutants such as As and Pb (Appleton et al., 2012[7]; Appleton et al., 2012[8]; Cave, 2012[9]; Appleton et al., 2013[10]; Cave et al., 2013[11]) and the lability of lead in soils (Mao et al., 2014[12]); the determination of normal background concentrations of contaminants in English soil (Ander et al., 2013[13]) and the contribution of geochemical and other environmental data to the future of the cities (Ludden et al., 2015[14]). The London Region Atlas of Topsoil Geochemistry formally presents detailed information for all chemical elements in the LRD. This information can be easily visualised and elements compared as its production and layout is standardised. Differences in topsoil element concentrations between the centre of the city and its outskirts can be assessed by observing the map and comparing statistics and graphs reported for the LOND and SEEN subsets respectively. This urban/rural contrast is particularly evident for elements such as Pb, Sb, Sn, Cu and Zn, for which mean concentrations in the urban environment are two to three times higher than those observed in the rural environment. This is a typical indicator suite of urban soil pollution reported in several other cities in the UK also (Fordyce et al., 2005[15])

    Mercury concentrations in the soil environment of London UK : an example of pollution impacts

    Get PDF
    Mercury is present in trace amounts only in most natural circumstances but anthropogenic sources such as coal combustion[1] enhance environmental loadings. High Hg concentrations are of concern as it has immunotoxic, genotoxic and teratogenic effects on humans and animal

    Multi-element stream sediment geochemistry of south-western and central Nigeria

    Get PDF
    This paper presents preliminary results from geochemical baseline stream sediment surveys from two Cells (South-western Cell and Central Cell) in Nigeria completed in 2009. This work was part of the World Bank funded Nigerian Sustainable Management of Mineral Resources Project carried out by the Nigerian Geological Survey Agency in cooperation with the British Geological Survey. A total of 284 stream sediment samples were collected from the South-western Cell, with an average sampling density of 1 site every 90 km2. A total of 1288 stream sediments were collected from the Central Cell, with an average density of 1 sample every 20 km2. Geochemical analyses were by ICP-MS technique following sodium peroxide fusion-HCl-HF extractions. Au, Pt and Pt determinations were by Fire Assay-acid dissolution method. Selected findings on the distribution of trace elements, HFSE and REE in stream sediment samples are presented in relation to the geology, known mineral occurrences, as well as other factors that affect the distribution of elements in the surface environment A systematic approach to the interpretation of the elemental concentrations and distributions involved a range of statistical techniques (including correlation, cluster and factor analysis) to investigate the structure and trends within the data set, thus providing insights into the underlying geological, physical, geochemical and anthropogenic processes that are important in controlling the stream sediment geochemistry. The role of ilmenite and Fe/Mn-oxides and oxy-hydroxides in controlling trace element stream sediment geochemistry is highlighted by strong Fe/Ti-trace element associations in the multivariate statistical analyses. Rare element associations including Th-U-HREE, Zr-Hf, as well as Sn-Ta-Nb indicate resistate heavy minerals in the stream sediments derived from potentially economic deposits of minerals in the area. The spatial distribution of REE-bearing pegmatitic systems is highlighted in the high-density stream sediments geochemical dataset of the Central Cell. Rare-metal pegmatites with Sn-W-coltan mineralisation and/or economic placer deposits derived from them are recognised in the Central Cell. In the South-western Cell, element associations Li-Ni-(Cr), and Pt-Cr for stream sediments derived from crystalline geological terrains are perhaps indicative of unknown basic/ultrabasic lithologies with potential for associated mineralisation. Gold is principally found in alluvial placer deposits; As and Sb concentration data are potentially useful for pathfinder follow-up exploration for primary hydrothermal Au mineralisation in schist lithologies. A range of elements, including U and some REE, are moderately enriched in Mesozoic to Recent sedimentary (terrestrial and marine) cover sequences as a result of regional reworking of well exposed crystalline lithologies, with potential for sediment-hosted mineralisation and economic alluvium. In the South-western Cell, anomalies of Au, Ta, Nb as well as the REE (e.g. La, Ce, Nd, Sm, Pr, Nd) and U, Th and Y are associated with stream sediments derived from metasedimentary and metavolcanic lithologies and migmatitic gneisses. In the Central Cell, high anomalies of a full range of light- and heavy-REE are associated with pegmatites, genetically associated with the known Older Granites of north-central Nigeria. Compared to a range of other published regional stream sediment studies in Africa, Asia and Europe, these results from South-west and central Nigeria show comparatively high concentrations for REE, Y, U, Ta, Nb, Zr and Hf. In addition there are several anomalies for Au and Pt that need further investigation

    Mapping trace element deficiency by cokriging from regional geochemical soil data: a case study on cobalt for grazing sheep in Ireland

    Get PDF
    Deficiency or excess of certain trace elements in the soil causes problems for agriculture, including disorders of grazing ruminants. Geostatistics has been used to map the probability that trace element concentrations in soil exceed or fall below particular thresholds. However, deficiency or toxicity problems may depend on interactions between elements in the soil. Here we show how cokriging from a regional survey of topsoil geochemistry can be used to map the risk of deficiency, and the best management intervention, where both depend on the interaction between two elements. Our case study is on cobalt. Farmers and their advisors in Ireland use index values for the concentration of total soil cobalt and manganese to identify where grazing sheep are at risk of cobalt deficiency. We use topsoil data from a regional geochemical survey across six counties of Ireland to form local cokriging predictions of cobalt and manganese concentrations with an attendant distribution which reflects the joint uncertainty of these predictions. From this distribution we then compute conditional probabilities for different combinations of cobalt and manganese index values, and so for the corresponding inferred risk to sheep of cobalt deficiency and the appropriateness of different management interventions. We represent these results as maps, using a verbal scale for the communication of uncertain information. This scale is based on one used by the Intergovernmental Panel on Climate Change, modified in light of some recent research on its effectiveness

    Coherent elastic neutrino-nucleus scattering: Terrestrial and astrophysical applications

    No full text
    Coherent elastic neutrino-nucleus scattering (CEÎœ\nuNS) is a process in which neutrinos scatter on a nucleus which acts as a single particle. Though the total cross section is large by neutrino standards, CEÎœ\nuNS has long proven difficult to detect, since the deposited energy into the nucleus is ∌\sim keV. In 2017, the COHERENT collaboration announced the detection of CEÎœ\nuNS using a stopped-pion source with CsI detectors, followed up the detection of CEÎœ\nuNS using an Ar target. The detection of CEÎœ\nuNS has spawned a flurry of activities in high-energy physics, inspiring new constraints on beyond the Standard Model (BSM) physics, and new experimental methods. The CEÎœ\nuNS process has important implications for not only high-energy physics, but also astrophysics, nuclear physics, and beyond. This whitepaper discusses the scientific importance of CEÎœ\nuNS, highlighting how present experiments such as COHERENT are informing theory, and also how future experiments will provide a wealth of information across the aforementioned fields of physics

    Coherent elastic neutrino-nucleus scattering: Terrestrial and astrophysical applications

    No full text
    Coherent elastic neutrino-nucleus scattering (CEÎœ\nuNS) is a process in which neutrinos scatter on a nucleus which acts as a single particle. Though the total cross section is large by neutrino standards, CEÎœ\nuNS has long proven difficult to detect, since the deposited energy into the nucleus is ∌\sim keV. In 2017, the COHERENT collaboration announced the detection of CEÎœ\nuNS using a stopped-pion source with CsI detectors, followed up the detection of CEÎœ\nuNS using an Ar target. The detection of CEÎœ\nuNS has spawned a flurry of activities in high-energy physics, inspiring new constraints on beyond the Standard Model (BSM) physics, and new experimental methods. The CEÎœ\nuNS process has important implications for not only high-energy physics, but also astrophysics, nuclear physics, and beyond. This whitepaper discusses the scientific importance of CEÎœ\nuNS, highlighting how present experiments such as COHERENT are informing theory, and also how future experiments will provide a wealth of information across the aforementioned fields of physics

    Coherent elastic neutrino-nucleus scattering: Terrestrial and astrophysical applications

    No full text
    Coherent elastic neutrino-nucleus scattering (CEÎœ\nuNS) is a process in which neutrinos scatter on a nucleus which acts as a single particle. Though the total cross section is large by neutrino standards, CEÎœ\nuNS has long proven difficult to detect, since the deposited energy into the nucleus is ∌\sim keV. In 2017, the COHERENT collaboration announced the detection of CEÎœ\nuNS using a stopped-pion source with CsI detectors, followed up the detection of CEÎœ\nuNS using an Ar target. The detection of CEÎœ\nuNS has spawned a flurry of activities in high-energy physics, inspiring new constraints on beyond the Standard Model (BSM) physics, and new experimental methods. The CEÎœ\nuNS process has important implications for not only high-energy physics, but also astrophysics, nuclear physics, and beyond. This whitepaper discusses the scientific importance of CEÎœ\nuNS, highlighting how present experiments such as COHERENT are informing theory, and also how future experiments will provide a wealth of information across the aforementioned fields of physics
    corecore