19,431 research outputs found
The shape of the urine stream — from biophysics to diagnostics
We develop a new computational model of capillary-waves in free-jet flows, and apply this to the problem of urological diagnosis in this first ever study of the biophysics behind the characteristic shape of the urine stream as it exits the urethral meatus. The computational fluid dynamics model is used to determine the shape of a liquid jet issuing from a non-axisymmetric orifice as it deforms under the action of surface tension. The computational results are verified with experimental modelling of the urine stream. We find that the shape of the stream can be used as an indicator of both the flow rate and orifice geometry. We performed volunteer trials which showed these fundamental correlations are also observed in vivo for male healthy volunteers and patients undergoing treatment for low flow rate. For healthy volunteers, self estimation of the flow shape provided an accurate estimation of peak flow rate (+-2%). However for the patients, the relationship between shape and flow rate suggested poor meatal opening during voiding. The results show that self measurement of the shape of the urine stream can be a useful diagnostic tool for medical practitioners since it provides a non-invasive method of measuring urine flow rate and urethral dilation
Response of Fishes to Revetment Placement
Routine fish sampling with hoop nets was conducted monthly from April through December 1978 along natural and revetted riverbanks on the lower Mississippi River near Eudora, Arkansas, to monitor changes in fish populations affected by placement of new revetment for bank protection. Eighteen species of fish were collected with four species comprising over 75% of the total catch. During the months prior to revetment placement, freshwater drum, Aplodinotus grunniens, was the most abundant (32.7% of the catch) species collected. Following in abundance were the flathead catfish, Pylodictis olivaris, (9.8%), common carp, Cyprinus carpio, (7.8%), and blue catfish, Ictalurus furcatus, (3.3%). After revetment placement in August 1978, the freshwater drum was again the most abundant component, comprising 9.7% of the catch. Gizzard shad, Dorosoma cepedianum, flathead catfish, and blue catfish followed in abundance and comprised 8.9, 4.1, and 3.4% of the total catch, respectively. Catch per effort data indicated that fish were generally more abundant at natural bank stations than revetted bank stations but the difference was not significant. The study suggests that fish inhabiting natural riverbank habitat recover quite rapidly from bank perturbation caused by the placement of revetment
Interlaminar shear stress effects on the postbuckling response of graphite-epoxy panels
The influence of shear flexibility on overall postbuckling response was assessed, and transverse shear stress distributions in relation to panel failure were examined. Nonlinear postbuckling results are obtained for finite element models based on classical laminated plate theory and first-order shear deformation theory. Good correlation between test and analysis is obtained. The results presented analytically substantiate the experimentally observed failure mode
Hot entanglement in a simple dynamical model
How mixed can one component of a bi-partite system be initially and still
become entangled through interaction with a thermalized partner? We address
this question here. In particular, we consider the question of how mixed a
two-level system and a field mode may be such that free entanglement arises in
the course of the time evolution according to a Jaynes-Cummings type
interaction. We investigate the situation for which the two-level system is
initially in mixed state taken from a one-parameter set, whereas the field has
been prepared in an arbitrary thermal state. Depending on the particular choice
for the initial state and the initial temperature of the quantised field mode,
three cases can be distinguished: (i) free entanglement will be created
immediately, (ii) free entanglement will be generated, but only at a later time
different from zero, (iii) the partial transpose of the joint state remains
positive at all times. It will be demonstrated that increasing the initial
temperature of the field mode may cause the joint state to become distillable
during the time evolution, in contrast to a non-distillable state at lower
initial temperatures. We further assess the generated entanglement
quantitatively, by evaluating the logarithmic negativity numerically, and by
providing an analytical upper bound.Comment: 5 pages, 2 figures. Contribution to the proceedings of the
'International Conference on Quantum Information', Oviedo, July 13-18, 2002.
Discusses sudden changes of entanglement properties in a dynamical quantum
mode
Nonclassicality of a photon-subtracted Gaussian field
Published versio
An Economic analysis of the potential for precision farming in UK cereal production
The results from alternative spatial nitrogen application studies are analysed in economic terms and compared to the costs of precision farming hardware, software and other services for cereal crops in the UK. At current prices, the benefits of variable rate application of nitrogen exceed the returns from a uniform application by an average of £22 ha−1 The cost of the precision farming systems range from £5 to £18 ha−1 depending upon the system chosen for an area of 250 ha. The benefits outweigh the associated costs for cereal farms in excess of 80 ha for the lowest price system to 200–300 ha for the more sophisticated systems. The scale of benefits obtained depends upon the magnitude of the response to the treatment and the proportion of the field that will respond. To be cost effective, a farmed area of 250 ha of cereals, where 30% of the area will respond to variable treatment, requires an increase in crop yield in the responsive areas of between 0·25 and 1.00 t ha−1 (at £65 t−1) for the basic and most expensive precision farming systems, respectively
Long time deviation from exponential decay: non-integral power laws
Quantal systems are predicted to show a change-over from exponential decay to
power law decay at very long times. Although most theoretical studies predict
integer power-law exponents, recent measurements by Rothe et al. of decay
luminescence of organic molecules in solution {Phys. Rev. Lett. 96 (2006)
163601} found non-integer exponents in most cases. We propose a physical
mechanism, within the realm of scattering from potentials with long tails,
which produces a continuous range of power law exponents. In the tractable case
of the repulsive inverse square potential, we demonstrate a simple relation
between the strength of the long range tail and the power law exponent. This
system is amenable to experimental scrutiny
Measuring the quantum statistics of an atom laser beam
We propose and analyse a scheme for measuring the quadrature statistics of an
atom laser beam using extant optical homodyning and Raman atom laser
techniques. Reversal of the normal Raman atom laser outcoupling scheme is used
to map the quantum statistics of an incoupled beam to an optical probe beam. A
multimode model of the spatial propagation dynamics shows that the Raman
incoupler gives a clear signal of de Broglie wave quadrature squeezing for both
pulsed and continuous inputs. Finally, we show that experimental realisations
of the scheme may be tested with existing methods via measurements of Glauber's
intensity correlation function.Comment: 4 pages, 3 figure
- …