3,438 research outputs found

    Electron probe microanalysis of ion exchange of selected elements between dentine and adhesive restorative materials

    Get PDF
    The document attached has been archived with permission from the Australian Dental Association. An external link to the publisherā€™s copy is included.Background: There have been numerous attempts to demonstrate the phenomenon of ion exchange between auto cure glass ionomer cements (GICs) and dentine. The purpose of this study was to employ an electron probe microanalysis (EPMA) technique to examine the interchange of elements between non-demineralized dentine and two types of restorative material, auto cure GICs and a resin composite. Methods: Restorations of auto cure GICs (Riva Fast, Fuji IX Fast, Ketac Molar Quick and Fuji VII) and a bonded composite resin were placed in each of 10 recently extracted human third molar teeth. After two weeks the restorations were sectioned and prepared for EPMA. Percentage weights of calcium, phosphorus aluminum, strontium and fluoride were calculated in the restorations 200Ī¼m from the restorative interface and 200Ī¼m into the dentine at 5Ī¼m intervals. Results: There was evidence of calcium and phosphorus in all five auto cure GICs to a depth of 50Ī¼m. Aluminum and strontium ions were also present in dentine except subjacent to Ketac Molar restorations. There was evidence of element transfer into composite resin and resin-bonded dentine. Conclusions: The findings of this paper support the concept of ion exchange as a bonding mechanism between auto cure GIC and dentine. Element penetration into tooth structure and GIC exceeded beyond the ā€œion exchange layerā€ observed in scanning electron microscopy studies. Penetration of calcium and phosphorus into composite resin from dentine likely occurred as a result of the self-etching process dissolving calcium and phosphorus and incorporating these elements into the hybrid layer. The presence of Al and Sr ions in dentine were likely to be associated with resin tags extending into the dentine.GM Knight, JM McIntyre, GG Craig and Mulyan

    Will all scientists working on snails and the diseases they transmit please stand up?

    Get PDF
    Copyright Ā© 2012 Adema et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.No abstract available

    Upregulation of the cell-cycle regulator RGC-32 in Epstein-Barr virus-immortalized cells

    Get PDF
    Epstein-Barr virus (EBV) is implicated in the pathogenesis of multiple human tumours of lymphoid and epithelial origin. The virus infects and immortalizes B cells establishing a persistent latent infection characterized by varying patterns of EBV latent gene expression (latency 0, I, II and III). The CDK1 activator, Response Gene to Complement-32 (RGC-32, C13ORF15), is overexpressed in colon, breast and ovarian cancer tissues and we have detected selective high-level RGC-32 protein expression in EBV-immortalized latency III cells. Significantly, we show that overexpression of RGC-32 in B cells is sufficient to disrupt G2 cell-cycle arrest consistent with activation of CDK1, implicating RGC-32 in the EBV transformation process. Surprisingly, RGC-32 mRNA is expressed at high levels in latency I Burkitt's lymphoma (BL) cells and in some EBV-negative BL cell-lines, although RGC-32 protein expression is not detectable. We show that RGC-32 mRNA expression is elevated in latency I cells due to transcriptional activation by high levels of the differentially expressed RUNX1c transcription factor. We found that proteosomal degradation or blocked cytoplasmic export of the RGC-32 message were not responsible for the lack of RGC-32 protein expression in latency I cells. Significantly, analysis of the ribosomal association of the RGC-32 mRNA in latency I and latency III cells revealed that RGC-32 transcripts were associated with multiple ribosomes in both cell-types implicating post-initiation translational repression mechanisms in the block to RGC-32 protein production in latency I cells. In summary, our results are the first to demonstrate RGC-32 protein upregulation in cells transformed by a human tumour virus and to identify post-initiation translational mechanisms as an expression control point for this key cell-cycle regulator

    Sensitive detection of nitric oxide using seeded parametric four-wave mixing

    Get PDF
    A sensitive near-resonant four-wave mixing technique based on two-photon parametric four-wave mixing has been developed. Seeded parametric four-wave mixing requires only a single laser as an additional phase matched seeder field is generated via parametric four-wave mixing of the pump beam in a high gain cell. The seeder field travels collinearly with the pump beam providing efficient nondegenerate four-wave mixing in a second medium. This simple arrangement facilitates the detection of complex molecular spectra by simply scanning the pump laser. Seeded parametric four-wave mixing is demonstrated in both a low pressure cell and an air/acetylene flame with detection of the two-photon C (2) Pi(upsilon'=0)<--X (2) Pi(upsilon =0) spectrum of nitric oxide. From the cell data a detection limit of 10(12) molecules/cm(3) is established. A theoretical model of seeded parametric four-wave mixing is developed from existing parametric four-wave mixing theory. The addition of the seeder field significantly modifies the parametric four-wave mixing behaviour such that in the small signal regime, the signal intensity can readily be made to scale as the cube of the laser pump power while the density dependence follows a more familiar square law dependence, In general, we find excellent agreement between theory and experiment. Limitations to the process result from an ac Stark shift of the two-photon resonance in the high pressure seeder cell caused by the generation of a strong seeder field, as well as a reduction in phase matching efficiency due to the presence of certain buffer species. Various optimizations are suggested which should overcome these limitations, providing even greater detection sensitivity. (C) 1998 American Institute of Physics, [S0021-9606(98)01014-9]

    Chemical models important in understanding the ways in which chromate can damage DNA.

    Get PDF
    Chromate is an established human carcinogen. There have been many studies of the reactivity of chromate aimed at improving understanding of chromate toxicity. In the present paper a number of conclusions of these studies are reviewed and considered in the light of new results obtained in our laboratories. A number of hypotheses are considered; it is concluded, however, that it is impossible to reconcile the generation of strand breaks by chromate during its reduction by glutathione with any simple mechanism involving the generation of DNA lesions by free hydroxyl radicals. Kinetic, spin-trapping, and competition kinetic studies, based on a strand-breaking assay, are reported in support of this conclusion

    Barry Unsworth's Morality Play: Narrative, detection, history

    Get PDF
    Ā© 2016 Macmillan Publishers Ltd. Morality Play is a historical detective novel set in the late fourteenth century and published in 1995, at a time of flourishing for historical fiction in Britain. This article argues that the novel shares some of the features of contemporary British historical fiction (notably, a degree of self-referentiality and a concern with the relationship between reality and representation), but also retains more traditional historical novels' desire to show the fate of individuals caught at moments of historical change. Using White's reflections on forms of historical writing and an understanding of the history of detective fiction, the article brings this currently under-examined text to critical attention and, in so doing, contributes to current scholarly understanding of the so-called 'historical turn' in late-twentieth century British fiction

    The structure of the PapD-PapGII pilin complex reveals an open and flexible P5 pocket

    Get PDF
    P pili are hairlike polymeric structures that mediate binding of uropathogenic Escherichia coli to the surface of the kidney via the PapG adhesin at their tips. PapG is composed of two domains: a lectin domain at the tip of the pilus followed by a pilin domain that comprises the initial polymerizing subunit of the 1,000-plus-subunit heteropolymeric pilus fiber. Prior to assembly, periplasmic pilin domains bind to a chaperone, PapD. PapD mediates donor strand complementation, in which a beta strand of PapD temporarily completes the pilin domain's fold, preventing premature, nonproductive interactions with other pilin subunits and facilitating subunit folding. Chaperone-subunit complexes are delivered to the outer membrane usher where donor strand exchange (DSE) replaces PapD's donated beta strand with an amino-terminal extension on the next incoming pilin subunit. This occurs via a zip-in-zip-out mechanism that initiates at a relatively accessible hydrophobic space termed the P5 pocket on the terminally incorporated pilus subunit. Here, we solve the structure of PapD in complex with the pilin domain of isoform II of PapG (PapGIIp). Our data revealed that PapGIIp adopts an immunoglobulin fold with a missing seventh strand, complemented in parallel by the G1 PapD strand, typical of pilin subunits. Comparisons with other chaperone-pilin complexes indicated that the interactive surfaces are highly conserved. Interestingly, the PapGIIp P5 pocket was in an open conformation, which, as molecular dynamics simulations revealed, switches between an open and a closed conformation due to the flexibility of the surrounding loops. Our study reveals the structural details of the DSE mechanism

    Monotonicity of Fitness Landscapes and Mutation Rate Control

    Get PDF
    A common view in evolutionary biology is that mutation rates are minimised. However, studies in combinatorial optimisation and search have shown a clear advantage of using variable mutation rates as a control parameter to optimise the performance of evolutionary algorithms. Much biological theory in this area is based on Ronald Fisher's work, who used Euclidean geometry to study the relation between mutation size and expected fitness of the offspring in infinite phenotypic spaces. Here we reconsider this theory based on the alternative geometry of discrete and finite spaces of DNA sequences. First, we consider the geometric case of fitness being isomorphic to distance from an optimum, and show how problems of optimal mutation rate control can be solved exactly or approximately depending on additional constraints of the problem. Then we consider the general case of fitness communicating only partial information about the distance. We define weak monotonicity of fitness landscapes and prove that this property holds in all landscapes that are continuous and open at the optimum. This theoretical result motivates our hypothesis that optimal mutation rate functions in such landscapes will increase when fitness decreases in some neighbourhood of an optimum, resembling the control functions derived in the geometric case. We test this hypothesis experimentally by analysing approximately optimal mutation rate control functions in 115 complete landscapes of binding scores between DNA sequences and transcription factors. Our findings support the hypothesis and find that the increase of mutation rate is more rapid in landscapes that are less monotonic (more rugged). We discuss the relevance of these findings to living organisms

    Does a 'direct' transfer protocol reduce time to coronary angiography for patients with non-ST-elevation acute coronary syndromes? A prospective observational study.

    Get PDF
    OBJECTIVE: National guidelines recommend 'early' coronary angiography within 96ā€…h of presentation for patients with non-ST elevation acute coronary syndromes (NSTE-ACS). Most patients with NSTE-ACS present to their district general hospital (DGH), and await transfer to the regional cardiac centre for angiography. This care model has inherent time delays, and delivery of timely angiography is problematic. The objective of this study was to assess a novel clinical care pathway for the management of NSTE-ACS, known locally as the Heart Attack Centre-Extension or HAC-X, designed to rapidly identify patients with NSTE-ACS while in DGH emergency departments (ED) and facilitate transfer to the regional interventional centre for 'early' coronary angiography. METHODS: This was an observational study of 702 patients divided into two groups; 391 patients treated before the instigation of the HAC-X pathway (Pre-HAC-X), and 311 patients treated via the novel pathway (Post-HAC-X). Our primary study end point was time from ED admission to coronary angiography. We also assessed the length of hospital stay. RESULTS: Median time from ED admission to coronary angiography was 7.2 (IQR 5.1-10.2) days pre-HAC-X compared to 1.0 (IQR 0.7-2.0) day post-HAC-X (p<0.001). Median length of hospital stay was 3.0 (IQR 2.0-6.0) days post-HAC-X v 9.0 (IQR 6.0-14.0) days pre-HAC-X (p<0.0005). This equates to a reduction of six hospital bed days per NSTE-ACS admission. CONCLUSIONS: The introduction of this novel care pathway was associated with significant reductions in time to angiography and in total hospital bed occupancy for patients with NSTE-ACS
    • ā€¦
    corecore