369 research outputs found
Dynamic/Jitter Assessment of Multiple Potential HabEx Structural Designs
One of the driving structural requirements of the Habitable Exo-Planet (HabEx) telescope is to maintain Line Of Sight (LOS) stability between the Primary Mirror (PM) and Secondary Mirror (SM) of 5 mas. Dynamic analyses of two configurations of a proposed (HabEx) 4 meter off-axis telescope structure were performed to predict effects of jitter on primary/secondary mirror alignment. The dynamic disturbance used as the forcing function was the James Webb Space Telescope reaction wheel assembly vibration emission specification level. The objective of these analyses was to predict "order-of-magnitude" performance for various structural configurations which will roll into efforts to define the HabEx structural design's global architecture. Two variations of the basic architectural design were analyzed. Relative motion between the PM and the SM for each design configuration are reported
Relationships of Risk Factors for Pre-Eclampsia with Patterns of Occurrence of Isolated Gestational Proteinuria during Normal Term Pregnancy
<p><b>Background:</b> Isolated gestational proteinuria may be part of the pre-eclampsia disease spectrum. Confirmation of its association with established pre-eclampsia risk factors and higher blood pressure in uncomplicated pregnancies would support this concept.</p>
<p><b>Methods:</b> Data from 11,651 women from the Avon Longitudinal Study of Parents and Children who had a term live birth but did not have pre-existing hypertension or diabetes or develop gestational diabetes or preeclampsia were used. Proteinuria was assessed repeatedly (median 12 measurements per woman) by dipstick and latent class analysis was used to identify subgroups of the population with different patterns of proteinuria in pregnancy.</p>
<p><b>Results:</b> Higher maternal pre-pregnancy body mass index (BMI), younger age, nulliparity and twin pregnancy were independently associated with increased odds of any proteinuria in pregnancy. Women who experienced proteinuria showed five patterns: proteinuria in early pregnancy only (<= 20 weeks gestation), and onset at 21-28 weeks, 29-32 weeks, 33-36 weeks and >= 37 weeks gestation. There were higher odds of proteinuria onset after 33 weeks in obese women and after 37 weeks in nulliparous women compared with normal weight and multiparous women respectively. Smoking in pregnancy was weakly negatively associated with odds of proteinuria onset after 37 weeks. Twin pregnancies had higher odds of proteinuria onset from 29 weeks. In women with proteinuria onset after 33 weeks blood pressure was higher in early pregnancy and at the end of pregnancy.</p>
<p><b>Conclusions:</b> Established pre-eclampsia risk factors were related to proteinuria occurrence in late gestation in healthy term pregnancies, supporting the hypothesis that isolated gestational proteinuria may represent an early manifestation of preeclampsia.</p>
Evaluation of Lay Support in Pregnant women with Social risk (ELSIPS): a randomised controlled trial
<p>Abstract</p> <p>Background</p> <p>Maternal, neonatal and child health outcomes are worse in families from black and ethnic minority groups and disadvantaged backgrounds. There is little evidence on whether lay support improves maternal and infant outcomes among women with complex social needs within a disadvantaged multi-ethnic population in the United Kingdom (UK).</p> <p>Method/Design</p> <p>The aim of this study is to evaluate a lay Pregnancy Outreach Worker (POW) service for nulliparous women identified as having social risk within a maternity service that is systematically assessing social risks alongside the usual obstetric and medical risks. The study design is a randomised controlled trial (RCT) in nulliparous women assessed as having social risk comparing standard maternity care with the addition of referral to the POW support service.</p> <p>The POWs work alongside community midwifery teams and offer individualised support to women to encourage engagement with services (health and social care) from randomisation (before 28 weeks gestation) until 6 weeks after birth.</p> <p>The primary outcomes have been chosen on the basis that they are linked to maternal and infant health. The two primary outcomes are engagement with antenatal care, assessed by the number of antenatal visits; and maternal depression, assessed using the Edinburgh Postnatal Depression Scale at 8-12 weeks after birth. Secondary outcomes include maternal and neonatal morbidity and mortality, routine child health assessments, including immunisation uptake and breastfeeding at 6 weeks. Other psychological outcomes (self efficacy) and mother-to-infant bonding will also be collected using validated tools.</p> <p>A sample size of 1316 will provide 90% power (at the 5% significance level) to detect increased engagement with antenatal services of 1.5 visits and a reduction of 1.5 in the average EPDS score for women with two or more social risk factors, with power in excess of this for women with any social risk factor. Analysis will be by intention to treat.</p> <p>Qualitative research will explore the POWs' daily work in context. This will complement the findings of the RCT through a triangulation of quantitative and qualitative data on the process of the intervention, and identify other contextual factors that affect the implementation of the intervention.</p> <p>Discussion</p> <p>The trial will provide high quality evidence as to whether or not lay support (POW) offered to women identified with social risk factors improves engagement with maternity services and reduces numbers of women with depression.</p> <p>MREC number</p> <p>10/H1207/23</p> <p>Trial registration number</p> <p>ISRCTN: <a href="http://www.controlled-trials.com/ISRCTN35027323">ISRCTN35027323</a></p
mTORC1-mediated translational elongation limits intestinal tumour initiation and growth.
Inactivation of APC is a strongly predisposing event in the development of colorectal cancer, prompting the search for vulnerabilities specific to cells that have lost APC function. Signalling through the mTOR pathway is known to be required for epithelial cell proliferation and tumour growth, and the current paradigm suggests that a critical function of mTOR activity is to upregulate translational initiation through phosphorylation of 4EBP1 (refs 6, 7). This model predicts that the mTOR inhibitor rapamycin, which does not efficiently inhibit 4EBP1 (ref. 8), would be ineffective in limiting cancer progression in APC-deficient lesions. Here we show in mice that mTOR complex 1 (mTORC1) activity is absolutely required for the proliferation of Apc-deficient (but not wild-type) enterocytes, revealing an unexpected opportunity for therapeutic intervention. Although APC-deficient cells show the expected increases in protein synthesis, our study reveals that it is translation elongation, and not initiation, which is the rate-limiting component. Mechanistically, mTORC1-mediated inhibition of eEF2 kinase is required for the proliferation of APC-deficient cells. Importantly, treatment of established APC-deficient adenomas with rapamycin (which can target eEF2 through the mTORC1-S6K-eEF2K axis) causes tumour cells to undergo growth arrest and differentiation. Taken together, our data suggest that inhibition of translation elongation using existing, clinically approved drugs, such as the rapalogs, would provide clear therapeutic benefit for patients at high risk of developing colorectal cancer
Structural and non-coding variants increase the diagnostic yield of clinical whole genome sequencing for rare diseases
Background
Whole genome sequencing is increasingly being used for the diagnosis of patients with rare diseases. However, the diagnostic yields of many studies, particularly those conducted in a healthcare setting, are often disappointingly low, at 25–30%. This is in part because although entire genomes are sequenced, analysis is often confined to in silico gene panels or coding regions of the genome.
Methods
We undertook WGS on a cohort of 122 unrelated rare disease patients and their relatives (300 genomes) who had been pre-screened by gene panels or arrays. Patients were recruited from a broad spectrum of clinical specialties. We applied a bioinformatics pipeline that would allow comprehensive analysis of all variant types. We combined established bioinformatics tools for phenotypic and genomic analysis with our novel algorithms (SVRare, ALTSPLICE and GREEN-DB) to detect and annotate structural, splice site and non-coding variants.
Results
Our diagnostic yield was 43/122 cases (35%), although 47/122 cases (39%) were considered solved when considering novel candidate genes with supporting functional data into account. Structural, splice site and deep intronic variants contributed to 20/47 (43%) of our solved cases. Five genes that are novel, or were novel at the time of discovery, were identified, whilst a further three genes are putative novel disease genes with evidence of causality. We identified variants of uncertain significance in a further fourteen candidate genes. The phenotypic spectrum associated with RMND1 was expanded to include polymicrogyria. Two patients with secondary findings in FBN1 and KCNQ1 were confirmed to have previously unidentified Marfan and long QT syndromes, respectively, and were referred for further clinical interventions. Clinical diagnoses were changed in six patients and treatment adjustments made for eight individuals, which for five patients was considered life-saving.
Conclusions
Genome sequencing is increasingly being considered as a first-line genetic test in routine clinical settings and can make a substantial contribution to rapidly identifying a causal aetiology for many patients, shortening their diagnostic odyssey. We have demonstrated that structural, splice site and intronic variants make a significant contribution to diagnostic yield and that comprehensive analysis of the entire genome is essential to maximise the value of clinical genome sequencing
Structural and non-coding variants increase the diagnostic yield of clinical whole genome sequencing for rare diseases
BACKGROUND: Whole genome sequencing is increasingly being used for the diagnosis of patients with rare diseases. However, the diagnostic yields of many studies, particularly those conducted in a healthcare setting, are often disappointingly low, at 25-30%. This is in part because although entire genomes are sequenced, analysis is often confined to in silico gene panels or coding regions of the genome.METHODS: We undertook WGS on a cohort of 122 unrelated rare disease patients and their relatives (300 genomes) who had been pre-screened by gene panels or arrays. Patients were recruited from a broad spectrum of clinical specialties. We applied a bioinformatics pipeline that would allow comprehensive analysis of all variant types. We combined established bioinformatics tools for phenotypic and genomic analysis with our novel algorithms (SVRare, ALTSPLICE and GREEN-DB) to detect and annotate structural, splice site and non-coding variants.RESULTS: Our diagnostic yield was 43/122 cases (35%), although 47/122 cases (39%) were considered solved when considering novel candidate genes with supporting functional data into account. Structural, splice site and deep intronic variants contributed to 20/47 (43%) of our solved cases. Five genes that are novel, or were novel at the time of discovery, were identified, whilst a further three genes are putative novel disease genes with evidence of causality. We identified variants of uncertain significance in a further fourteen candidate genes. The phenotypic spectrum associated with RMND1 was expanded to include polymicrogyria. Two patients with secondary findings in FBN1 and KCNQ1 were confirmed to have previously unidentified Marfan and long QT syndromes, respectively, and were referred for further clinical interventions. Clinical diagnoses were changed in six patients and treatment adjustments made for eight individuals, which for five patients was considered life-saving.CONCLUSIONS: Genome sequencing is increasingly being considered as a first-line genetic test in routine clinical settings and can make a substantial contribution to rapidly identifying a causal aetiology for many patients, shortening their diagnostic odyssey. We have demonstrated that structural, splice site and intronic variants make a significant contribution to diagnostic yield and that comprehensive analysis of the entire genome is essential to maximise the value of clinical genome sequencing.</p
Ejecta Evolution Following a Planned Impact into an Asteroid: The First Five Weeks
The impact of the DART spacecraft into Dimorphos, moon of the asteroid
Didymos, changed Dimorphos' orbit substantially, largely from the ejection of
material. We present results from twelve Earth-based facilities involved in a
world-wide campaign to monitor the brightness and morphology of the ejecta in
the first 35 days after impact. After an initial brightening of ~1.4
magnitudes, we find consistent dimming rates of 0.11-0.12 magnitudes/day in the
first week, and 0.08-0.09 magnitudes/day over the entire study period. The
system returned to its pre-impact brightness 24.3-25.3 days after impact
through the primary ejecta tail remained. The dimming paused briefly eight days
after impact, near in time to the appearance of the second tail. This was
likely due to a secondary release of material after re-impact of a boulder
released in the initial impact, through movement of the primary ejecta through
the aperture likely played a role.Comment: 16 pages, 5 Figures, accepted in the Astrophysical Journal Letters
(ApJL) on October 16, 202
Localization of type 1 diabetes susceptibility to the MHC class I genes HLA-B and HLA-A
The major histocompatibility complex (MHC) on chromosome 6 is associated with susceptibility to more common diseases than any other region of the human genome, including almost all disorders classified as autoimmune. In type 1 diabetes the major genetic susceptibility determinants have been mapped to the MHC class II genes HLA-DQB1 and HLA-DRB1 (refs 1-3), but these genes cannot completely explain the association between type 1 diabetes and the MHC region. Owing to the region's extreme gene density, the multiplicity of disease-associated alleles, strong associations between alleles, limited genotyping capability, and inadequate statistical approaches and sample sizes, which, and how many, loci within the MHC determine susceptibility remains unclear. Here, in several large type 1 diabetes data sets, we analyse a combined total of 1,729 polymorphisms, and apply statistical methods - recursive partitioning and regression - to pinpoint disease susceptibility to the MHC class I genes HLA-B and HLA-A (risk ratios >1.5; Pcombined = 2.01 × 10-19 and 2.35 × 10-13, respectively) in addition to the established associations of the MHC class II genes. Other loci with smaller and/or rarer effects might also be involved, but to find these, future searches must take into account both the HLA class II and class I genes and use even larger samples. Taken together with previous studies, we conclude that MHC-class-I-mediated events, principally involving HLA-B*39, contribute to the aetiology of type 1 diabetes. ©2007 Nature Publishing Group
Functional mechanisms underlying pleiotropic risk alleles at the 19p13.1 breast-ovarian cancer susceptibility locus
A locus at 19p13 is associated with breast cancer (BC) and ovarian cancer (OC) risk. Here we analyse 438 SNPs in this region in 46,451 BC and 15,438 OC cases, 15,252 BRCA1 mutation carriers and 73,444 controls and identify 13 candidate causal SNPs associated with serous OC (P=9.2 × 10-20), ER-negative BC (P=1.1 × 10-13), BRCA1-associated BC (P=7.7 × 10-16) and triple negative BC (P-diff=2 × 10-5). Genotype-gene expression associations are identified for candidate target genes ANKLE1 (P=2 × 10-3) and ABHD8 (P<2 × 10-3). Chromosome conformation capture identifies interactions between four candidate SNPs and ABHD8, and luciferase assays indicate six risk alleles increased transactivation of the ADHD8 promoter. Targeted deletion of a region containing risk SNP rs56069439 in a putative enhancer induces ANKLE1 downregulation; and mRNA stability assays indicate functional effects for an ANKLE1 3′-UTR SNP. Altogether, these data suggest that multiple SNPs at 19p13 regulate ABHD8 and perhaps ANKLE1 expression, and indicate common mechanisms underlying breast and ovarian cancer risk
- …