14,759 research outputs found

    An unconfined, large-volume hydrogen/air explosion

    Get PDF
    Cause and results of the autoignition of 283 cubic meters of hydrogen gas, of which only about 10 percent exploded, are given. Results indicate that autoignition produces an explosion which could be described as a deflagration of explosive velocity, with a shock wave of sonic velocity and minor damage potential

    Self-consistency of relativistic observables with general relativity in the white dwarf-neutron star binary pulsar PSR J1141-6545

    Full text link
    Here we report timing measurements of the relativistic binary pulsar PSR J1141-6545 that constrain the component masses and demonstrate that the orbital period derivative \dot Pb = (-4+/-1)x10^-13 is consistent with gravitational wave emission as described by the general theory of relativity. The mass of the neutron star and its companion are 1.30+/-0.02 Mo and 0.986+/-0.020 Mo respectively, suggesting a white dwarf companion, and extending the range of systems for which general relativity provides a correct description. On evolutionary grounds, the progenitor mass of PSR J1141-6545 should be near the minimum for neutron star production. Its mass is two standard deviations below the mean of the other neutron stars, suggesting a relationship between progenitor and remnant masses.Comment: 10 pages, 2 figures, revised version to Ap J Letter

    Water and Nutrient Outflow From Contrasting Lodgepole Pine Forests in Wyoming

    Get PDF
    Factors affecting water and nutrient outflow beyond the rooting zone were studied during a 3—yr period, using data from eight contrasting stands of lodgepole pine (Pinus contorta ssp. latifolia) forest in southeastern Wyoming and the output of a hydrologic simulation model (H2OTRANS) based on tree physiology. Nutrient outflow during a specific time period was estimated by multiplying simulated water outflow times element concentrations in the soil solution, the latter determined from samples collected periodically near the bottom of the rooting zone. Estimates of actual evapotranspiration (ET) for the period from early spring to late fall ranged from 21 to 53 cm, which was 33—95% (x = 73%) of total annual precipitation. For all stands and years, transpiration accounted for 50—61% of ET, and 9—44% of the transpiration occurred during the spring drainage period (vernal transpiration, VT). Estimated VT and outflow varied considerably among the stands, with VT accounting for 4—20% of the snow water. Outflow occurred only during the snow melt period and accounted for 0—80% of the snow water. Snow water equivalent varied annually by 300% or more. Nutrient outflow from the different stands also varied greatly. Ratios between simulated annual outflow and atmospheric inputs (bulk precipitation) were consistently \u3e1.0 for Ca, Na, and Mg; were consistently \u3c1.0 for N; and ranged from 0.3 to 2.0 for P and from 0.2 to 3.3 for K. Much of the variability in water and nutrient outflow can be attributed to the degree of biotic control, with water outflow affected by a different combination of factors than nutrient outflow. H2OTRANS was used to simulate the effects on outflow of different snow water equivalents and different total leaf areas. One result of the simulations was that nitrogen appears to be retained even at the highest levels of water outflow. Another was that increases in water outflow following reduction in leaf area were proportional to the leaf area removed. The results indicate that stands differing in site or habitat type experience different rates of water and element losses at different times during the snow melt season, and contribute differentially to streamwater quality and hydrograph shape. Factors affecting outflow are discussed in the context of successional trends, common perturbations including timber harvest, and hypotheses pertaining to nutrient conservation in terrestrial ecosystems. Nutrient retention in the snow—dominated lodgepole pine ecosystem appears to be primarily dependent on evergreen leaf area, duration of the VT period, and high carbon/nutrient ratios of the forest floor. Net losses of limiting nutrients probably occur primarily in pulses after abiotic perturbations such as fire

    Low attentional engagement makes attention network activity susceptible to emotional interference

    Get PDF
    The aim of this study was to investigate whether emotion-attention interaction depends on attentional engagement. To investigate emotional modulation of attention network activation, we used a functional MRI paradigm consisting of a visuospatial attention task with either frequent (high-engagement) or infrequent (low-engagement) targets and intermittent emotional or neutral distractors. The attention task recruited a bilateral frontoparietal network with no emotional interference on network activation when the attentional engagement was high. In contrast, when the attentional engagement was low, the unpleasant stimuli interfered with the activation of the frontoparietal attention network, especially in the right hemisphere. This study provides novel evidence for low attentional engagement making attention control network activation susceptible to emotional interference. © 2014 Wolters Kluwer Health | Lippincott Williams & Wilkins.Fil: Exposito, Veronica. Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Tampere; FinlandiaFil: Pickard, Natasha. California State University; Estados UnidosFil: Solbakk, Anne-Kristin. University of Oslo; NoruegaFil: Ogawa, Keith H.. Saint Mary's College Of California; Estados UnidosFil: Knight, Robert T.. California State University; Estados UnidosFil: Hartikainen, Kaisa M.. Universidad de Tampere; Finlandi

    Transpiration From 100-yr-old Lodgepole Pine Forests Estimated with Whole-Tree Potometers

    Get PDF
    Whole—tree potometers were used to estimate transpiration from two contrasting stands of 100—yr—old lodgepole pine (Pinus contorta Dougl. var. latifolia Engelm.) forest growing on the same site in southeastern Wyoming. Although one stand had nearly seven times as any trees per hectare and 29% less biomass, both stands had nearly identical leaf area indices (7.3 and 7.1) and clear—day transpiration rates (3.3 and 3.4 mm/d). Individual tree basal area and maximum observed 24—h uptake were highly correlated, with the largest trees (20—26 cm dbh) transpiring 40—44 L on clear days in early summer. Maximum observed hourly uptake for the larger trees was 2.5—3.5 L, with total nighttime uptake being about 12% of 25—h uptake. On overcast days potometer uptake was reduced by 30—44%; during rainy periods uptake was reduced to nearly zero. The results are compared to data obtained with different methods by other investigators, with the conclusion that whole—tree potometers can be a useful tool for studies on tree water relations and for estimating short—term forest transpiration when leaf water potential is not limiting leaf conductance

    Continued fraction solution of Krein's inverse problem

    Full text link
    The spectral data of a vibrating string are encoded in its so-called characteristic function. We consider the problem of recovering the distribution of mass along the string from its characteristic function. It is well-known that Stieltjes' continued fraction provides a solution of this inverse problem in the particular case where the distribution of mass is purely discrete. We show how to adapt Stieltjes' method to solve the inverse problem for a related class of strings. An application to the excursion theory of diffusion processes is presented.Comment: 18 pages, 2 figure

    Size Segregation of Granular Matter in Silo Discharges

    Full text link
    We present an experimental study of segregation of granular matter in a quasi-two dimensional silo emptying out of an orifice. Size separation is observed when multi-sized particles are used with the larger particles found in the center of the silo in the region of fastest flow. We use imaging to study the flow inside the silo and quantitatively measure the concentration profiles of bi-disperse beads as a function of position and time. The angle of the surface is given by the angle of repose of the particles, and the flow occurs in a few layers only near the top of this inclined surface. The flowing region becomes deeper near the center of the silo and is confined to a parabolic region centered at the orifice which is approximately described by the kinematic model. The experimental evidence suggests that the segregation occurs on the surface and not in the flow deep inside the silo where velocity gradients also are present. We report the time development of the concentrations of the bi-disperse particles as a function of size ratios, flow rate, and the ratio of initial mixture. The qualitative aspects of the observed phenomena may be explained by a void filling model of segregation.Comment: 6 pages, 10 figures (gif format), postscript version at http://physics.clarku.edu/~akudrolli/nls.htm

    Statistical Studies of Giant Pulse Emission from the Crab Pulsar

    Full text link
    We have observed the Crab pulsar with the Deep Space Network (DSN) Goldstone 70 m antenna at 1664 MHz during three observing epochs for a total of 4 hours. Our data analysis has detected more than 2500 giant pulses, with flux densities ranging from 0.1 kJy to 150 kJy and pulse widths from 125 ns (limited by our bandwidth) to as long as 100 microseconds, with median power amplitudes and widths of 1 kJy and 2 microseconds respectively. The most energetic pulses in our sample have energy fluxes of approximately 100 kJy-microsecond. We have used this large sample to investigate a number of giant-pulse emission properties in the Crab pulsar, including correlations among pulse flux density, width, energy flux, phase and time of arrival. We present a consistent accounting of the probability distributions and threshold cuts in order to reduce pulse-width biases. The excellent sensitivity obtained has allowed us to probe further into the population of giant pulses. We find that a significant portion, no less than 50%, of the overall pulsed energy flux at our observing frequency is emitted in the form of giant pulses.Comment: 19 pages, 17 figures; to be published in Astrophysical Journa
    • …
    corecore