52 research outputs found

    Endovascular Stroke Treatment and Risk of Intracranial Hemorrhage in Anticoagulated Patients.

    Get PDF
    Background and Purpose- We aimed to determine the safety and mortality after mechanical thrombectomy in patients taking vitamin K antagonists (VKAs) or direct oral anticoagulants (DOACs). Methods- In a multicenter observational cohort study, we used multiple logistic regression analysis to evaluate associations of symptomatic intracranial hemorrhage (sICH) with VKA or DOAC prescription before thrombectomy as compared with no anticoagulation. The primary outcomes were the rate of sICH and all-cause mortality at 90 days, incorporating sensitivity analysis regarding confirmed therapeutic anticoagulation. Additionally, we performed a systematic review and meta-analysis of literature on this topic. Results- Altogether, 1932 patients were included (VKA, n=222; DOAC, n=98; no anticoagulation, n=1612); median age, 74 years (interquartile range, 62-82); 49.6% women. VKA prescription was associated with increased odds for sICH and mortality (adjusted odds ratio [aOR], 2.55 [95% CI, 1.35-4.84] and 1.64 [95% CI, 1.09-2.47]) as compared with the control group, whereas no association with DOAC intake was observed (aOR, 0.98 [95% CI, 0.29-3.35] and 1.35 [95% CI, 0.72-2.53]). Sensitivity analyses considering only patients within the confirmed therapeutic anticoagulation range did not alter the findings. A study-level meta-analysis incorporating data from 7462 patients (855 VKAs, 318 DOACs, and 6289 controls) from 15 observational cohorts corroborated these observations, yielding an increased rate of sICH in VKA patients (aOR, 1.62 [95% CI, 1.22-2.17]) but not in DOAC patients (aOR, 1.03 [95% CI, 0.60-1.80]). Conclusions- Patients taking VKA have an increased risk of sICH and mortality after mechanical thrombectomy. The lower risk of sICH associated with DOAC may also be noticeable in the acute setting. Improved selection might be advisable in VKA-treated patients. Registration- URL: https://www.clinicaltrials.gov. Unique identifier: NCT03496064. Systematic Review and Meta-Analysis: CRD42019127464

    Argyrin B a non-competitive inhibitor of the human immunoproteasome exhibiting preference for β1i

    Get PDF
    Inhibitors of the proteasome have found broad therapeutic applications however, they show severe toxicity due to the abundance of proteasomes in healthy cells. In contrast, inhibitors of the immunoproteasome, which is upregulated during disease states, are less toxic and have increased therapeutic potential including against autoimmune disorders. In this project, we report argyrin B, a natural product cyclic peptide to be a reversible, non-competitive inhibitor of the immunoproteasome. Argyrin B showed selective inhibition of the β5i and β1i sites of the immunoproteasome over the β5c and β1c sites of the constitutive proteasome with nearly 20-fold selective inhibition of β1i over the homologous β1c. Molecular modelling attributes the β1i over β1c selectivity to the small hydrophobic S1 pocket of β1i and β5i over β5c to site-specific amino acid variations that enable additional bonding interactions and stabilization of the binding conformation. These findings facilitate the design of immunoproteasome selective and reversible inhibitors that may have a greater therapeutic potential and lower toxicity

    Regulation of proteasome assembly and activity in health and disease

    Get PDF

    P3HT-Based Solar Cells: Structural Properties and Photovoltaic Performance

    Full text link
    Each year we are bombarded with B.Sc. and Ph.D. applications from students that want to improve the world. They have learned that their future depends on changing the type of fuel we use and that solar energy is our future. The hope and energy of these young people will transform future energy technologies, but it will not happen quickly. Organic photovoltaic devices are easy to sketch, but the materials, processing steps, and ways of measuring the properties of the materials are very complicated. It is not trivial to make a systematic measurement that will change the way other research groups think or practice. In approaching this chapter, we thought about what a new researcher would need to know about organic photovoltaic devices and materials in order to have a good start in the subject. Then, we simplified that to focus on what a new researcher would need to know about poly-3-hexylthiophene:phenyl-C61-butyric acid methyl ester blends (P3HT: PCBM) to make research progress with these materials. This chapter is by no means authoritative or a compendium of all things on P3HT:PCBM. We have selected to explain how the sample fabrication techniques lead to control of morphology and structural features and how these morphological features have specific optical and electronic consequences for organic photovoltaic device applications

    Auditory Localization Behaviour in Visually Deprived Cats

    No full text
    The ability to localize sounds in azimuth was tested in five cats that had been binocularly deprived of vision from birth for several months and in three normal age-matched controls. Brief tone bursts were presented in an eight-choice apparatus along 360 degrees of the azimuthal plane at constant elevation. Using positive reinforcement techniques, the cats were trained to walk from the centre of the 3 m diameter circular enclosure to the hidden loudspeakers. The distribution of sound localization error from 55 trials per cat at each speaker position was measured, and its standard deviation was used to assess the precision of sound localization. All cats localized tones straight ahead of them most precisely; performance at lateral and rear positions was gradually less precise. When the sound localization ability of normal and binocularly deprived cats was compared across speakers, a significantly enhanced precision was found for binocularly deprived cats overall (P < 0.002; two-way analysis of variance). An improvement was found at each individual speaker position, but it was greatest at lateral and rear positions. In two sets of control experiments normal cats were retested (i) in the dark with the aid of an infrared camera and (ii) after 3 months of binocular lid suture. Normal cats in the dark did not show any differences in their sound localization behaviour. Late-deprived cats showed a tendency for better performance, which fell short of statistical significance. Our results in visually deprived cats agree well with some reports on the sound localization ability of blind humans, but disagree with others. Our data provide support for a hypothesis of compensatory plasticity, in which sensory functions get sharpened with the loss of another modality. They seem to rule out the necessity for vision to play a role in the postnatal calibration of auditory space

    Rezidivierende und anhaltende Sehstörungen bei Migräne

    No full text

    A Conclusive View on Charge Generation, Recombination, and Extraction in As-Prepared and Annealed P3HT:PCBM Blends: Combined Experimental and Simulation Work

    No full text
    Time-delayed collection field (TDCF) and bias-amplified charge extraction (BACE) are applied to as-prepared and annealed poly(3-hexylthiophene):[6,6]-phenyl C-71 butyric acid methyl ester (P3HT:PCBM) blends coated from chloroform. Despite large differences in fill factor, short-circuit current, and power conversion efficiency, both blends exhibit a negligible dependence of photogeneration on the electric field and strictly bimolecular recombination (BMR) with a weak dependence of the BMR coefficient on charge density. Drift-diffusion simulations are performed using the measured coefficients and mobilities, taking into account bimolecular recombination and the possible effects of surface recombination. The excellent agreement between the simulation and the experimental data for an intensity range covering two orders of magnitude indicates that a field-independent generation rate and a density-independent recombination coefficient describe the current-voltage characteristics of the annealed P3HT: PCBM devices, while the performance of the as-prepared blend is shown to be limited by space charge effects due to a low hole mobility. Finally, even though the bimolecular recombination coefficient is small, surface recombination is found to be a negligible loss mechanism in these solar cells

    Fluorinated Copolymer PCPDTBT with Enhanced Open Circuit Voltage and Reduced Recombination for Highly Efficient Polymer Solar Cells

    No full text
    A novel fluorinated copolymer F PCPDTBT is introduced and shown to exhibit significantly higher power conversion efficiency in bulk heterojunction solar cells with PC70BM compared to the well known low band gap polymer PCPDTBT. Fluorination lowers the polymer HOMO level, resulting in high open circuit voltages well exceeding 0.7 V. Optical spectroscopy and morphological studies with energy resolved transmission electron microscopy reveal that the fluorinated polymer aggregates more strongly in pristine and blended layers, with a smaller amount of additives needed to achieve optimum device performance. Time delayed collection field and charge extraction by linearly increasing voltage are used to gain insight into the effect of fluorination on the field dependence of free charge carrier generation and recombination. F PCPDTBT is shown to exhibit a significantly weaker field dependence of free charge carrier generation combined with an overall larger amount of free charges, meaning that geminate recombination is greatly reduced. Additionally, a 3 fold reduction in non geminate recombination is measured compared to optimized PCPDTBT blends. As a consequence of reduced non geminate recombination, the performance of optimized blends of fluorinated PCPDTBT with PC70BM is largely determined by the field dependence of free carrier generation, and this field dependence is considerably weaker compared to that of blends comprising the non fluorinated polymer. For these optimized blends, a short circuit current of 14 mA cm 2 , an open circuit voltage of 0.74 V, and a fill factor of 58 are achieved, giving a highest energy conversion efficiency of 6.16 . The superior device performance and the low band gap render this new polymer highly promising for the construction of efficient polymer based tandem solar cell
    corecore