124 research outputs found

    A comparison of the effects of fatigue on subjective and objective assessment of situation awareness in cycling

    Get PDF
    Maximal effort on a 30 km Time Trial (TT30) was examined to assess whether it would elicit changes in objective and subjective tests of the participants’ perception of the environment and their ability to anticipate future occurrences (situation awareness; SA) and to determine the effect of post-exercise recovery on SA. Nine experienced (5.22 ± 2.77 years) road cyclists had their objective and subjective levels of SA assessed prior to and at the completion of two TT30. The participants’ results were compared to measurements of maximal oxygen uptake (VO2max), peak power output (PPO), age and years of competitive cycle racing experience. Fatigue resulting from maximal effort on a TT30 produced significant changes in both the objective and subjective test of SA. Effect sizes of 0.93 and 0.99 indicated that the first and second TT30 were likely or almost certain to have a beneficial effect on the objective assessment of SA. However, the effect sizes of 0.97 and 0.95 relating to the subjective assessment of cognitive performance on the first and second TT30 showed that it was very likely the participants’ had an increased difficulty in maintaining SA. A recovery period of up to three minutes post TT30 had no effect on SA. Changes in SA had no relationship with measurements of VO2max, peak power output (PPO), age and years of competitive cycle racing experience. The findings suggest that within a laboratory environment, participants consistently underestimate their ability to make accurate assessments of their cycling environment compared to objective measures of their SA

    A comparison of the effects of fatigue on subjective and objective assessment of situation awareness in cycling

    Get PDF
    Maximal effort on a 30 km Time Trial (TT30) was examined to assess whether it would elicit changes in objective and subjective tests of the participants' perception of the environment and their ability to anticipate future occurrences (situation awareness; SA) and to determine the effect of post-exercise recovery on SA. Nine experienced (5.22 ± 2.77 years) road cyclists had their objective and subjective levels of SA assessed prior to and at the completion of two TT30. The participants' results were compared to measurements of maximal oxygen uptake (VO2max), peak power output (PPO), age and years of competitive cycle racing experience. Fatigue resulting from maximal effort on a TT30 produced significant changes in both the objective and subjective test of SA. Effect sizes of 0.93 and 0.99 indicated that the first and second TT30 were likely or almost certain to have a beneficial effect on the objective assessment of SA. However, the effect sizes of 0.97 and 0.95 relating to the subjective assessment of cognitive performance on the first and second TT30 showed that it was very likely the participants' had an increased difficulty in maintaining SA. A recovery period of up to three minutes post TT30 had no effect on SA. Changes in SA had no relationship with measurements of VO2max, peak power output (PPO), age and years of competitive cycle racing experience. The findings suggest that within a laboratory environment, participants consistently underestimate their ability to make accurate assessments of their cycling environment compared to objective measures of their SA. ©Journal of Sports Science and Medicine (2006).C

    In Situ Study of Nanoporosity Evolution during Dealloying AgAu and CoPd by Grazing-Incidence Small-Angle X-ray Scattering

    Get PDF
    Electrochemical dealloying has become a standard technique to produce nanoporous network structures of various noble metals, exploiting the selective dissolution of one component from an alloy. While achieving nanoporosity during dealloying has been intensively studied for the prime example of nanoporous Au from a AgAu alloy, dealloying from other noble-metal alloys has been rarely investigated in the scientific literature. Here, we study the evolution of nanoporosity in the electrochemical dealloying process for both CoPd and AgAu alloys using a combination of in situ grazing-incidence small-angle X-ray scattering (GISAXS), kinetic Monte Carlo (KMC) simulations, and scanning transmission electron microscopy (STEM). When comparing dealloying kinetics, we find a more rapid progression of the dealloying front for CoPd and also a considerably slower coarsening of the nanoporous structure for Pd in relation to Au. We argue that our findings are natural consequences of the effectively higher dealloying potential and the higher interatomic binding energy for the CoPd alloy. Our results corroborate the understanding of electrochemical dealloying on the basis of two rate equations for dissolution and surface diffusion and suggest the general applicability of this dealloying mechanism to binary alloys. The present study contributes to the future tailoring of structural size in nanoporous metals for improved chemical surface activity

    Wearable cardioverter-defibrillator as bridging to ICD in pediatric hypertrophic cardiomyopathy with myocardial bridging - a case report

    Get PDF
    Background: There is only limited experience with wearable cardioverter-defibrillators (WCD) in pediatric patients. We report on the successful application of a WCD in an adolescent patient with hypertrophic cardiomyopathy and myocardial bridging. Case presentation: A 15-year-old girl presented with a history of recurrent syncope, dyspnea, and vertigo with exercise. Diagnostic work-up revealed non-obstructive hypertrophic cardiomyopathy and signs of myocardial ischemia with exercise. Given this high-risk constellation, the patient was scheduled for prophylactic implantation of an implantable cardioverter-defibrillator (ICD). One month after initial presentation and days prior to the planned ICD implantation, the patient collapsed during an episode of sustained ventricular tachycardia (VT) while running. VT was terminated by WCD shock delivery. Following this event, computerized tomography scan revealed myocardial bridging of the left anterior descending coronary artery causing a 90% stenosis in systole. After coronary surgery, life threatening arrhythmias have not recurred, but due to progressive heart failure, the patient underwent successful heart transplantation after 2 years. Conclusions: The reported case highlights the importance and applicability of WCDs and the potentially malign nature of myocardial bridging in pediatric high-risk patients

    Peripheral blood mitochondrial DNA content in relation to circulating metabolites and inflammatory markers: a population study

    Get PDF
    Mitochondrial DNA (mtDNA) content might undergo significant changes caused by metabolic derangements, oxidative stress and inflammation that lead to development and progression of cardiovascular diseases. We, therefore, investigated in a general population the association of peripheral blood mtDNA content with circulating metabolites and inflammatory markers. We examined 310 subjects (50.6% women; mean age, 53.3 years) randomly selected from a Flemish population. Relative mtDNA content was measured by quantitative real-time PCR in peripheral blood cells. Peak circulating metabolites were quantified using nuclear magnetic resonance spectroscopy. The level of inflammation was assessed via established inflammatory markers. Using Partial Least Squares analysis, we constructed 3 latent factors from the 44 measured metabolites that explained 62.5% and 8.5% of the variance in the contributing metabolites and the mtDNA content, respectively. With adjustments applied, mtDNA content was positively associated with the first latent factor (P = 0.002). We identified 6 metabolites with a major impact on the construction of this latent factor including HDL3 apolipoproteins, tyrosine, fatty acid with αCH2, creatinine, β-glucose and valine. We summarized them into a single composite metabolite score. We observed a negative association between the composite metabolic score and mtDNA content (P = 0.001). We also found that mtDNA content was inversely associated with inflammatory markers including hs-CRP, hs-IL6, white blood cell and neutrophil counts as well as neutrophil-to-lymphocyte ratio (P≤0.0024). We demonstrated that in a general population relative peripheral blood mtDNA content was associated with circulating metabolites indicative of perturbed lipid metabolism and with inflammatory biomarkers

    Visualising emergent phenomena at oxide interfaces

    Full text link
    Knowledge of atomic-level details of structure, chemistry, and electronic states is paramount for a comprehensive understanding of emergent properties at oxide interfaces. We utilise a novel methodology based on atomic-scale electron energy loss spectroscopy (EELS) to spatially map the electronic states tied to the formation of a two-dimensional electron gas (2DEG) at the prototypical non-polar/polar TiO2TiO_2/LaAlO3LaAlO_3 interface. Combined with differential phase contrast analysis we directly visualise the microscopic locations of ions and charge and find that 2DEG states and Ti3+Ti^{3+} defect states exhibit different spatial distributions. Supported by density functional theory (DFT) and inelastic scattering simulations we examine the role of oxygen vacancies in 2DEG formation. Our work presents a general pathway to directly image emergent phenomena at interfaces using this unique combination of arising microscopy techniques with machine learning assisted data analysis procedures.Comment: 17 pages, 10 figure

    Dislocations in ceramic electrolytes for solid-state Li batteries

    Get PDF
    High power solid-state Li batteries (SSLB) are hindered by the formation of dendrite-like structures at high current rates. Hence, new design principles are needed to overcome this limitation. By introducing dislocations, we aim to tailor mechanical properties in order to withstand the mechanical stress leading to Li penetration and resulting in a short circuit by a crack-opening mechanism. Such defect engineering, furthermore, appears to enable whisker-like Li metal electrodes for high-rate Li plating. To reach these goals, the challenge of introducing dislocations into ceramic electrolytes needs to be addressed which requires to establish fundamental understanding of the mechanics of dislocations in the particular ceramics. Here we evaluate uniaxial deformation at elevated temperatures as one possible approach to introduce dislocations. By using hot-pressed pellets and single crystals grown by Czochralski method of Li6.4La3Zr1.4Ta0.6O12 garnets as a model system the plastic deformation by more than 10% is demonstrated. While conclusions on the predominating deformation mechanism remain challenging, analysis of activation energy, activation volume, diffusion creep, and the defect structure potentially point to a deformation mechanism involving dislocations. These parameters allow identification of a process window and are a key step on the road of making dislocations available as a design element for SSLB
    • …
    corecore