34 research outputs found

    Results to be expected from light scattering dust analyzer during a rendezvous mission

    Get PDF
    The light scattering principle for particle detection is customary for the measurement of aerosols. Light scattering techniques can be applied to mixtures of particles (nephelometers) and to single particles as well. Measuring particle mixtures simplify detection because of the higher intensity level, however, information concerning the individual particle is lost. To provide well defined conditions over the whole rendezvous period, i.e., constant illumination beam and unchangeable scattering angle, the use of an artificial light source (instead of the sun) and a scattering volume located within the S/C is desirable. Considering this and the relatively low particle densities to be expected, the measurement of particle mixtures must be excluded

    Cervical masses in dogs and cats 1. Investigation and management

    Get PDF
    Abnormalities in the cervical region can be challenging to investigate and manage; however, the area is a common location for disease processes in dogs and cats. The anatomy of this region can make investigations and treatment difficult and a thorough understanding of this is essential before embarking on management and treatment of conditions in this location. Due to the various anatomical structures in the cervical area, there is often a long potential differential diagnoses list for mass lesions in this region. It is important to perform a thorough and logical investigative process in order to manage these masses appropriately. This article discusses investigation and management of cervical masses, while a second article, to be published in a subsequent issue of In Practice, will focus on differential diagnoses

    Rapamycin and the transcription factor C/EBPβ as a switch in osteoclast differentiation: implications for lytic bone diseases

    Get PDF
    Lytic bone diseases and in particular osteoporosis are common age-related diseases characterized by enhanced bone fragility due to loss of bone density. Increasingly, osteoporosis poses a major global health-care problem due to the growth of the elderly population. Recently, it was found that the gene regulatory transcription factor CCAAT/enhancer binding protein beta (C/EBPβ) is involved in bone metabolism. C/EBPβ occurs as different protein isoforms of variable amino terminal length, and regulation of the C/EBPβ isoform ratio balance was found to represent an important factor in osteoclast differentiation and bone homeostasis. Interestingly, adjustment of the C/EBPβ isoform ratio by the process of translational control is downstream of the mammalian target of rapamycin kinase (mTOR), a sensor of the nutritional status and a target of immunosuppressive and anticancer drugs. The findings imply that modulating the process of translational control of C/EBPβ isoform expression could represent a novel therapeutic approach in osteolytic bone diseases, including cancer and infection-induced bone loss

    Retinoic Acid Increases Proliferation of Human Osteoclast Progenitors and Inhibits RANKL-Stimulated Osteoclast Differentiation by Suppressing RANK

    Get PDF
    It has been shown that high vitamin A intake is associated with bone fragility and fractures in both animals and humans. However, the mechanism by which vitamin A affects bones is unclear. In the present study, the direct effects of retinoic acid (RA) on human and murine osteoclastogenesis were evaluated using cultured peripheral blood CD14+ monocytes and RAW264.7 cells. Both the activity of the osteoclast marker tartrate resistant acid phosphatase (TRAP) in culture supernatant and the expression of the genes involved in osteoclast differentiation together with bone resorption were measured. To our knowledge, this is the first time that the effects of RA on human osteoclast progenitors and mature osteoclasts have been studied in vitro. RA stimulated proliferation of osteoclast progenitors both from humans and mice. In contrast, RA inhibited differentiation of the receptor activator of nuclear factor κB ligand (RANKL)-induced osteoclastogenesis of human and murine osteoclast progenitors via retinoic acid receptors (RARs). We also show that the mRNA levels of receptor activator of nuclear factor κB (RANK), the key initiating factor and osteoclast associated receptor for RANKL, were potently suppressed by RA in osteoclast progenitors. More importantly, RA abolished the RANK protein in osteoclast progenitors. This inhibition could be partially reversed by a RAR pan-antagonist. Furthermore, RA treatment suppressed the expression of the transcription factor nuclear factor of activated T-cells cytoplasmic 1 (NFATc1) and increased the expression of interferon regulatory factor-8 (IRF-8) in osteoclast progenitors via RARs. Also, RA demonstrated differential effects depending on the material supporting the cell culture. RA did not affect TRAP activity in the culture supernatant in the bone slice culture system, but inhibited the release of TRAP activity if cells were cultured on plastic. In conclusion, our results suggest that retinoic acid increases proliferation of human osteoclast progenitors and that it inhibits RANK-stimulated osteoclast differentiation by suppressing RANK

    Die Unterscheidung dreidimensionaler Modelle der zodiakalen interplanetaren Staubwolke im Hinblick auf Experimente mit raumfahrzeuggestuetzten Mikrometeoriteneinschlagsdetektoren

    No full text
    SIGLECopy held by FIZ Karlsruhe; available from UB/TIB Hannover / FIZ - Fachinformationszzentrum Karlsruhe / TIB - Technische InformationsbibliothekDEGerman

    Structural phase transition and diamagnetism at 36K IN La<sub>2</sub>CuO<sub>4</sub>

    No full text
    Both, La2CuO4 and La1·85,Sr0.15CUO4 exhibit a bulk phase transition around 36K in the thermal expansion. While in La1.85Sr0.15CuO4 this is associated with bulk superconductivity, demonstrated by a Meissner effect of ∼ 13%, the superconducting volume fraction of La2CuO4 amounts to only 10−4 of the total volume. In La2CuO4 time-dependent phenomena were observed

    Osseointegration of biochemically modified implants in an osteoporosis rodent model

    Get PDF
    The present study examined the impact of implant surface modifications on osseointegration in an osteoporotic rodent model. Sandblasted, acid-etched titanium implants were either used directly (control) or were further modified by surface conditioning with NaOH or by coating with one of the following active agents: collagen/chondroitin sulphate, simvastatin, or zoledronic acid. Control and modified implants were inserted into the proximal tibia of aged ovariectomised (OVX) osteoporotic rats (n = 32/group). In addition, aged oestrogen competent animals received either control or NaOH conditioned implants. Animals were sacrificed 2 and 4 weeks post-implantation. The excised tibiae were utilised for biomechanical and morphometric readouts (n = 8/group/readout). Biomechanical testing revealed at both time points dramatically reduced osseointegration in the tibia of oestrogen deprived osteoporotic animals compared to intact controls irrespective of NaOH exposure. Consistently, histomorphometric and microCT analyses demonstrated diminished bone-implant contact (BIC), peri-implant bone area (BA), bone volume/tissue volume (BV/TV) and bone-mineral density (BMD) in OVX animals. Surface coating with collagen/chondroitin sulphate had no detectable impact on osseointegration. Interestingly, statin coating resulted in a transient increase in BIC 2 weeks post-implantation; which, however, did not correspond to improvement of biomechanical readouts. Local exposure to zoledronic acid increased BIC, BA, BV/TV and BMD at 4 weeks. Yet this translated only into a non-significant improvement of biomechanical properties. In conclusion, this study presents a rodent model mimicking severely osteoporotic bone. Contrary to the other bioactive agents, locally released zoledronic acid had a positive impact on osseointegration albeit to a lesser extent than reported in less challenging models
    corecore