86 research outputs found

    KRAS and CREBBP mutations: a relapse-linked malicious liaison in childhood high hyperdiploid acute lymphoblastic leukemia

    Get PDF
    High hyperdiploidy defines the largest genetic entity of childhood acute lymphoblastic leukemia (ALL). Despite its relatively low recurrence risk, this subgroup generates a high proportion of relapses. The cause and origin of these relapses remains obscure. We therefore explored the mutational landscape in high hyperdiploid (HD) ALL with whole-exome (n=19) and subsequent targeted deep sequencing of 60 genes in 100 relapsing and 51 non-relapsing cases. We identified multiple clones at diagnosis that were primarily defined by a variety of mutations in receptor tyrosine kinase (RTK)/Ras pathway and chromatin-modifying genes. The relapse clones consisted of reappearing as well as new mutations, and overall contained more mutations. Although RTK/Ras pathway mutations were similarly frequent between diagnosis and relapse, both intergenic and intragenic heterogeneity was essentially lost at relapse. CREBBP mutations, however, increased from initially 18-30% at relapse, then commonly co-occurred with KRAS mutations (P<0.001) and these relapses appeared primarily early (P=0.012). Our results confirm the exceptional susceptibility of HD ALL to RTK/Ras pathway and CREBBP mutations, but, more importantly, suggest that mutant KRAS and CREBBP might cooperate and equip cells with the necessary capacity to evolve into a relapse-generating clone

    Percutaneous dilatational tracheotomy in high-risk ICU patients

    Get PDF
    BACKGROUND Percutaneous dilatational tracheotomy (PDT) has become an established procedure in intensive care units (ICU). However, the safety of this method has been under debate given the growing number of critically ill patients with high bleeding risk receiving anticoagulation, dual antiplatelet therapy (DAPT) or even a combination of both, i.e. triple therapy. Therefore, the purpose of this study, including such a high proportion of patients on antithrombotic therapy, was to investigate whether PDT in high-risk ICU patients is associated with elevated procedural complications and to analyse the risk factors for bleeding occurring during and after PDT. METHODS PDT interventions conducted in ICUs at 12 European sites between January 2016 and October 2019 were retrospectively analysed for procedural complications. For subgroup analyses, patient stratification into clinically relevant risk groups based on anticoagulation and antiplatelet treatment regimens was performed and the predictors of bleeding occurrence were analysed. RESULTS In total, 671 patients receiving PDT were included and stratified into four clinically relevant antithrombotic treatment groups: (1) intravenous unfractionated heparin (iUFH, prophylactic dosage) (n = 101); (2) iUFH (therapeutic dosage) (n = 131); (3) antiplatelet therapy (aspirin and/or P2Y12 receptor inhibitor) with iUFH (prophylactic or therapeutic dosage) except for triple therapy (n = 290) and (4) triple therapy (DAPT with iUFH in therapeutic dosage) (n = 149). Within the whole cohort, 74 (11%) bleedings were reported to be procedure-related. Bleeding occurrence during and after PDT was independently associated with low platelet count (OR 0.73, 95% CI 0.56, 0.92, p = 0.009), chronic kidney disease (OR 1.75, 95{\%} CI 1.01, 3.03, p = 0.047) and previous stroke (OR 2.13, 95{\%} CI 1.1, 3.97, p = 0.02). CONCLUSION In this international, multicenter study bronchoscopy-guided PDT was a safe and low-complication airway management option, even in a cohort of high risk for bleeding on cardiovascular ICUs. Low platelet count, chronic kidney disease and previous stroke were identified as independent risk factors of bleeding during and after PDT but not triple therapy

    Contrasting Expression of Canonical Wnt Signaling Reporters TOPGAL, BATGAL and Axin2LacZ during Murine Lung Development and Repair

    Get PDF
    Canonical Wnt signaling plays multiple roles in lung organogenesis and repair by regulating early progenitor cell fates: investigation has been enhanced by canonical Wnt reporter mice, TOPGAL, BATGAL and Axin2LacZ. Although widely used, it remains unclear whether these reporters convey the same information about canonical Wnt signaling. We therefore compared beta-galactosidase expression patterns in canonical Wnt signaling of these reporter mice in whole embryo versus isolated prenatal lungs. To determine if expression varied further during repair, we analyzed comparative pulmonary expression of beta-galactosidase after naphthalene injury. Our data show important differences between reporter mice. While TOPGAL and BATGAL lines demonstrate Wnt signaling well in early lung epithelium, BATGAL expression is markedly reduced in late embryonic and adult lungs. By contrast, Axin2LacZ expression is sustained in embryonic lung mesenchyme as well as epithelium. Three days into repair after naphthalene, BATGAL expression is induced in bronchial epithelium as well as TOPGAL expression (already strongly expressed without injury). Axin2LacZ expression is increased in bronchial epithelium of injured lungs. Interestingly, both TOPGAL and Axin2LacZ are up regulated in parabronchial smooth muscle cells during repair. Therefore the optimal choice of Wnt reporter line depends on whether up- or down-regulation of canonical Wnt signal reporting in either lung epithelium or mesenchyme is being compared

    A Forward-Genetic Screen and Dynamic Analysis of Lambda Phage Host-Dependencies Reveals an Extensive Interaction Network and a New Anti-Viral Strategy

    Get PDF
    Latently infecting viruses are an important class of virus that plays a key role in viral evolution and human health. Here we report a genome-scale forward-genetics screen for host-dependencies of the latently-infecting bacteriophage lambda. This screen identified 57 Escherichia coli (E. coli) genes—over half of which have not been previously associated with infection—that when knocked out inhibited lambda phage's ability to replicate. Our results demonstrate a highly integrated network between lambda and its host, in striking contrast to the results from a similar screen using the lytic-only infecting T7 virus. We then measured the growth of E. coli under normal and infected conditions, using wild-type and knockout strains deficient in one of the identified host genes, and found that genes from the same pathway often exhibited similar growth dynamics. This observation, combined with further computational and experimental analysis, led us to identify a previously unannotated gene, yneJ, as a novel regulator of lamB gene expression. A surprising result of this work was the identification of two highly conserved pathways involved in tRNA thiolation—one pathway is required for efficient lambda replication, while the other has anti-viral properties inhibiting lambda replication. Based on our data, it appears that 2-thiouridine modification of tRNAGlu, tRNAGln, and tRNALys is particularly important for the efficient production of infectious lambda phage particles

    Brucellosis Vaccines: Assessment of Brucella melitensis Lipopolysaccharide Rough Mutants Defective in Core and O-Polysaccharide Synthesis and Export

    Get PDF
    Background: The brucellae are facultative intracellular bacteria that cause brucellosis, one of the major neglected zoonoses. In endemic areas, vaccination is the only effective way to control this disease. Brucella melitensis Rev 1 is a vaccine effective against the brucellosis of sheep and goat caused by B. melitensis, the commonest source of human infection. However, Rev 1 carries a smooth lipopolysaccharide with an O-polysaccharide that elicits antibodies interfering in serodiagnosis, a major problem in eradication campaigns. Because of this, rough Brucella mutants lacking the O-polysaccharide have been proposed as vaccines. Methodology/Principal Findings: To examine the possibilities of rough vaccines, we screened B. melitensis for lipopolysaccharide genes and obtained mutants representing all main rough phenotypes with regard to core oligosaccharide and O-polysaccharide synthesis and export. Using the mouse model, mutants were classified into four attenuation patterns according to their multiplication and persistence in spleens at different doses. In macrophages, mutants belonging to three of these attenuation patterns reached the Brucella characteristic intracellular niche and multiplied intracellularly, suggesting that they could be suitable vaccine candidates. Virulence patterns, intracellular behavior and lipopolysaccharide defects roughly correlated with the degree of protection afforded by the mutants upon intraperitoneal vaccination of mice. However, when vaccination was applied by the subcutaneous route, only two mutants matched the protection obtained with Rev 1 albeit at doses one thousand fold higher than this reference vaccine. These mutants, which were blocked in O-polysaccharide export and accumulated internal O-polysaccharides, stimulated weak anti-smooth lipopolysaccharide antibodies. Conclusions/Significance: The results demonstrate that no rough mutant is equal to Rev 1 in laboratory models and question the notion that rough vaccines are suitable for the control of brucellosis in endemic areas.This work was funded by the European Commission (Research Contract QLK2-CT-2002-00918) and the Ministerio de Ciencia y Tecnología of Spain (Proyecto AGL2004-01162/GAN)

    Wnt3a mitigates acute lung injury by reducing P2X7 receptor-mediated alveolar epithelial type I cell death

    Get PDF
    Acute lung injury (ALI) is characterized by pulmonary endothelial and epithelial cell damage, and loss of the alveolar-capillary barrier. We have previously shown that P2X7 receptor (P2X7R), a cell death receptor, is specifically expressed in alveolar epithelial type I cells (AEC I). In this study, we hypothesized that P2X7R-mediated purinergic signaling and its interaction with Wnt/B-catenin signaling contributes to AEC I death. We examined the effect of P2X7R agonist 2'-3'-O-(4-benzoylbenzoyl)-ATP (BzATP) and Wnt agonist Wnt3a on AEC I death in vitro and in vivo. We also assessed the therapeutic potential of Wnt3a in a clinically relevant ALI model of intratracheal lipopolysaccharide (LPS) exposure in ventilated mice. We found that the activation of P2X7R by BzATP caused the death of AEC I by suppressing Wnt/B-catenin signaling through stimulating glycogen synthase kinase-3B (GSK-3B) and proteasome. On the other hand, the activation of Wnt/B-catenin signaling by Wnt3a, GSK-3B inhibitor, or proteasome inhibitor blocked the P2X7R-mediated cell death. More importantly, Wnt3a attenuated the AEC I damage caused by intratracheal instillation of BzATP in rats or LPS in ventilated mice. Our results suggest that Wnt3a overrides the effect of P2X7R on the Wnt/B-catenin signaling to prevent the AEC I death and restrict the severity of ALI.Peer reviewedPhysiological Science

    Autoimmunphänomene - nicht immer ist es Rheuma

    No full text

    Identification of a novel SERPINA-1 mutation causing alpha-1 antitrypsin deficiency in a patient with severe bronchiectasis and pulmonary embolism

    No full text
    Katrin Milger,1 Lesca Miriam Holdt,2 Daniel Teupser,2 Rudolf Maria Huber,1 Jürgen Behr,1 Nikolaus Kneidinger1 1Department of Internal Medicine V, University of Munich, Comprehensive Pneumology Center, Member of the German Center for Lung Research, 2Institute of Laboratory Medicine, University of Munich, Munich, Germany Abstract: Deficiency in the serine protease inhibitor, alpha-1 antitrypsin (AAT), is known to cause emphysema and liver disease. Other manifestations, including airway disease or skin disorders, have also been described. A 44-year-old woman presented to our emergency department with dyspnea and respiratory insufficiency. She had never smoked, and had been diagnosed with COPD 9 years earlier. Three months previously, she had suffered a pulmonary embolism. Chest computed tomography scan revealed severe cystic bronchiectasis with destruction of the lung parenchyma. The sweat test was normal and there was no evidence of the cystic fibrosis transmembrane conductance regulator (CFTR) mutation. Capillary zone electrophoresis showed a decrease of alpha-1 globin band and AAT levels were below the quantification limit (<25 mg/dL). No S or Z mutation was identified, but sequencing analysis found a homozygous cytosine and adenine (CA) insertion in exon 2 of the SERPINA-1 gene, probably leading to a dysfunctional protein (PI Null/Null). This mutation has not been previously identified. The atypical presentation of the patient, with severe cystic bronchiectasis, highlights AAT deficiency as a differential diagnosis in bronchiectasis. Further, awareness should be raised regarding a possible increased risk of thromboembolism associated with AAT deficiency. Keywords: alpha-1 antitrypsin deficiency, bronchiectasis, SERPINA-1 mutation, pulmonary embolis

    Idiopathic pulmonary fibrosis in elderly patients: Analysis of the INSIGHTS-IPF Observational Study.

    Get PDF
    Background: An association between idiopathic pulmonary fibrosis (IPF) and advancing age is suspected since IPF occurs primarily in patients over 60 years of age. Though, little is known about the disease in the elderly. The aim of this study was to characterize elderly IPF patients using data from the longitudinal, German-wide INSIGHTS-IPF registry. Methods: Patients were grouped into elderly (≥75 years) and nonelderly IPF (<75 years) at the time of enrollment into the study. Baseline clinical characteristics, comorbidities, health related quality of life (HRQoL), medical therapy and survival were compared between age groups. Effects of antifibrotic therapy on forced vital capacity (FVC) were analyzed over 24 months. Results: Of 1,009 patients, 350 (34.7%) were ≥75 years old. Elderly IPF patients compared to younger patients had a higher number of comorbidities (3.6 ± 2.5 vs. 2.8 ± 2.3; p < 0.001). The mean ± SD EQ-5D score (0.64 ± 0.21 vs. 0.69 ± 0.21; p = 0.005), and the overall WHO-5 score (13.1 ± 5.9 vs. 14.3 ± 6.0; p = 0.015) were significantly lower while the UCSD-SOBQ (52.6 ± 31.2 vs. 45.5 ± 31.2; p = 0.030) was significantly higher in elderly patients, indicating a more impaired HRQoL and more breathlessness. At baseline, 55.4% of elderly and 56.8% of nonelderly patients with IPF were treated with antifibrotic therapy (p = 0.687). For FVC decline after initiation of antifibrotic therapy, there was neither a significant difference between age groups at the different time points over 24 months (beta: 0.41; 95%-CI: −0.98 to 1.81; p = 0.563) nor over the whole course of time (beta: −0.05; 95%-CI: −0.20 to 0.09; p = 0.478). All-cause mortality was higher in elderly patients (49.1 vs. 37.9%; HR 1.65; 95%-CI 1.36–2.00; p < 0.001). Antifibrotic therapy was associated with improved survival in IPF patients, independent from age (<75 years: beta 0.76; 95%-CI: 0.59–0.99; p = 0.049; ≥75 years: beta 0.71; 95%-CI: 0.51–0.98; p = 0.043). Conclusion: In real life, a significant proportion of IPF patients are ≥75 years old, characterized by higher number of comorbidities and global reduced HRQoL. However, the effect of an antifibrotic therapy was similar between age groups and associated with a survival benefit emphasizing the importance for an early antifibrotic therapy in IPF, independent from age
    corecore