247 research outputs found
Engaging patients and clinicians through simulation: rebalancing the dynamics of care
This paper proposes simulation-based enactment of care as an innovative and fruitful means of engaging patients and clinicians to create collaborative solutions to healthcare issues. This use of simulation is a radical departure from traditional transmission models of education and training. Instead, we frame simulation as co-development, through which professionals, patients and publics share their equally (though differently) expert perspectives. The paper argues that a process of participatory design can bring about new insights and that simulation offers understandings that cannot easily be expressed in words. Drawing on more than a decade of our group’s research on simulation and engagement, the paper summarises findings from studies relating to clinician-patient collaboration and proposes a novel approach to address the current need. The paper outlines a mechanism whereby pathways of care are jointly created, shaped, tested and refined by professionals, patients, carers and others who are affected and concerned by clinical care
Multileaf Collimator Tracking Improves Dose Delivery for Prostate Cancer Radiation Therapy: Results of the First Clinical Trial.
PURPOSE: To test the hypothesis that multileaf collimator (MLC) tracking improves the consistency between the planned and delivered dose compared with the dose without MLC tracking, in the setting of a prostate cancer volumetric modulated arc therapy trial. METHODS AND MATERIALS: Multileaf collimator tracking was implemented for 15 patients in a prostate cancer radiation therapy trial; in total, 513 treatment fractions were delivered. During each treatment fraction, the prostate trajectory and treatment MLC positions were collected. These data were used as input for dose reconstruction (multiple isocenter shift method) to calculate the treated dose (with MLC tracking) and the dose that would have been delivered had MLC tracking not been applied (without MLC tracking). The percentage difference from planned for target and normal tissue dose-volume points were calculated. The hypothesis was tested for each dose-volume value via analysis of variance using the F test. RESULTS: Of the 513 fractions delivered, 475 (93%) were suitable for analysis. The mean difference and standard deviation between the planned and treated MLC tracking doses and the planned and without-MLC tracking doses for all 475 fractions were, respectively, PTV D99% -0.8% ± 1.1% versus -2.1% ± 2.7%; CTV D99% -0.6% ± 0.8% versus -0.6% ± 1.1%; rectum V65% 1.6% ± 7.9% versus -1.2% ± 18%; and bladder V65% 0.5% ± 4.4% versus -0.0% ± 9.2% (P<.001 for all dose-volume results). CONCLUSION: This study shows that MLC tracking improves the consistency between the planned and delivered doses compared with the modeled doses without MLC tracking. The implications of this finding are potentially improved patient outcomes, as well as more reliable dose-volume data for radiobiological parameter determination
Quantification of intrafraction prostate motion and its dosimetric effect on VMAT.
Intrafraction prostate motion degrades the accuracy of radiation therapy (RT) delivery. Whilst a number of metrics in the literature have been used to quantify intrafraction prostate motion, it has not been established whether these metrics reflect the effect of motion on the RT dose delivered to the patients. In this study, prostate motion during volumetric modulated arc therapy (VMAT) treatment of 18 patients and a total of 294 fractions was quantified through novel metrics as well as those available in the literature. The impact of the motion on VMAT dosimetry was evaluated using these metrics and dose reconstructions based on a previously validated and published method. The dosimetric impact of the motion on planning target volume (PTV) and clinical target volume (CTV) coverage and organs at risk (OARs) was correlated with the motion metrics, using the coefficient of determination (R 2 ), to evaluate their utility. Action level threshold for the prostate motion metric that best described the dosimetric impact on the PTV D95% was investigated through iterative regression analysis. The average (range) of the mean motion for the patient cohort was 1.5 mm (0.3-9.9 mm). A number of motion metrics were found to be strongly correlated with PTV D95%, the range of R 2 was 0.43-0.81. For all the motion measures, correlations with CTV D99% (range of R 2 was 0.12-0.62), rectum V65% (range of R 2 was 0.33-0.58) and bladder V65% (range of R 2 was 0.51-0.69) were not as strong as for PTV D95%. The mean of the highest 50% of motion metric was one of the best indicator of dosimetric impact on PTV D95%. Action level threshold value for this metric was found to be 3.0 mm. For an individual fraction, when the metric value was greater than 3.0 mm then the PTV D95% was reduced on average by 6.2%. This study demonstrated that several motion metrics are well correlated with the dosimetric impact (PTV D95%) of individual fraction prostate motion on VMAT delivery and could be used for treatment course adaptation
Real-Time 3D Image Guidance Using a Standard LINAC: Measured Motion, Accuracy, and Precision of the First Prospective Clinical Trial of Kilovoltage Intrafraction Monitoring-Guided Gating for Prostate Cancer Radiation Therapy.
PURPOSE: Kilovoltage intrafraction monitoring (KIM) is a new real-time 3-dimensional image guidance method. Unlike previous real-time image guidance methods, KIM uses a standard linear accelerator without any additional equipment needed. The first prospective clinical trial of KIM is underway for prostate cancer radiation therapy. In this paper we report on the measured motion accuracy and precision using real-time KIM-guided gating. METHODS AND MATERIALS: Imaging and motion information from the first 200 fractions from 6 patient prostate cancer radiation therapy volumetric modulated arc therapy treatments were analyzed. A 3-mm/5-second action threshold was used to trigger a gating event where the beam is paused and the couch position adjusted to realign the prostate to the treatment isocenter. To quantify the in vivo accuracy and precision, KIM was compared with simultaneously acquired kV/MV triangulation for 187 fractions. RESULTS: KIM was successfully used in 197 of 200 fractions. Gating events occurred in 29 fractions (14.5%). In these 29 fractions, the percentage of beam-on time, the prostate displacement was >3 mm from the isocenter position, reduced from 73% without KIM to 24% with KIM-guided gating. Displacements >5 mm were reduced from 16% without KIM to 0% with KIM. The KIM accuracy was measured at <0.3 mm in all 3 dimensions. The KIM precision was <0.6 mm in all 3 dimensions. CONCLUSIONS: Clinical implementation of real-time KIM image guidance combined with gating for prostate cancer eliminates large prostate displacements during treatment delivery. Both in vivo KIM accuracy and precision are well below 1 mm
The first clinical treatment with kilovoltage intrafraction monitoring (KIM): A real-time image guidance method
PURPOSE: Kilovoltage intrafraction monitoring (KIM) is a real-time image guidance method that uses widely available radiotherapy technology, i.e., a gantry-mounted x-ray imager. The authors report on the geometric and dosimetric results of the first patient treatment using KIM which occurred on September 16, 2014. METHODS: KIM uses current and prior 2D x-ray images to estimate the 3D target position during cancer radiotherapy treatment delivery. KIM software was written to process kilovoltage (kV) images streamed from a standard C-arm linear accelerator with a gantry-mounted kV x-ray imaging system. A 120° pretreatment kV imaging arc was acquired to build the patient-specific 2D to 3D motion correlation. The kV imager was activated during the megavoltage (MV) treatment, a dual arc VMAT prostate treatment, to estimate the 3D prostate position in real-time. All necessary ethics, legal, and regulatory requirements were met for this clinical study. The quality assurance processes were completed and peer reviewed. RESULTS: During treatment, a prostate position offset of nearly 3 mm in the posterior direction was observed with KIM. This position offset did not trigger a gating event. After the treatment, the prostate motion was independently measured using kV/MV triangulation, resulting in a mean difference of less than 0.6 mm and standard deviation of less than 0.6 mm in each direction. The accuracy of the marker segmentation was visually assessed during and after treatment and found to be performing well. During treatment, there were no interruptions due to performance of the KIM software. CONCLUSIONS: For the first time, KIM has been used for real-time image guidance during cancer radiotherapy. The measured accuracy and precision were both submillimeter for the first treatment fraction. This clinical translational research milestone paves the way for the broad implementation of real-time image guidance to facilitate the detection and correction of geometric and dosimetric errors, and resultant improved clinical outcomes, in cancer radiotherapy
Is Poverty Decentralising? Quantifying Uncertainty in the Decentralisation of Urban Poverty
In this paper we argue that the recent focus on the suburbanisation of poverty is
problematic because of the ambiguities and inconsistencies in defining suburbia. To
improve transparency, replicability and comparability, we suggest that research on the
geographical changes to the distribution of poverty should focus on three questions: (1)
How centralised is urban poverty? (2) To what extent is it decentralising? (3) Is it
becoming spatially dispersed? With respect to all three questions, the issue of
quantifying uncertainty has been under-researched. The main contribution of the paper
is to provide a practical and robust solution to the problem of inference based on a
Bayesian multivariate conditional autoregressive (CAR) model, made accessible via the
R-software package CARBayes. Our approach can be applied to spatio-temporally
autocorrelated data, and can estimate both levels of and change in global RCIs (relative
centralisation index), local RCIs and dissimilarity indices. We illustrate our method with
an application to Scotland's four largest cities. Our results show that poverty was
centralised in 2011 in Glasgow, Dundee and Aberdeen. Poverty in Edinburgh, however,
was decentralised: non-poor households tend to live closer to the centre than poor
ones, and increasingly so. We also find evidence of statistically significant reductions in
centralisation of poverty in all four cities. To test whether this change is associated with
poverty becoming more dispersed, we estimate changes to evenness and local
decentralisation of poverty, revealing complex patterns of change
Real-Time Image Guided Ablative Prostate Cancer Radiation Therapy: Results From the TROG 15.01 SPARK Trial.
PurposeKilovoltage intrafraction monitoring (KIM) is a novel software platform implemented on standard radiation therapy systems and enabling real-time image guided radiation therapy (IGRT). In a multi-institutional prospective trial, we investigated whether real-time IGRT improved the accuracy of the dose patients with prostate cancer received during radiation therapy.Methods and materialsForty-eight patients with prostate cancer were treated with KIM-guided SABR with 36.25 Gy in 5 fractions. During KIM-guided treatment, the prostate motion was corrected for by either beam gating with couch shifts or multileaf collimator tracking. A dose reconstruction method was used to evaluate the dose delivered to the target and organs at risk with and without real-time IGRT. Primary outcome was the effect of real-time IGRT on dose distributions. Secondary outcomes included patient-reported outcomes and toxicity.ResultsMotion correction occurred in ≥1 treatment for 88% of patients (42 of 48) and 51% of treatments (121 of 235). With real-time IGRT, no treatments had prostate clinical target volume (CTV) D98% dose 5% less than planned. Without real-time IGRT, 13 treatments (5.5%) had prostate CTV D98% doses 5% less than planned. The prostate CTV D98% dose with real-time IGRT was closer to the plan by an average of 1.0% (range, -2.8% to 20.3%). Patient outcomes showed no change in the 12-month patient-reported outcomes compared with baseline and no grade ≥3 genitourinary or gastrointestinal toxicities.ConclusionsReal-time IGRT is clinically effective for prostate cancer SABR
Electromagnetic-Guided MLC Tracking Radiation Therapy for Prostate Cancer Patients: Prospective Clinical Trial Results.
PURPOSE: To report on the primary and secondary outcomes of a prospective clinical trial of electromagnetic-guided multileaf collimator (MLC) tracking radiation therapy for prostate cancer. METHODS AND MATERIALS: Twenty-eight men with prostate cancer were treated with electromagnetic-guided MLC tracking with volumetric modulated arc therapy. A total of 858 fractions were delivered, with the dose per fraction ranging from 2 to 13.75 Gy. The primary outcome was feasibility, with success determined if >95% of fractions were successfully delivered. The secondary outcomes were (1) the improvement in beam-target geometric alignment, (2) the improvement in dosimetric coverage of the prostate and avoidance of critical structures, and (3) no acute grade ≥3 genitourinary or gastrointestinal toxicity. RESULTS: All 858 planned fractions were successfully delivered with MLC tracking, demonstrating the primary outcome of feasibility (P < .001). MLC tracking improved the beam-target geometric alignment from 1.4 to 0.90 mm (root-mean-square error). MLC tracking improved the dosimetric coverage of the prostate and reduced the daily variation in dose to critical structures. No acute grade ≥3 genitourinary or gastrointestinal toxicity was observed. CONCLUSIONS: Electromagnetic-guided MLC tracking radiation therapy for prostate cancer is feasible. The patients received improved geometric targeting and delivered dose distributions that were closer to those planned than they would have received without electromagnetic-guided MLC tracking. No significant acute toxicity was observed
- …