3,793 research outputs found

    Measuring the quark condensate from the decays tau -> 3 pi + nu(tau)

    Full text link
    The possibility of detecting the S-wave of the decays tau -> 3 pi + nu(tau) in the threshold region is explored, with emphasis on the sensitivity to the size of the quark antiquark condensate .Comment: contribution to QCD99, 4 pages, Latex, using espcrc2.sty (included), 2 PS figur

    An example of resonance saturation at one loop

    Get PDF
    We argue that the large-Nc expansion of QCD can be used to treat a Lagrangian of resonances in a perturbative way. As an illustration of this we compute the L_10 coupling of the Chiral Lagrangian by integrating out resonance fields at one loop. Given a Lagrangian and a renormalization scheme, this is how in principle one can answer in a concrete and unambiguous manner questions such as at what scale resonance saturation takes place.Comment: 9 pages, 5 figures. Enlarged discussion, results unchanged. To be published in Phys. Rev.

    Retention capacity of random surfaces

    Full text link
    We introduce a "water retention" model for liquids captured on a random surface with open boundaries, and investigate it for both continuous and discrete surface heights 0, 1, ... n-1, on a square lattice with a square boundary. The model is found to have several intriguing features, including a non-monotonic dependence of the retention on the number of levels in the discrete case: for many n, the retention is counterintuitively greater than that of an n+1-level system. The behavior is explained using percolation theory, by mapping it to a 2-level system with variable probability. Results in 1-dimension are also found.Comment: 5 page

    Geometric approach to condensates in holographic QCD

    Get PDF
    An SU(Nf)xSU(Nf) Yang-Mills theory on an extra-dimensional interval is considered, with appropriate symmetry-breaking boundary conditions on the IR brane. UV-brane to UV-brane correlators at high energies are compared with the OPE of two-point functions of QCD quark currents. Condensates correspond to departure from AdS of the (different) metrics felt by vector and axial combinations, away from the UV brane. Their effect on hadronic observables is studied: the extracted condensates agree with the signs and orders of magnitude expected from QCD.Comment: References added: published version plus misprints correction

    Fluctuations of g-factors in metal nanoparticles: Effects of electron-electron interaction and spin-orbit scattering

    Full text link
    We investigate the combined effect of spin-orbit scattering and electron-electron interactions on the probability distribution of gg-factors of metal nanoparticles. Using random matrix theory, we find that even a relatively small interaction strength %(ratio of exchange constant JJ and mean level %spacing \spacing 0.3\simeq 0.3) significantly increases gg-factor fluctuations for not-too-strong spin-orbit scattering (ratio of spin-orbit rate and single-electron level spacing 1/\tau_{\rm so} \spacing \lesssim 1), and leads to the possibility to observe gg-factors larger than two.Comment: RevTex, 2 figures inserte

    Contributions of order O(mquark2){\cal O}(m_{\rm quark}^2) to K3K_{\ell 3} form factors and unitarity of the CKM matrix

    Full text link
    The form factors for the K3K_{\ell 3} semileptonic decay are computed to order O(p4)O(p^4) in generalized chiral perturbation theory. The main difference with the standard O(p4)O(p^4) expressions consists in contributions quadratic in quark masses, which are described by a single divergence-free low-energy constant, A3A_3. A new simultaneous analysis is presented for the CKM matrix element VusV_{us}, the ratio FK/FπF_K/F_{\pi}, K3K_{\ell 3} decay rates and the scalar form factor slope λ0\lambda_0. This framework easily accommodates the precise value for VudV_{ud} deduced from superallowed nuclear β\beta-decays

    Chiral two-loop pion-pion scattering parameters from crossing-symmetric constraints

    Get PDF
    Constraints on the parameters in the one- and two-loop pion-pion scattering amplitudes of standard chiral perturbation theory are obtained from explicitly crossing-symmetric sum rules. These constraints are based on a matching of the chiral amplitudes and the physical amplitudes at the symmetry point of the Mandelstam plane. The integrals over absorptive parts appearing in the sum rules are decomposed into crossing-symmetric low- and high-energy components and the chiral parameters are finally related to high-energy absorptive parts. A first application uses a simple model of these absorptive parts. The sensitivity of the results to the choice of the energy separating high and low energies is examined with care. Weak dependence on this energy is obtained as long as it stays below ~560 MeV. Reliable predictions are obtained for three two-loop parameters.Comment: 23 pages, 4 figures in .eps files, Latex (RevTex), our version of RevTex runs under Latex2.09, submitted to Phys. Rev. D,minor typographical corrections including the number at the end of the abstract, two sentences added at the end of Section 5 in answer to a referee's remar
    corecore