281 research outputs found

    Computed tomography for myocardial characterization in ischemic heart disease:a state-of-the-art review

    Get PDF
    This review provides an overview of the currently available computed tomography (CT) techniques for myocardial tissue characterization in ischemic heart disease, including CT perfusion and late iodine enhancement. CT myocardial perfusion imaging can be performed with static and dynamic protocols for the detection of ischemia and infarction using either single- or dual-energy CT modes. Late iodine enhancement may be used for the analysis of myocardial infarction. The accuracy of these CT techniques is highly dependent on the imaging protocol, including acquisition timing and contrast administration. Additionally, the options for qualitative and quantitative analysis and the accuracy of each technique are discussed

    Frameshift mutations in coding repeats of protein tyrosine phosphatase genes in colorectal tumors with microsatellite instability

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Protein tyrosine phosphatases (PTPs) like their antagonizing protein tyrosine kinases are key regulators of signal transduction thereby assuring normal control of cellular growth and differentiation. Increasing evidence suggests that mutations in PTP genes are associated with human malignancies. For example, mutational analysis of the tyrosine phosphatase (PTP) gene superfamily uncovered genetic alterations in about 26% of colorectal tumors. Since in these studies tumors have not been stratified according to genetic instability status we hypothesized that colorectal tumors characterized by high-level of microsatellite instability (MSI-H) might show an increased frequency of frameshift mutations in those PTP genes that harbor long mononucleotide repeats in their coding region (cMNR).</p> <p>Results</p> <p>Using bioinformatic analysis we identified 16 PTP candidate genes with long cMNRs that were examined for genetic alterations in 19 MSI-H colon cell lines, 54 MSI-H colorectal cancers, and 17 MSI-H colorectal adenomas. Frameshift mutations were identified only in 6 PTP genes, of which PTPN21 show the highest mutation frequency at all in MSI-H tumors (17%).</p> <p>Conclusion</p> <p>Although about 32% of MSI-H tumors showed at least one affected PTP gene, and cMNR mutation rates in PTPN21, PTPRS, and PTPN5 are higher than the mean mutation frequency of MNRs of the same length, mutations within PTP genes do not seem to play a common role in MSI tumorigenesis, since no cMNR mutation frequency reached statistical significance and therefore, failed prediction as a Positive Selective Target Gene.</p

    Prevalence of Human Papillomavirus infection by age and cervical cytology in Thika, Kenya

    Get PDF
    Human papillomavirus (HPV) infections cause cervical cancer and premalignant dysplasia. Data on HPV and cervical cancer in Kenya are scarce. Type-specific HPV prevalence data provides a basis for assessing the impact of HPV vaccination programs on cervical cytology and how HPV based screening will influence cervical cancer prevention. To investigate HPV infections in a population in Kenya, we obtained cervical cells specimen from 498 women in a population in Thika district. We report HPV type specific prevalence and distribution data for 498 women (age range 18-74 years; mean age 36 years) recruited into the study in relation to age and cervical cytology. The study was conducted between January to May 2010. Pap smears were performed, HR HPV DNA were detected by Digene Hybrid capture 2® (hc2) test and HPV genotyping was performed with Multiplex Luminex HPV genotyping kit (Multimetrix, Progen, Germany). Samples from 106 women (21.3%) tested positive for HPV. Multiple HPV types were detected in 40 (37.7% of HC2-positive samples) and the rest had infection with single HPV type. The most common HR HPV type at all ages was HPV16, 52, 56, 66, and 18. There was a marked decline in the prevalence of HR-HPV with age. The pattern of HR HPV distribution in this population was slightly different from existing literature, which has important consequences for HPV vaccination and prevention programs

    Differential Methylation of the HPV 16 Upstream Regulatory Region during Epithelial Differentiation and Neoplastic Transformation

    Get PDF
    High risk human papillomaviruses are squamous epitheliotropic viruses that may cause cervical and other cancers. HPV replication depends on squamous epithelial differentiation. Transformation of HPV-infected cells goes along with substantial alteration of the viral gene expression profile and preferentially occurs at transformation zones usually at the uterine cervix. Methylation of the viral genome may affect regulatory features that control transcription and replication of the viral genome. Therefore, we analyzed the methylation pattern of the HPV16 upstream regulatory region (URR) during squamous epithelial differentiation and neoplastic transformation and analyzed how shifts in the HPV URR methylome may affect viral gene expression and replication. HPV 16 positive biopsy sections encompassing all stages of an HPV infection (latent, permissive and transforming) were micro-dissected and DNA was isolated from cell fractions representing the basal, intermediate, and superficial cell layers, each, as well as from transformed p16INK4a-positive cells. We observed fundamental changes in the methylation profile of transcription factor binding sites in the HPV16 upstream regulatory region linked to the squamous epithelial differentiation stage. Squamous epithelial transformation indicated by p16INK4a overexpression was associated with methylation of the distal E2 binding site 1 leading to hyper-activation of the HPV 16 URR. Adjacent normal but HPV 16-infected epithelial areas retained hyper-methylated HPV DNA suggesting that these viral genomes were inactivated. These data suggest that distinct shifts of the HPV 16 methylome are linked to differentiation dependent transcription and replication control and may trigger neoplastic transformation

    (Phospho)proteomic profiling of microsatellite unstable CRC cells reveals alterations in nuclear signaling and cholesterol metabolism caused by frameshift mutation of NMD regulator UPF3A

    Get PDF
    DNA mismatch repair-deficient colorectal cancers (CRCs) accumulate numerous frameshift mutations at repetitive sequences recognized as microsatellite instability (MSI). When coding mononucleotide repeats (cMNRs) are affected, tumors accumulate frameshift mutations and premature termination codons (PTC) potentially leading to truncated proteins. Nonsense-mediated RNA decay (NMD) can degrade PTC-containing transcripts and protect from such faulty proteins. As it also regulates normal transcripts and cellular physiology, we tested whether NMD genes themselves are targets of MSI frameshift mutations. A high frequency of cMNR frameshift mutations in the UPF3A gene was found in MSI CRC cell lines (67.7%), MSI colorectal adenomas (55%) and carcinomas (63%). In normal colonic crypts, UPF3A expression was restricted to single chromogranin A-positive cells. SILAC-based proteomic analysis of KM12 CRC cells revealed UPF3A-dependent down-regulation of several enzymes involved in cholesterol biosynthesis. Furthermore, reconstituted UPF3A expression caused alterations of 85 phosphosites in 52 phosphoproteins. Most of them (38/52, 73%) reside in nuclear phosphoproteins involved in regulation of gene expression and RNA splicing. Since UPF3A mutations can modulate the (phospho)proteomic signature and expression of enzymes involved in cholesterol metabolism in CRC cells, UPF3A may influence other processes than NMD and loss of UPF3A expression might provide a growth advantage to MSI CRC cells

    Potential of fecal microbiota for early-stage detection of colorectal cancer

    Get PDF
    Several bacterial species have been implicated in the development of colorectal carcinoma (CRC), but CRC-associated changes of fecal microbiota and their potential for cancer screening remain to be explored. Here, we used metagenomic sequencing of fecal samples to identify taxonomic markers that distinguished CRC patients from tumor-free controls in a study population of 156 participants. Accuracy of metagenomic CRC detection was similar to the standard fecal occult blood test (FOBT) and when both approaches were combined, sensitivity improved > 45% relative to the FOBT, while maintaining its specificity. Accuracy of metagenomic CRC detection did not differ significantly between early- and late-stage cancer and could be validated in independent patient and control populations (N = 335) from different countries. CRC-associated changes in the fecal microbiome at least partially reflected microbial community composition at the tumor itself, indicating that observed gene pool differences may reveal tumor-related host-microbe interactions. Indeed, we deduced a metabolic shift from fiber degradation in controls to utilization of host carbohydrates and amino acids in CRC patients, accompanied by an increase of lipopolysaccharide metabolism

    SelTarbase, a database of human mononucleotide-microsatellite mutations and their potential impact to tumorigenesis and immunology

    Get PDF
    About 15% of human colorectal cancers and, at varying degrees, other tumor entities as well as nearly all tumors related to Lynch syndrome are hallmarked by microsatellite instability (MSI) as a result of a defective mismatch repair system. The functional impact of resulting mutations depends on their genomic localization. Alterations within coding mononucleotide repeat tracts (MNRs) can lead to protein truncation and formation of neopeptides, whereas alterations within untranslated MNRs can alter transcription level or transcript stability. These mutations may provide selective advantage or disadvantage to affected cells. They may further concern the biology of microsatellite unstable cells, e.g. by generating immunogenic peptides induced by frameshifts mutations. The Selective Targets database (http://www.seltarbase.org) is a curated database of a growing number of public MNR mutation data in microsatellite unstable human tumors. Regression calculations for various MSI–H tumor entities indicating statistically deviant mutation frequencies predict TGFBR2, BAX, ACVR2A and others that are shown or highly suspected to be involved in MSI tumorigenesis. Many useful tools for further analyzing genomic DNA, derived wild-type and mutated cDNAs and peptides are integrated. A comprehensive database of all human coding, untranslated, non-coding RNA- and intronic MNRs (MNR_ensembl) is also included. Herewith, SelTarbase presents as a plenty instrument for MSI-carcinogenesis-related research, diagnostics and therapy

    Association of high risk human papillomavirus and breast cancer : a UK based study

    Get PDF
    Infection by human papillomaviruses (HPVs) has been implicated in the aetiology of a variety of cancers. Studies evaluating the presence of HPVs in breast cancer (BC) have generated considerable controversy. To date, most studies have focused on the presence of viral DNA in BC; however there are important gaps in evidencing the role of HPV persistence in the invasiveness of BC. While these studies have been conducted in several countries, none, on the presence and biological activity of high risk (HR) HPV in BC has been done in the UK. Hence, we aimed to investigate these gaps by screening a total of 110 fresh breast tissue specimens from UK patients for the presence of twelve HR-HPV types DNA using PCR and Sanger sequencing. Samples positive for HPV-DNA were screened for viral oncoprotein expression using western blot and dot blot. Data obtained showed the presence of HR-HPVs in 42% of breast tissues of which the viral activity was only confirmed in a number of invasive carcinomas (5/26). This finding, the first to report in the UK, suggests that the selective expression of viral oncoprotein in invasive cases may propose a role for HR-HPVs in the development of some types of BC

    Pediatric T-ALL type-1 and type-2 relapses develop along distinct pathways of clonal evolution

    Full text link
    The mechanisms underlying T-ALL relapse remain essentially unknown. Multilevel-omics in 38 matched pairs of initial and relapsed T-ALL revealed 18 (47%) type-1 (defined by being derived from the major ancestral clone) and 20 (53%) type-2 relapses (derived from a minor ancestral clone). In both types of relapse, we observed known and novel drivers of multidrug resistance including MDR1 and MVP, NT5C2 and JAK-STAT activators. Patients with type-1 relapses were specifically characterized by IL7R upregulation. In remarkable contrast, type-2 relapses demonstrated (1) enrichment of constitutional cancer predisposition gene mutations, (2) divergent genetic and epigenetic remodeling, and (3) enrichment of somatic hypermutator phenotypes, related to BLM, BUB1B/PMS2 and TP53 mutations. T-ALLs that later progressed to type-2 relapses exhibited a complex subclonal architecture, unexpectedly, already at the time of initial diagnosis. Deconvolution analysis of ATAC-Seq profiles showed that T-ALLs later developing into type-1 relapses resembled a predominant immature thymic T-cell population, whereas T-ALLs developing into type-2 relapses resembled a mixture of normal T-cell precursors. In sum, our analyses revealed fundamentally different mechanisms driving either type-1 or type-2 T-ALL relapse and indicate that differential capacities of disease evolution are already inherent to the molecular setup of the initial leukemia
    corecore