440 research outputs found

    The role of damage-softened material behavior in the fracture of composites and adhesives

    Get PDF
    Failure mechanisms of materials under very high strains experienced at and ahead of the crack tip such as formation, growth, and interaction of microvoids in ductile materials, microcracks in brittle solids or crazes in polymers and adhesives are represented by one-dimensional, nonlinear stress-strain relations possessing different ways by which the material loses capacity to carry load up to fracture or total separation. A double cantilever beam (DCB) type specimen is considered. The nonlinear material is confined to a thin strip between the two elastic beams loaded by a wedge. The problem is first modeled as a beam on a nonlinear foundation. The pertinent equation is solved numerically as a two-point boundary value problem for both the stationary and the quasi-stationay propagating crack. A finite element model is then used to model the problem in more detail in order to assess the adequacy of the beam model for the reduction of experimental data to determine in-situ properties of the thin interlayer

    Letter From Donald T. Knauss to the Pennsylvania Dutch Folklore Center, February 17, 1954

    Get PDF
    A typed letter from Donald T. Knauss addressed to the Pennsylvania Dutch Folklore Center at Franklin and Marshall College, dated February 17, 1954. Within, Knauss states that at the direction of Ben A. Herman, Knauss is enclosing material to be printed in a Pennsylvania Dutch book.https://digitalcommons.ursinus.edu/shoemaker_documents/1015/thumbnail.jp

    Determination of Short Crack Depth with an Acoustic Microphone

    Get PDF
    For the prediction of the lifetime of any component, subjected to alternating stresses, the knowledge of the growth behavior of defects is essential. Most methods of monitoring the propagation of short cracks are confined to measuring the length of the crack on the surface [1]. The depth of the crack must be determined indirectly, assuming the shape of the crack. Acoustic waves, on the other hand, offer the possibility of measuring the depth directly, since acoustic waves can penetrate into the material. This allows the measurement not only of the growth behavior of fatigue cracks on the surface, but also changes of the crack geometry inside the specimen. Current applications of direct acoustic monitoring of crack growth have been developed for cracks of the order of millimeters. One acoustic depth measurement technique is the Time-of-Flight-Diffraction (TOFD) technique [2–4], which is based on timing measurements of the scattered signals from the defect. Our investigations are concerned with the application of TOFD technique for the depth measurement of short cracks (70–200 μm in surface length) using a scanning acoustic microscope (SAM) [5–6]. Depth measurements were first carried out on cracks in the transparent material polystyrene. This allows a direct comparison between acoustic and optical depth measurements. Subsequently, the depth of fatigue cracks in an A1 alloy were measured, and the acoustic measurements were compared with direct measurements of the crack geometry by sectioning the crack

    The cost-effectiveness of opt-in and send-to-all HPV self-sampling among long-term non-attenders to cervical cancer screening in Norway : The Equalscreen randomized controlled trial

    Get PDF
    OBJECTIVE: We assessed the cost-effectiveness of mailing a human papillomavirus self-sampling (HPV-ss) kit, directly or via invitation to order, compared with mailing reminder letters among long-term non-attenders in Norway. METHODS: We conducted a secondary analysis using the Equalscreen study data with 6000 women aged 35-69 years who had not screened in 10+ years. Participants were equally randomized into three arms: reminder letter (control); invitation to order HPV-ss kit (opt-in); directly mailed HPV-ss kit (send-to-all). Cost-effectiveness (2020 Great British Pounds (GBP)) was estimated using incremental cost-effectiveness ratios (ICERs) per additional screened woman, and per additional cervical intraepithelial neoplasia grade 2 or worse (CIN2+) from extended and direct healthcare perspectives. RESULTS: Participation, CIN2+ detection, and total screening costs were highest in the send-to-all arm, followed by the opt-in and control arms. Non-histological physician appointments contributed to 67% of the total costs in the control arm and ≤ 31% in the self-sampling arms. From an expanded healthcare perspective, the ICERs were 135 GBP and 169 GBP per additional screened woman, and 2864 GBP and 4165 GBP per additional CIN2+ detected for the opt-in and send-to-all, respectively. CONCLUSIONS: Opt-in and send-to-all self-sampling were more effective and, depending on willingness-to-pay, may be considered cost-effective alternatives to improve screening attendance in Norway

    Instanton Contribution to the Quark Form Factor

    Full text link
    The nonperturbative effects in the quark form factor are considered in the Wilson loop formalism. The properties of the Wilson loops with cusp singularities are studied taking into account the perturbative and nonperturbative contributions, where the latter are considered within the framework of the instanton liquid model. For the integration path corresponding to this form factor -- the angle with infinite sides -- the explicit expression for the vacuum expectation value of the Wilson operator is found to leading order. The calculations are performed in the weak-field limit for the instanton vacuum contribution and compared with the one- and two-loop order results for the perturbative part. It is shown that the instantons produce the powerlike corrections to the perturbative result, which are comparable in magnitude with the perturbative part at the scale of order of the inverse average instanton size. It is demonstrated that the instanton contributions to the quark form factor are exponentiated to high orders in the small instanton density parameter.Comment: Version coincident with the journal publication. LaTeX, 15 pages, 1 figur

    The generalized cusp in ABJ(M) N = 6 Super Chern-Simons theories

    Full text link
    We construct a generalized cusped Wilson loop operator in N = 6 super Chern-Simons-matter theories which is locally invariant under half of the supercharges. It depends on two parameters and interpolates smoothly between the 1/2 BPS line or circle and a pair of antiparallel lines, representing a natural generalization of the quark-antiquark potential in ABJ(M) theories. For particular choices of the parameters we obtain 1/6 BPS configurations that, mapped on S^2 by a conformal transformation, realize a three-dimensional analogue of the wedge DGRT Wilson loop of N = 4. The cusp couples, in addition to the gauge and scalar fields of the theory, also to the fermions in the bifundamental representation of the U(N)xU(M) gauge group and its expectation value is expressed as the holonomy of a suitable superconnection. We discuss the definition of these observables in terms of traces and the role of the boundary conditions of fermions along the loop. We perform a complete two-loop analysis, obtaining an explicit result for the generalized cusp at the second non-trivial order, from which we read off the interaction potential between heavy 1/2 BPS particles in the ABJ(M) model. Our results open the possibility to explore in the three-dimensional case the connection between localization properties and integrability, recently advocated in D = 4.Comment: 53 pages, 10 figures, added references, this is the version appeared on JHE

    Fentanyl-induced reward seeking is sex and dose dependent and is prevented by D-cysteine ethylester

    Get PDF
    Introduction: Despite their inclination to induce tolerance, addictive states, and respiratory depression, synthetic opioids are among the most effective clinically administered drugs to treat severe acute/chronic pain and induce surgical anesthesia. Current medical interventions for opioid-induced respiratory depression (OIRD), wooden chest syndrome, and opioid use disorder (OUD) show limited efficacy and are marked by low success in the face of highly potent synthetic opioids such as fentanyl. D-Cysteine ethylester (D-CYSee) prevents OIRD and post-treatment withdrawal in male/female rats and mice with minimal effect on analgesic status. However, the potential aversive or rewarding effects of D-CYSee have yet to be fully characterized and its efficacy could be compromised by interactions with opioid-reward pathology.Methods: Using a model of fentanyl-induced conditioned place preference (CPP), this study evaluated 1) the dose and sex dependent effects of fentanyl to induce rewarding states, and 2) the extent to which D-CYSee alters affective state and the acquisition of fentanyl-induced seeking behaviors.Results: Fentanyl reward-related effects were found to be dose and sex dependent. Male rats exhibited a range-bound dose response centered at 5 µg/kg. Female rats exhibited a CPP only at 50 µg/kg. This dose was effective in 25% of females with the remaining 75% showing no significant CPP at any dose. Pretreatment with 100 mg/kg, but not 10 mg/kg, D-CYSee prevented acquisition of fentanyl seeking in males while both doses were effective at preventing acquisition in females.Discussion: These findings suggest that D-CYSee is an effective co-treatment with prescribed opioids to reduce the development of OUD
    • …
    corecore